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As the most fundamental problem in statistics, robust location esti-
mation has many prominent solutions, such as the trimmed mean,
Winsorized mean, Hodges–Lehmann estimator, Huber M -estimator,
and median of means. Recent studies suggest that their maximum
biases concerning the mean can be quite different, but the under-
lying mechanisms largely remain unclear. This study exploited a
semiparametric method to classify distributions by the asymptotic
orderliness of quantile combinations with varying breakdown points,
showing their interrelations and connections to parametric distribu-
tions. Further deductions explain why the Winsorized mean typically
has smaller biases compared to the trimmed mean; two sequences
of semiparametric robust mean estimators emerge, particularly high-
lighting the superiority of the median Hodges–Lehmann mean.
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In 1823, Gauss (1) proved that for any unimodal distribution,1

|m − µ| ≤
√

3
4 ω and σ ≤ ω ≤ 2σ, where µ is the population2

mean, m is the population median, ω is the root mean square3

deviation from the mode, and σ is the population standard de-4

viation. This pioneering work revealed that, the potential bias5

of the median with respect to the mean is bounded in units of a6

scale parameter under certain assumptions. In 2018, Li, Shao,7

Wang, and Yang (2) proved the bias bound of any quantile for8

arbitrary continuous distributions with finite second moments.9

Bernard, Kazzi, and Vanduffel (2020) (3) further refined these10

bounds for unimodal distributions with finite second moments11

and extended to the bounds of symmetric quantile averages.12

They showed that m has the smallest maximum distance to13

µ among all symmetric quantile averages (SQAϵ). Daniell, in14

1920, (4) analyzed a class of estimators, linear combinations of15

order statistics, and identified that the ϵ-symmetric trimmed16

mean (STMϵ) belongs to this class. Another popular choice,17

the ϵ-symmetric Winsorized mean (SWMϵ), named after Win-18

sor and introduced by Tukey (5) and Dixon (6) in 1960, is19

also an L-estimator. Bieniek (2016) derived exact bias upper20

bounds of the Winsorized mean based on Danielak and Rych-21

lik’s work (2003) on the trimmed mean for any distribution22

with a finite second moment and confirmed that the former is23

smaller than the latter (7, 8). In 1963, Hodges and Lehmann24

(9) proposed a class of nonparametric location estimators based25

on rank tests and, from the Wilcoxon signed-rank statistic26

(10), deduced the median of pairwise means as a robust loca-27

tion estimator for a symmetric population. Both L-statistics28

and R-statistics achieve robustness essentially by removing29

a certain proportion of extreme values. In 1964, Huber (11)30

generalized maximum likelihood estimation to the minimiza-31

tion of the sum of a specific loss function, which measures the32

residuals between the data points and the model’s parameters.33

Some L-estimators are also M -estimators, e.g., the sample34

mean is an M -estimator with a squared error loss function,35

the sample median is an M -estimator with an absolute error36

loss function (11). The Huber M -estimator is obtained by ap- 37

plying the Huber loss function that combines elements of both 38

squared error and absolute error to achieve robustness against 39

gross errors and high efficiency for contaminated Gaussian 40

distributions (11). Sun, Zhou, and Fan (2020) examined the 41

concentration bounds of the Huber M -estimator (12). In 2012, 42

Catoni proposed an M -estimator for heavy-tailed samples 43

with finite variance (13). The concept of the median of means 44

(MoMk,b= n
k

,n) was first introduced by Nemirovsky and Yudin 45

(1983) in their work on stochastic optimization (14), while later 46

was revisited in Jerrum, Valiant, and Vazirani (1986), (15) and 47

Alon, Matias and Szegedy (1996) (16)’s works. Given its good 48

performance even for distributions with infinite second mo- 49

ments, the MoM has received increasing attention over the past 50

decade (17–20). Devroye, Lerasle, Lugosi, and Oliveira (2016) 51

showed that MoMk,b= n
k

,n nears the optimum of sub-Gaussian 52

mean estimation with regards to concentration bounds when 53

the distribution has a heavy tail (18). Laforgue, Clemencon, 54

and Bertail (2019) proposed the median of randomized means 55

(MoRMk,b,n) (19), wherein, rather than partitioning, an ar- 56

bitrary number, b, of blocks are built independently from 57

the sample, and showed that MoRMk,b,n has a better non- 58

asymptotic sub-Gaussian property compared to MoMk,b= n
k

,n. 59

In fact, asymptotically, the Hodges-Lehmann (H-L) estimator 60

is equivalent to MoMk=2,b= n
k

and MoRMk=2,b, and they can 61

be seen as the pairwise mean distribution is approximated 62

by the sampling without replacement and bootstrap, respec- 63

tively. When k ≪ n, the difference between sampling with 64

replacement and without replacement is negligible. For the 65

asymptotic validity, readers are referred to the foundational 66

works of Efron (1979) (21), Bickel and Freedman (1981, 1984) 67

(22, 23), and Helmers, Janssen, and Veraverbeke (1990) (24). 68
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Here, the ϵ,b-stratified mean is defined as69

SMϵ,b,n := b

n

 b−1
2bϵ∑
j=1

(2bj−b+1)nϵ
b−1∑

ij = (2bj−b−1)nϵ
b−1 +1

Xij

 ,70

where X1 ≤ . . . ≤ Xn denote the order statistics of a sample71

of n independent and identically distributed random variables72

X1, . . ., Xn. b ∈ N, b ≥ 3, and b mod 2 = 1. The defini-73

tion was further refined to guarantee the continuity of the74

breakdown point by incorporating an additional block in the75

center when ⌊ b−1
2bϵ

⌋ mod 2 = 0, or by adjusting the central76

block when ⌊ b−1
2bϵ

⌋ mod 2 = 1 (SI Text). If the subscript n77

is omitted, only the asymptotic behavior is considered. If78

b is omitted, b = 3 is assumed. SMϵ,b=3 is equivalent to79

STMϵ, when ϵ > 1
6 . When b−1

2ϵ
∈ N, the basic idea of the80

stratified mean is to distribute the data into b−1
2ϵ

equal-sized81

non-overlapping blocks according to their order. Then, further82

sequentially group these blocks into b equal-sized strata and83

compute the mean of the middle stratum, which is the median84

of means of each stratum. In situations where i mod 1 ̸= 0,85

a potential solution is to generate multiple smaller samples86

that satisfy the equality by sampling without replacement,87

and subsequently calculate the mean of all estimations. The88

details of determining the smaller sample size and the number89

of sampling times are provided in the SI Text. Although the90

principle resembles that of the median of means, SMϵ,b,n is91

different from MoMk= n
b

,b,n as it does not include the random92

shift. Additionally, the stratified mean differs from the mean93

of the sample obtained through stratified sampling methods,94

introduced by Neyman (1934) (25) or ranked set sampling (26),95

introduced by McIntyre in 1952, as these sampling methods96

aim to obtain more representative samples or improve the97

efficiency of sample estimates, but the sample means based98

on them are not robust. When b mod 2 = 1, the stratified99

mean can be regarded as replacing the other equal-sized strata100

with the middle stratum, which, in principle, is analogous to101

the Winsorized mean that replaces extreme values with less102

extreme percentiles. Furthermore, while the bounds confirm103

that the Winsorized mean and median of means outperform104

the trimmed mean (7, 8, 18) in worst-case performance, the105

complexity of bound analysis makes it difficult to achieve a106

complete and intuitive understanding of these results. Also, a107

clear explanation for the average performance of them remains108

elusive. The aim of this paper is to define a series of semi-109

parametric models using the signs of derivatives, reveal their110

elegant interrelations and connections to parametric models,111

and show that by exploiting these models, two sets of sophis-112

ticated mean estimators can be deduced, which exhibit strong113

robustness to departures from assumptions.114

Quantile Average and Weighted Average115

The symmetric trimmed mean, symmetric Winsorized mean,116

and stratified mean are all L-estimators. More specifically,117

they are symmetric weighted averages, which are defined as118

SWAϵ,n :=
∑⌈ n

2 ⌉
i=1

Xi+Xn−i+1
2 wi∑⌈ n

2 ⌉
i=1 wi

,119

where wis are the weights applied to the symmetric quantile120

averages according to the definition of the corresponding L-121

estimators. For example, for the ϵ-symmetric trimmed mean,122

wi =
{

0, i < nϵ
1, i ≥ nϵ

, when nϵ ∈ N. The mean and median are 123

indeed two special cases of the symmetric trimmed mean. 124

To extend the symmetric quantile average to the asymmet- 125

ric case, two definitions for the ϵ,γ-quantile average (QAϵ,γ,n) 126

are proposed. The first definition is: 127

1
2(Q̂n(γϵ) + Q̂n(1 − ϵ)), [1] 128

and the second definition is: 129

1
2(Q̂n(ϵ) + Q̂n(1 − γϵ)), [2] 130

where Q̂n(p) is the empirical quantile function; γ is used to 131

adjust the degree of asymmetry, γ ≥ 0; and 0 ≤ ϵ ≤ 1
1+γ

. For 132

trimming from both sides, [1] and [2] are essentially equivalent. 133

The first definition along with γ ≥ 0 and 0 ≤ ϵ ≤ 1
1+γ

are 134

assumed in the rest of this article unless otherwise specified, 135

since many common asymmetric distributions are right-skewed, 136

and [1] allows trimming only from the right side by setting 137

γ = 0. 138

Analogously, the weighted average can be defined as 139

WAϵ,γ,n :=
∫ 1

1+γ

0 QA (ϵ0, γ, n) w(ϵ0)dϵ0∫ 1
1+γ

0 w(ϵ0)dϵ0

. 140

For any weighted average, if γ is omitted, it is assumed to 141

be 1. The ϵ, γ-trimmed mean (TMϵ,γ,n) is a weighted aver- 142

age with a left trim size of nγϵ and a right trim size of nϵ, 143

where w(ϵ0) =
{

0, ϵ0 < ϵ
1, ϵ0 ≥ ϵ

. Using this definition, regard- 144

less of whether nγϵ /∈ N or nϵ /∈ N, the TM computation 145

remains the same, since this definition is based on the empir- 146

ical quantile function. However, in this article, considering 147

the computational cost in practice, non-asymptotic definitions 148

of various types of weighted averages are primarily based on 149

order statistics. Unless stated otherwise, the solution to their 150

decimal issue is the same as that in SM. 151

Furthermore, for weighted averages, separating the break- 152

down point into upper and lower parts is necessary. 153

Definition .1 (Upper/lower breakdown point). The upper 154

breakdown point is the breakdown point generalized in Davies 155

and Gather (2005)’s paper (27). The finite-sample upper 156

breakdown point is the finite sample breakdown point defined 157

by Donoho and Huber (1983) (28) and also detailed in (27). 158

The (finite-sample) lower breakdown point is replacing the 159

infinity symbol in these definitions with negative infinity. 160

Classifying Distributions by the Signs of Derivatives 161

Let PR denote the set of all continuous distributions over R 162

and PX denote the set of all discrete distributions over a count- 163

able set X. The default of this article will be on the class of 164

continuous distributions, PR. However, it’s worth noting that 165

most discussions and results can be extended to encompass 166

the discrete case, PX, unless explicitly specified otherwise. Be- 167

sides fully and smoothly parameterizing them by a Euclidean 168

parameter or merely assuming regularity conditions, there 169

exist additional methods for classifying distributions based 170

on their characteristics, such as their skewness, peakedness, 171

modality, and supported interval. In 1956, Stein initiated the 172
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study of estimating parameters in the presence of an infinite-173

dimensional nuisance shape parameter (29) and proposed a174

necessary condition for this type of problem, a contribution175

later explicitly recognized as initiating the field of semipara-176

metric statistics (30). In 1982, Bickel simplified Stein’s general177

heuristic necessary condition (29), derived sufficient condi-178

tions, and used them in formulating adaptive estimates (30).179

A notable example discussed in these groundbreaking works180

was the adaptive estimation of the center of symmetry for an181

unknown symmetric distribution, which is a semiparametric182

model. In 1993, Bickel, Klaassen, Ritov, and Wellner pub-183

lished an influential semiparametrics textbook (31), which184

categorized most common statistical models as semiparamet-185

ric models, considering parametric and nonparametric models186

as two special cases within this classification. Yet, there is187

another old and commonly encountered class of distributions188

that receives little attention in semiparametric literature: the189

unimodal distribution. It is a very unique semiparametric190

model because its definition is based on the signs of deriva-191

tives, i.e., (f ′(x) > 0 for x ≤ M) ∧ (f ′(x) < 0 for x ≥ M),192

where f(x) is the probability density function (pdf) of a ran-193

dom variable X, M is the mode. Let PU denote the set of all194

unimodal distributions. There was a widespread misbelief that195

the median of an arbitrary unimodal distribution always lies196

between its mean and mode until Runnenburg (1978) and van197

Zwet (1979) (32, 33) endeavored to determine sufficient condi-198

tions for the mean-median-mode inequality to hold, thereby199

implying the possibility of its violation. The class of unimodal200

distributions that satisfy the mean-median-mode inequality201

constitutes a subclass of PU , denoted by PMMM ⊊ PU . To202

further investigate the relations of location estimates within a203

distribution, the γ-orderliness for a right-skewed distribution204

is defined as205

∀0 ≤ ϵ1 ≤ ϵ2 ≤ 1
1 + γ

, QA(ϵ1, γ) ≥ QA(ϵ2, γ).206

The necessary and sufficient condition below hints at the207

relation between the mean-median-mode inequality and the208

γ-orderliness.209

Theorem .1. A distribution is γ-ordered if and only if its210

pdf satisfies the inequality f(Q(γϵ)) ≥ f(Q(1 − ϵ)) for all211

0 ≤ ϵ ≤ 1
1+γ

or f(Q(γϵ)) ≤ f(Q(1 − ϵ)) for all 0 ≤ ϵ ≤ 1
1+γ

.212

Proof. Without loss of generality, consider the case of right-213

skewed distribution. From the above definition of γ-orderliness,214

it is deduced that Q(γϵ−δ)+Q(1−ϵ+δ)
2 ≥ Q(γϵ)+Q(1−ϵ)

2 ⇔ Q(γϵ−215

δ) − Q(γϵ) ≥ Q(1 − ϵ) − Q(1 − ϵ + δ) ⇔ Q′(1 − ϵ) ≥ Q′(γϵ),216

where δ is an infinitesimal positive quantity. Observing that217

the quantile function is the inverse function of the cumulative218

distribution function (cdf), Q′(1−ϵ) ≥ Q′(γϵ) ⇔ F ′(Q(γϵ)) ≥219

F ′(Q(1−ϵ)), thereby completing the proof, since the derivative220

of cdf is pdf.221

According to Theorem .1, if a probability distribution is222

right-skewed and monotonic decreasing, it will always be γ-223

ordered. For a right-skewed unimodal distribution, if Q(γϵ) >224

M , then the inequality f(Q(γϵ)) ≥ f(Q(1 − ϵ)) holds. The225

principle is extendable to unimodal-like distributions. Suppose226

there is a right-skewed unimodal-like distribution with the227

first mode, denoted as M1, having the greatest probability228

density, while there are several smaller modes located towards229

the higher values of the distribution. Furthermore, assume230

that this distribution follows the mean-γ-median-first mode 231

inequality, and the γ-median, Q( γ
1+γ

), falling within the first 232

dominant mode (i.e., if x > Q( γ
1+γ

), f(Q( γ
1+γ

)) ≥ f(x)). 233

Then, if Q(γϵ) > M1, the inequality f(Q(γϵ)) ≥ f(Q(1 − 234

ϵ)) also holds. In other words, even though a distribution 235

following the mean-γ-median-mode inequality may not be 236

strictly γ-ordered, the inequality defining the γ-orderliness 237

remains valid for most quantile averages. The mean-γ-median- 238

mode inequality can also indicate possible bounds for γ in 239

practice, e.g., for any distributions, when γ → ∞, the γ- 240

median will be greater than the mean and the mode, when 241

γ → 0, the γ-median will be smaller than the mean and 242

the mode, a reasonable γ should maintain the validity of the 243

mean-γ-median-mode inequality. 244

The definition above of γ-orderliness for a right-skewed 245

distribution implies a monotonic decreasing behavior of the 246

quantile average function with respect to the breakdown point. 247

Therefore, consider the sign of the partial derivative, it can 248

also be expressed as: 249

∀0 ≤ ϵ ≤ 1
1 + γ

,
∂QA

∂ϵ
≤ 0. 250

The left-skewed case can be obtained by reversing the inequal- 251

ity ∂QA
∂ϵ

≤ 0 to ∂QA
∂ϵ

≥ 0 and employing the second definition 252

of QA, as given in [2]. For simplicity, the left-skewed case will 253

be omitted in the following discussion. If γ = 1, the γ-ordered 254

distribution is referred to as ordered distribution. 255

Furthermore, many common right-skewed distributions, 256

such as the Weibull, gamma, lognormal, and Pareto distri- 257

butions, are partially bounded, indicating a convex behavior 258

of the QA function with respect to ϵ as ϵ approaches 0. By 259

further assuming convexity, the second γ-orderliness can be 260

defined for a right-skewed distribution as follows, 261

∀0 ≤ ϵ ≤ 1
1 + γ

,
∂2QA

∂ϵ2 ≥ 0 ∧ ∂QA
∂ϵ

≤ 0. 262

Analogously, the νth γ-orderliness of a right-skewed distribu- 263

tion can be defined as (−1)ν ∂ν QA
∂ϵν ≥ 0 ∧ . . . ∧ − ∂QA

∂ϵ
≥ 0. If 264

γ = 1, the νth γ-orderliness is referred as to νth orderliness. 265

Let PO denote the set of all distributions that are ordered 266

and POν and PγOν represent the sets of all distributions that 267

are νth ordered and νth γ-ordered, respectively. When the 268

shape parameter of the Weibull distribution, α, is smaller 269

than 1
1−ln(2) , it can be shown that the Weibull distribution 270

belongs to PU ∩PO ∩PO2 (SI Text). At α ≈ 3.602, the Weibull 271

distribution is symmetric, and as α → ∞, the skewness of the 272

Weibull distribution approaches 1. Therefore, the parameters 273

that prevent it from being included in the set correspond to 274

cases when it is near-symmetric, as shown in the SI Text. 275

Nevertheless, computing the derivatives of the QA function is 276

often intricate and, at times, challenging. The following theo- 277

rems establish the relationship between PO, POν , and PγOν , 278

and a wide range of other semi-parametric distributions. They 279

can be used to quickly identify some parametric distributions 280

in PO, POν , and PγOν . 281

Theorem .2. For any random variable X whose probability 282

distribution function belongs to a location-scale family, the dis- 283

tribution is νth γ-ordered if and only if the family of probability 284

distributions is νth γ-ordered. 285
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Proof. Let Q0 denote the quantile function of the standard286

distribution without any shifts or scaling. After a location-287

scale transformation, the quantile function becomes Q(p) =288

λQ0(p)+µ, where λ is the scale parameter and µ is the location289

parameter. According to the definition of the νth γ-orderliness,290

the signs of derivatives of the QA function are invariant after291

this transformation. As the location-scale transformation is292

reversible, the proof is complete.293

Theorem .2 demonstrates that in the analytical proof of294

the νth γ-orderliness of a parametric distribution, both the295

location and scale parameters can be regarded as constants.296

It is also instrumental in proving other theorems.297

Theorem .3. Define a γ-symmetric distribution as one for298

which the quantile function satisfies Q(γϵ) = 2Q( γ
1+γ

)−Q(1−ϵ)299

for all 0 ≤ ϵ ≤ 1
1+γ

. Any γ-symmetric distribution is νth γ-300

ordered.301

Proof. The equality, Q(γϵ) = 2Q( γ
1+γ

) − Q(1 − ϵ), implies302

that ∂Q(γϵ)
∂ϵ

= γQ′(γϵ) = ∂(−Q(1−ϵ))
∂ϵ

= Q′(1 − ϵ). From the303

first definition of QA, the QA function of the γ-symmetric304

distribution is a horizontal line, since ∂QA
∂ϵ

= γQ′(γϵ) − Q′(1 −305

ϵ) = 0. So, the νth order derivative of QA is always zero.306

Theorem .4. A symmetric distribution is a special case of307

the γ-symmetric distribution when γ = 1, provided that the cdf308

is monotonic.309

Proof. A symmetric distribution is a probability distribution310

such that for all x, f(x) = f(2m − x). Its cdf satisfies F (x) =311

1 − F (2m − x). Let x = Q(p), then, F (Q(p)) = p = 1 −312

F (2m−Q(p)) and F (Q(1−p)) = 1−p ⇔ p = 1−F (Q(1−p)).313

Therefore, F (2m − Q(p)) = F (Q(1 − p)). Since the cdf is314

monotonic, 2m − Q(p) = Q(1 − p) ⇔ Q(p) = 2m − Q(1 − p).315

Choosing p = ϵ yields the desired result.316

Since the generalized Gaussian distribution is symmetric317

around the median, it is νth ordered, as a consequence of318

Theorem .3. Also, the integral of all quantile averages is not319

equal to the mean, unless γ = 1, as the left and right parts have320

different weights. The symmetric distribution has a unique321

role in that its all quantile averages are equal to the mean for322

a distribution with a finite mean.323

Theorem .5. Any right-skewed distribution whose quan-324

tile function Q satisfies Q(ν) (p) ≥ 0 ∧ . . . Q(i) (p) ≥ 0 . . . ∧325

Q(2) (p) ≥ 0, i mod 2 = 0, is νth γ-ordered, provided that326

0 ≤ γ ≤ 1.327

Proof. Since (−1)i ∂iQA
∂ϵi = 1

2 ((−γ)iQi(γϵ)+Qi(1−ϵ)) and 1 ≤328

i ≤ ν, when i mod 2 = 0, (−1)i ∂iQA
∂ϵi ≥ 0 for all γ ≥ 0. When329

i mod 2 = 1, if further assuming 0 ≤ γ ≤ 1, (−1)i ∂iQA
∂ϵi ≥ 0,330

since Q(i+1) (p) ≥ 0.331

This result makes it straightforward to show that the Pareto332

distribution follows the νth γ-orderliness, provided that 0 ≤333

γ ≤ 1, since the quantile function of the Pareto distribution334

is QP ar (p) = xm(1 − p)− 1
α , where xm > 0, α > 0, and so335

Q
(ν)
P ar (p) ≥ 0 for all ν ∈ N according to the chain rule.336

Theorem .6. A right-skewed distribution with a monotonic337

decreasing pdf is second γ-ordered.338

Proof. Given that a monotonic decreasing pdf implies f ′(x) = 339

F (2) (x) ≤ 0, let x = Q (F (x)), then by differentiating 340

both sides of the equation twice, one can obtain 0 = 341

Q(2) (F (x)) (F ′ (x))2 + Q′ (F (x)) F (2) (x) ⇒ Q(2) (F (x)) = 342

− Q′(F (x))F (2)(x)
(F ′(x))2 ≥ 0, since Q′ (p) ≥ 0. Theorem .1 already 343

established the γ-orderliness for all γ ≥ 0, which means 344

∀0 ≤ ϵ ≤ 1
1+γ

, ∂QA
∂ϵ

≤ 0. The desired result is then derived 345

from the proof of Theorem .5, since (−1)2 ∂2QA
∂ϵ2 ≥ 0 for all 346

γ ≥ 0. 347

Theorem .6 provides valuable insights into the relation be- 348

tween modality and second γ-orderliness. The conventional 349

definition states that a distribution with a monotonic pdf 350

is still considered unimodal. However, within its supported 351

interval, the mode number is zero. Theorem .1 implies that 352

the number of modes and their magnitudes within a distri- 353

bution are closely related to the likelihood of γ-orderliness 354

being valid. This is because, for a distribution satisfying 355

the necessary and sufficient condition in Theorem .1, it is 356

already implied that the probability density of the left-hand 357

side of the γ-median is always greater than the corresponding 358

probability density of the right-hand side of the γ-median. 359

So although counterexamples can always be constructed for 360

non-monotonic distributions, the general shape of a γ-ordered 361

distribution should have a single dominant mode. It can be 362

easily established that the gamma distribution is second γ- 363

ordered when α ≤ 1, as the pdf of the gamma distribution 364

is f (x) = λ−αxα−1e
− x

λ

Γ(α) , where x ≥ 0, λ > 0, α > 0, and Γ 365

represents the gamma function. This pdf is a product of two 366

monotonic decreasing functions under constraints. For α > 1, 367

analytical analysis becomes challenging. Numerical results 368

can varify that orderliness is valid if α < 140, the second 369

orderliness is valid if α > 81, and the third orderliness is valid 370

if α < 59 (SI Text). It is instructive to consider that when 371

α → ∞, the gamma distribution converges to a Gaussian 372

distribution with mean µ = αλ and variance σ = αλ2. The 373

skewness of the gamma distribution, α+2√
α(α+1)

, is monotonic 374

with respect to α, since ∂µ̃3(α)
∂α

= −3α−2
2(α(α+1))3/2 < 0. When 375

α = 59, µ̃3(α) = 1.025. Theorefore, similar to the Weibull 376

distribution, the parameters which make these distributions 377

fail to be included in PU ∩ PO ∩ PO2 ∩ PO3 also correspond 378

to cases when it is near-symmetric. 379

Theorem .7. Consider a γ-symmetric random variable X. 380

Let it be transformed using a function ϕ (x) such that ϕ(2) (x) ≥ 381

0 over the interval supported, the resulting convex transformed 382

distribution is γ-ordered. Moreover, if the quantile function of 383

X satifies Q(2) (p) ≤ 0, the convex transformed distribution is 384

second γ-ordered. 385

Proof. Let ϕQA(ϵ, γ) = 1
2 (ϕ(Q(γϵ)) + ϕ(Q(1 − 386

ϵ))). Then, for all 0 ≤ ϵ ≤ 1
1+γ

, ∂ϕQA
∂ϵ

= 387

1
2 (γϕ′ (Q (γϵ)) Q′ (γϵ) − ϕ′ (Q (1 − ϵ)) Q′ (1 − ϵ)) = 388
1
2 γQ′ (γϵ) (ϕ′ (Q (γϵ)) − ϕ′ (Q (1 − ϵ))) ≤ 0, since for a γ- 389

symmetric distribution, Q( 1
1+γ

)−Q (γϵ) = Q (1 − ϵ)−Q( 1
1+γ

), 390

differentiating both sides, −γQ′ (γϵ) = −Q′(1 − ϵ), where 391

Q′ (p) ≥ 0, ϕ(2) (x) ≥ 0. If further differentiating the 392

equality, γ2Q(2) (γϵ) = −Q(2)(1 − ϵ). Since ∂(2)ϕQA
∂ϵ(2) = 393

1
2

(
γ2ϕ2 (Q (γϵ)) (Q′ (γϵ))2 + ϕ2 (Q (1 − ϵ)) (Q′ (1 − ϵ))2) + 394

1
2

(
γ2ϕ′ (Q (γϵ))

(
Q2 (γϵ)

)
+ ϕ′ (Q (1 − ϵ))

(
Q2 (1 − ϵ)

))
= 395
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1
2

((
ϕ(2) (Q (γϵ)) + ϕ(2) (Q (1 − ϵ))

) (
γ2Q′ (γϵ)

)2
)

+396

1
2

(
(ϕ′ (Q (γϵ)) − ϕ′ (Q (1 − ϵ))) γ2Q(2) (γϵ)

)
. If Q(2) (p) ≤ 0,397

for all 0 ≤ ϵ ≤ 1
1+γ

, ∂(2)ϕQA
∂ϵ(2) ≥ 0.398

An application of Theorem .7 is that the lognormal399

distribution is ordered as it is exponentially transformed400

from the Gaussian distribution. The quantile function of401

the Gaussian distribution meets the condition Q
(2)
Gau (p) =402

−2
√

2πσe2erfc−1(2p)2
erfc−1(2p) ≤ 0, where σ is the standard403

deviation of the Gaussian distribution and erfc denotes the404

complementary error function. Thus, the lognormal distribu-405

tion is second ordered. Numerical results suggest that it is406

also third ordered, although analytically proving this result is407

challenging.408

Theorem .7 also reveals a relation between convex transfor-409

mation and orderliness, since ϕ is the non-decreasing convex410

function in van Zwet’s trailblazing work Convex transforma-411

tions of random variables (34) if adding an additional con-412

straint that ϕ′ (x) ≥ 0. Consider a near-symmetric distribution413

S, such that the SQA(ϵ) as a function of ϵ fluctuates from 0414

to 1
2 . By definition, S is not ordered. Let s be the pdf of S.415

Applying the transformation ϕ (x) to S decreases s(QS(ϵ)),416

and the decrease rate, due to the order, is much smaller for417

s(QS(1 − ϵ)). As a consequence, as ϕ(2) (x) increases, even-418

tually, after a point, for all 0 ≤ ϵ ≤ 1
1+γ

, s(QS(ϵ)) becomes419

greater than s(QS(1 − ϵ)) even if it was not previously. Thus,420

the SQA(ϵ) function becomes monotonically decreasing, and S421

becomes ordered. Accordingly, in a family of distributions that422

differ by a skewness-increasing transformation in van Zwet’s423

sense, violations of orderliness typically occur only when the424

distribution is near-symmetric.425

Pearson proposed using the 3 times standardized mean-426

median difference, 3(µ−m)
σ

, as a measure of skewness in 1895427

(35). Bowley (1926) proposed a measure of skewness based on428

the SQAϵ= 1
4

-median difference SQAϵ= 1
4

−m (36). Groeneveld429

and Meeden (1984) (37) generalized these measures of skewness430

based on van Zwet’s convex transformation (34) while explor-431

ing their properties. A distribution is called monotonically432

right-skewed if and only if ∀0 ≤ ϵ1 ≤ ϵ2 ≤ 1
2 , SQAϵ1 − m ≥433

SQAϵ2 − m. Since m is a constant, the monotonic skewness434

is equivalent to the orderliness. For a nonordered distribu-435

tion, the signs of SQAϵ − m with different breakdown points436

might be different, implying that some skewness measures437

indicate left-skewed distribution, while others suggest right-438

skewed distribution. Although it seems reasonable that such a439

distribution is likely be generally near-symmetric, counterex-440

amples can be constructed. For example, first consider the441

Weibull distribution, when α > 1
1−ln(2) , it is near-symmetric442

and nonordered, the non-monotonicity of the SQA function443

arises when ϵ is close to 1
2 , but if then replacing the third quar-444

tile with one from a right-skewed heavy-tailed distribution445

leads to a right-skewed, heavy-tailed, and nonordered distri-446

bution. Therefore, the validity of robust measures of skewness447

based on the SQA-median difference is closely related to the448

orderliness of the distribution.449

Remarkably, in 2018, Li, Shao, Wang, Yang (2) proved the450

bias bound of any quantile for arbitrary continuous distribu-451

tions with finite second moments. Here, let Pµ,σ denotes the452

set of continuous distributions whose mean is µ and standard453

deviation is σ. The bias upper bound of the quantile average454

for P ∈ Pµ=0,σ=1 is given in the following theorem. 455

Theorem .8. The bias upper bound of the quantile average for 456

any continuous distribution whose mean is zero and standard 457

deviation is one is 458

sup
P ∈Pµ=0,σ=1

QA(ϵ, γ) = 1
2

(√
γϵ

1 − γϵ
+
√

1 − ϵ

ϵ

)
, 459

where 0 ≤ ϵ ≤ 1
1+γ

. 460

Proof. Since supP ∈Pµ=0,σ=1
1
2 (Q(γϵ) + Q(1 − ϵ)) ≤ 461

1
2 (supP ∈Pµ=0,σ=1 Q(γϵ) + supP ∈Pµ=0,σ=1 Q(1 − ϵ)), the 462

assertion follows directly from the Lemma 2.6 in (2). 463

In 2020, Bernard et al. (3) further refined these bounds 464

for unimodal distributions and derived the bias bound of the 465

symmetric quantile average. Here, the bias upper bound of 466

the quantile average, 0 ≤ γ < 5, for P ∈ PU ∩ Pµ=0,σ=1 is 467

given as 468

sup
P ∈PU ∩Pµ=0,σ=1

QA(ϵ, γ) =


1
2

(√
4
9ϵ

− 1 +
√

3γϵ
4−3γϵ

)
0 ≤ ϵ ≤ 1

6

1
2

(√
3(1−ϵ)

4−3(1−ϵ) +
√

3γϵ
4−3γϵ

)
1
6 < ϵ ≤ 1

1+γ
.

469

The proof based on the bias bounds of any quantile (3) and 470

the γ ≥ 5 case are given in the SI Text. Subsequent theorems 471

reveal the safeguarding role these bounds play in defining 472

estimators based on νth γ-orderliness. 473

Theorem .9. supP ∈Pµ=0,σ=1 QA(ϵ, γ) is monotonic decreas- 474

ing with respect to ϵ over [0, 1
1+γ

], provided that 0 ≤ γ ≤ 1. 475

Proof. ∂ sup QA(ϵ,γ)
∂ϵ

= 1
4

(
γ√

γϵ
1−γϵ

(γϵ−1)2
− 1√

1
ϵ

−1ϵ2

)
. When 476

γ = 0, ∂ sup QA(ϵ,γ)
∂ϵ

= 1
4

( √
γ√

ϵ
1−γϵ

(γϵ−1)2 − 1√
1
ϵ

−1ϵ2

)
= 477

− 1√
1
ϵ

−1ϵ2 ≤ 0. When ϵ → 0+, 478

limϵ→0+

(
1
4

(
γ√

γϵ
1−γϵ

(γϵ−1)2
− 1√

1
ϵ

−1ϵ2

))
= 479

limϵ→0+

(
1
4

(√
γ√
ϵ

− 1√
ϵ3

))
→ −∞. Assuming ϵ > 0, 480

when 0 < γ ≤ 1, to prove ∂ sup QA(ϵ,γ)
∂ϵ

≤ 0, it is 481

equivalent to showing
√

γϵ
1−γϵ

(γϵ−1)2

γ
≥
√

1
ϵ

− 1ϵ2. De- 482

fine L(ϵ, γ) =
√

γϵ
1−γϵ

(γϵ−1)2

γ
, R(ϵ, γ) =

√
1
ϵ

− 1ϵ2. 483

L(ϵ,γ)
ϵ2 =

√
γϵ

1−γϵ
(γϵ−1)2

γϵ2 = 1
γ

√
1

1
γϵ

−1

(
γ − 1

ϵ

)2, R(ϵ,γ)
ϵ2 = 484√

1
ϵ

− 1. Then, L(ϵ,γ)
ϵ2 ≥ R(ϵ,γ)

ϵ2 ⇔ 1
γ

√
1

1
γϵ

−1

(
γ − 1

ϵ

)2 ≥ 485√
1
ϵ

− 1 ⇔ 1
γ

(
γ − 1

ϵ

)2 ≥
√

1
ϵ

− 1
√

1
γϵ

− 1. Let 486

LmR
(

1
ϵ

)
= 1

γ2

(
γ − 1

ϵ

)4 −
(

1
ϵ

− 1
) (

1
γϵ

− 1
)
. ∂LmR(1/ϵ)

∂(1/ϵ) = 487

− 4(γ− 1
ϵ

)3

γ2 −
1
ϵ

−1
γ

− 1
γϵ

+1 =
−4γ3+γ2+γ+4 1

ϵ3 −12γ 1
ϵ2 +12γ2 1

ϵ
−2γ 1

ϵ

γ2 . 488

Since 0 ≤ γ ≤ 1, 0 ≤ ϵ ≤ 1
1+γ

⇔ 0 ≤ γ ≤ 1
ϵ

− 1 ⇔ 1 − 1
ϵ

≤ 489

−γ ≤ 0 ⇔ 1 ≤ 1
ϵ

− γ ≤ 1
ϵ
. The numerator of ∂LmR(1/ϵ)

∂(1/ϵ) can 490

be simplified as −4γ3 + γ2 + γ + 4 1
ϵ3 − 12γ 1

ϵ2 + 12γ2 1
ϵ

− 2γ 1
ϵ

= 491

4
(

1
ϵ

− γ
)3 +γ2 +γ −2γ 1

ϵ
= 4
(

1
ϵ

− γ
)3 −γ2 +γ −2γ

(
1
ϵ

− γ
)

= 492

γ (1 − γ) + 2
(

1
ϵ

− γ
)(

2
(

1
ϵ

− γ
)2 − γ

)
. Since 2

(
1
ϵ

− γ
)2 ≥ 2, 493
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2
(

1
ϵ

− γ
)2 − γ ≥ 2. Also, γ (1 − γ) ≥ 0,

(
1
ϵ

− γ
)

≥ 0,494

therefore, γ (1 − γ) + 2
(

1
ϵ

− γ
)(

2
(

1
ϵ

− γ
)2 − γ

)
≥ 0,495

∂LmR(1/ϵ)
∂(1/ϵ) ≥ 0. Also, LmR (1 + γ) = 1

γ2 (γ − 1 − γ)4 −496

(1 + γ − 1)
(

1
γ

(1 + γ) − 1
)

= 1
γ2 ≥ 0. Therefore,497

LmR
(

1
ϵ

)
≥ 0 for ϵ ∈ (0, 1

1+γ
], provided that498

0 < γ ≤ 1. Consequently, the simplified inequality499

1
γ

(
γ − 1

ϵ

)2 ≥
√

1
ϵ

− 1
√

1
γϵ

− 1 is valid. ∂ sup QA(ϵ,γ)
∂ϵ

is500

non-positive throughout the interval 0 ≤ ϵ ≤ 1
1+γ

, given that501

0 ≤ γ ≤ 1, the proof is complete.502

Theorem .10. supP ∈PU ∩Pµ=0,σ=1 QA(ϵ, γ) is a nonincreasing503

function with respect to ϵ on the interval [0, 1
1+γ

], provided504

that 0 ≤ γ ≤ 1.505

Proof. When 0 ≤ ϵ ≤ 1
6 , ∂ sup QA

∂ϵ
= γ√

ϵγ
12−9ϵγ

(4−3ϵγ)2
−506

1
3
√

4
ϵ

−9ϵ2 =
√

γ√
ϵ

12−9ϵγ
(4−3ϵγ)2 − 1

3
√

4
ϵ

−9ϵ2 . If γ = 0507

and ϵ → 0+, ∂ sup QA
∂ϵ

= − 1
3
√

4
ϵ

−9ϵ2 < 0. If508

ϵ → 0+, limϵ→0+

(
γ

(4−3γϵ)2
√

ϵγ
12−9γϵ

− 1
3
√

4
ϵ

−9ϵ2

)
=509

limϵ→0+

( √
3γ√
43ϵ

− 1
6

√
ϵ3

)
→ −∞, for all 0 ≤ γ ≤ 1,510

so, ∂ sup QA
∂ϵ

< 0. When 0 < ϵ ≤ 1
6 and511

0 < γ ≤ 1, to prove ∂ sup QA
∂ϵ

≤ 0, it is equivalent512

to showing
√

ϵγ
12−9ϵγ

(4−3ϵγ)2

γ
≥ 3

√
4
ϵ

− 9ϵ2. Define513

L(ϵ, γ) =
√

ϵγ
12−9ϵγ

(4−3ϵγ)2

γ
, R(ϵ, γ) = 3

√
4
ϵ

− 9ϵ2.514

L(ϵ,γ)
ϵ2 =

√
ϵγ

12−9ϵγ
(4−3ϵγ)2

γϵ2 = 1
γ

(
4
ϵ

− 3γ
)2√ 1

12
ϵγ

−9 ,515

R(ϵ,γ)
ϵ2 = 3

√
4
ϵ

− 9. Then, the above inequality is516

equivalent to L(ϵ,γ)
ϵ2 ≥ R(ϵ,γ)

ϵ2 ⇔ 1
γ

√
1

12
ϵγ

−9

(
4
ϵ

− 3γ
)2 ≥517

3
√

4
ϵ

− 9 ⇔ 1
γ

(
4
ϵ

− 3γ
)2 ≥ 3

√
12
ϵγ

− 9
√

4
ϵ

− 9 ⇔518

1
γ2

(
4
ϵ

− 3γ
)4 ≥ 9

(
12
ϵγ

− 9
) (

4
ϵ

− 9
)
. Let LmR

(
1
ϵ

)
=519

1
γ2

(
4
ϵ

− 3γ
)4 − 9

(
12
ϵγ

− 9
) (

4
ϵ

− 9
)
. ∂LmR(1/ϵ)

∂(1/ϵ) = 16( 4
ϵ

−3γ)3

γ2 −520

36
(

12
ϵγ

− 9
)

− 108(4 4
ϵ

−9)
γ

= 4(4( 4
ϵ

−3γ)3−27γ( 4
ϵ

−3γ)+27(9− 4
ϵ

)γ)
γ2 =521

4(256 1
ϵ

3−576 1
ϵ

2
γ+432 1

ϵ
γ2−216 1

ϵ
γ−108γ3+81γ2+243γ)

γ2 . Since522

256 1
ϵ

3 − 576 1
ϵ

2
γ + 432 1

ϵ
γ2 − 216 1

ϵ
γ − 108γ3 + 81γ2 + 243γ ≥523

1536 1
ϵ

2 − 576 1
ϵ

2 + 432 1
ϵ
γ2 − 216 1

ϵ
γ − 108γ3 + 81γ2 + 243γ ≥524

924 1
ϵ

2 + 36 1
ϵ

2 − 216 1
ϵ

+ 432 1
ϵ
γ2 − 108γ3 + 81γ2 + 243γ ≥525

924 1
ϵ

2 + 36 1
ϵ

2 − 216 1
ϵ

+ 513γ2 − 108γ3 + 243γ > 0,526

∂LmR(1/ϵ)
∂(1/ϵ) > 0. Also, LmR (6) = 81(γ−8)((γ−8)3+15γ)

γ2 >527

0 ⇐⇒ γ4 − 32γ3 + 399γ2 − 2168γ + 4096 > 0. If 0 < γ ≤ 1,528

then 32γ3 < 256. Also, γ4 > 0. So, it suffices to prove that529

399γ2 − 2168γ + 4096 > 256. Applying the quadratic formula530

demonstrates the validity of LmR (6) > 0, if 0 < γ ≤ 1.531

Hence, LmR
(

1
ϵ

)
≥ 0 for ϵ ∈ (0, 1

6 ], if 0 < γ ≤ 1. The first532

part is finished.533

When 1
6 < ϵ ≤ 1

1+γ
, ∂ sup QA

∂ϵ
=534

√
3
(

γ
√

γϵ(4−3γϵ)
3
2

− 1
√

1−ϵ(3ϵ+1)
3
2

)
. If γ = 0, γ

√
γϵ(4−3γϵ)

3
2

=535

√
γ

√
ϵ(4−3γϵ)

3
2

= 0, so ∂ sup QA
∂ϵ

=
√

3
(

− 1
√

1−ϵ(3ϵ+1)
3
2

)
< 0,536

for all 1
6 < ϵ ≤ 1

1+γ
. If γ > 0, to determine whether 537

∂ sup QA
∂ϵ

≤ 0, when 1
6 < ϵ ≤ 1

1+γ
, since

√
1 − ϵ (3ϵ + 1)

3
2 > 0 538

and √
γϵ (4 − 3γϵ)

3
2 > 0, showing

√
γϵ(4−3γϵ)

3
2

γ
≥ 539

√
1 − ϵ (3ϵ + 1)

3
2 ⇔ γϵ(4−3γϵ)3

γ2 ≥ (1 − ϵ) (3ϵ + 1)3 ⇔ 540

−27γ2ϵ4 + 108γϵ3 + 64ϵ
γ

+ 27ϵ4 − 162ϵ2 − 8ϵ − 1 ≥ 0 is 541

sufficient. When 0 < γ ≤ 1, the inequality can be further 542

simplified to 108γϵ3 + 64ϵ
γ

− 162ϵ2 − 8ϵ − 1 ≥ 0. Since ϵ ≤ 1
1+γ

, 543

γ ≤ 1
ϵ

− 1. Also, as 0 < γ ≤ 1 is assumed, the range of γ can 544

be expressed as 0 < γ ≤ min(1, 1
ϵ

− 1). When 1
6 < ϵ ≤ 1

2 , 545

1 < 1
ϵ

− 1, so in this case, 0 < γ ≤ 1. When 1
2 ≤ ϵ < 1, 546

so in this case, 0 < γ ≤ 1
ϵ

− 1. Let h(γ) = 108γϵ3 + 64ϵ
γ

, 547

∂h(γ)
∂γ

= 108ϵ3 − 64ϵ
γ2 . When γ ≤

√
64ϵ

18ϵ3 , ∂h(γ)
∂γ

≥ 0, when 548

γ ≥
√

64ϵ
18ϵ3 , ∂h(γ)

∂γ
≤ 0, therefore, the minimum of h(γ) 549

must be when γ is equal to the boundary point of the 550

domain. When 1
6 < ϵ ≤ 1

2 , 0 < γ ≤ 1, since h(0) → ∞, 551

h(1) = 108ϵ3 +64ϵ, the minimum occurs at the boundary point 552

γ = 1, 108γϵ3+ 64ϵ
γ

−162ϵ2−8ϵ−1 > 108ϵ3+56ϵ−162ϵ2−1. Let 553

g(ϵ) = 108ϵ3 +56ϵ−162ϵ2 −1. g′(ϵ) = 324ϵ2 −324ϵ+56, when 554

ϵ ≤ 2
9 , g′(ϵ) ≥ 0, when 2

9 ≤ ϵ ≤ 1
2 , g′(ϵ) ≤ 0, since g( 1

6 ) = 13
3 , 555

g( 1
2 ) = 0, so g(ϵ) ≥ 0, 108γϵ3 + 64ϵ

γ
− 162ϵ2 − 8ϵ − 1 ≥ 0. 556

When 1
2 ≤ ϵ < 1, 0 < γ ≤ 1

ϵ
− 1. Since 557

h( 1
ϵ

−1) = 108( 1
ϵ

−1)ϵ3 + 64ϵ
1
ϵ

−1 , 108γϵ3 + 64ϵ
γ

−162ϵ2 −8ϵ−1 > 558

108
(

1
ϵ

− 1
)

ϵ3 + 64ϵ
1
ϵ

−1 −162ϵ2 −8ϵ−1 = −108ϵ4+54ϵ3−18ϵ2+7ϵ+1
ϵ−1 . 559

Let nu(ϵ) = −108ϵ4 + 54ϵ3 − 18ϵ2 + 7ϵ + 1, then nu′(ϵ) = 560

−432ϵ3 + 162ϵ2 − 36ϵ + 7, nu′′(ϵ) = −1296ϵ2 + 324ϵ − 36 < 0. 561

Since nu′(ϵ = 1
2 ) = − 49

2 < 0, nu′(ϵ) < 0. Also, nu(ϵ = 1
2 ) = 0, 562

so nu(ϵ) ≥ 0, 108γϵ3 + 64ϵ
γ

− 162ϵ2 − 8ϵ − 1 ≥ 0 is also valid. 563

As a result, this simplified inequality is valid within the 564

range of 1
6 < ϵ ≤ 1

1+γ
, when 0 < γ ≤ 1. Then, it validates 565

∂ sup QA
∂ϵ

≤ 0 for the same range of ϵ and γ. 566

The first and second formulae, when ϵ = 1
6 , are all equal 567

to 1
2

√ γ

4− γ
2

√
2 +

√
5
3

. It follows that sup QA(ϵ, γ) is contin- 568

uous over [0, 1
1+γ

]. Hence, ∂ sup QA
∂ϵ

≤ 0 holds for the entire 569

range 0 ≤ ϵ ≤ 1
1+γ

, when 0 ≤ γ ≤ 1, which leads to the 570

assertion of this theorem. 571

Let Pk
Υ denote the set of all continuous distributions whose 572

moments, from the first to the kth, are all finite. For a 573

right-skewed distribution, it suffices to consider the upper 574

bound. The monotonicity of supP ∈P2
Υ

QA with respect to ϵ 575

implies that the extent of any violations of the γ-orderliness, 576

if 0 ≤ γ ≤ 1, is bounded for any distribution with a fi- 577

nite second moment, e.g., for a right-skewed distribution 578

in P2
Υ, if 0 ≤ ϵ1 ≤ ϵ2 ≤ ϵ3 ≤ 1

1+γ
, QAϵ2,γ ≥ QAϵ3,γ ≥ 579

QAϵ1,γ , then QAϵ2,γ will not be too far away from QAϵ1,γ , 580

since supP ∈P2
Υ

QAϵ1,γ > supP ∈P2
Υ

QAϵ2,γ > supP ∈P2
Υ

QAϵ3,γ . 581

Moreover, a stricter bound can be established for unimodal 582

distributions according to Bernard et al. ’s result (3). The 583

violation of νth γ-orderliness, when ν ≥ 2, is also bounded, 584

since the QA function is bounded, the νth γ-orderliness cor- 585

responds to the higher-order derivatives of the QA function 586

with respect to ϵ. 587
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The Impact of γ-Orderliness on Weighted Inequalities588

Analogous to the γ-orderliness, the γ-trimming inequality for589

a right-skewed distribution is defined as ∀0 ≤ ϵ1 ≤ ϵ2 ≤590
1

1+γ
, TMϵ1,γ ≥ TMϵ2,γ . γ-orderliness is a sufficient condition591

for the γ-trimming inequality, as proven in the SI Text. The592

next theorem shows a relation between the ϵ,γ-quantile average593

and the ϵ,γ-trimmed mean under the γ-trimming inequality,594

suggesting the γ-orderliness is not a necessary condition for595

the γ-trimming inequality.596

Theorem .11. For a distribution that is right-skewed and597

follows the γ-trimming inequality, it is asymptotically true598

that the quantile average is always greater or equal to the599

corresponding trimmed mean with the same ϵ and γ, for all600

0 ≤ ϵ ≤ 1
1+γ

.601

Proof. According to the definition of the γ-trimming in-602

equality: ∀0 ≤ ϵ ≤ 1
1+γ

, 1
1−ϵ−γϵ+2δ

∫ 1−ϵ+δ

γϵ−δ
Q (u) du ≥603

1
1−ϵ−γϵ

∫ 1−ϵ

γϵ
Q (u) du, where δ is an infinitesimal posi-604

tive quantity. Subsequently, rewriting the inequality605

gives
∫ 1−ϵ+δ

γϵ−δ
Q (u) du − 1−ϵ−γϵ+2δ

1−ϵ−γϵ

∫ 1−ϵ

γϵ
Q (u) du ≥ 0 ⇔606 ∫ 1−ϵ+δ

1−ϵ
Q (u) du +

∫ γϵ

γϵ−δ
Q (u) du − 2δ

1−ϵ−γϵ

∫ 1−ϵ

γϵ
Q (u) du ≥607

0. Since δ → 0+, 1
2δ

(∫ 1−ϵ+δ

1−ϵ
Q (u) du +

∫ γϵ

γϵ−δ
Q (u) du

)
=608

Q(γϵ)+Q(1−ϵ)
2 ≥ 1

1−ϵ−γϵ

∫ 1−ϵ

γϵ
Q (u) du, the proof is com-609

plete.610

An analogous result about the relation between the ϵ,γ-611

trimmed mean and the ϵ,γ-Winsorized mean can be obtained612

in the following theorem.613

Theorem .12. For a right-skewed distribution following the614

γ-trimming inequality, asymptotically, the Winsorized mean615

is always greater or equal to the corresponding trimmed mean616

with the same ϵ and γ, for all 0 ≤ ϵ ≤ 1
1+γ

, provided that617

0 ≤ γ ≤ 1. If assuming γ-orderliness, the inequality is valid618

for any non-negative γ.619

Proof. According to Theorem .11, Q(γϵ)+Q(1−ϵ)
2 ≥620

1
1−ϵ−γϵ

∫ 1−ϵ

γϵ
Q (u) du ⇔ γϵ (Q (γϵ) + Q (1 − ϵ)) ≥621

( 2γϵ
1−ϵ−γϵ

)
∫ 1−ϵ

γϵ
Q (u) du. Then, if 0 ≤ γ ≤622

1,
(
1 − 1

1−ϵ−γϵ

) ∫ 1−ϵ

γϵ
Q (u) du + γϵ (Q (γϵ) + Q (1 − ϵ)) ≥623

0 ⇒
∫ 1−ϵ

γϵ
Q (u) du + γϵQ (γϵ) + ϵQ (1 − ϵ) ≥

∫ 1−ϵ

γϵ
Q (u) du +624

γϵ (Q (γϵ) + Q (1 − ϵ)) ≥ 1
1−ϵ−γϵ

∫ 1−ϵ

γϵ
Q (u) du, the proof625

of the first assertion is complete. The second assertion is626

established in Theorem 0.3. in the SI Text.627

Replacing the TM in the γ-trimming inequality with WA628

forms the definition of the γ-weighted inequality. The γ-629

orderliness also implies the γ-Winsorization inequality when630

0 ≤ γ ≤ 1, as proven in the SI Text. The same rationale631

as presented in Theorem .2, for a location-scale distribu-632

tion characterized by a location parameter µ and a scale633

parameter λ, asymptotically, any WA(ϵ, γ) can be expressed634

as λWA0(ϵ, γ) + µ, where WA0(ϵ, γ) is an function of Q0(p)635

according to the definition of the weighted average. Adhering636

to the rationale present in Theorem .2, for any probability637

distribution within a location-scale family, a necessary and638

sufficient condition for whether it follows the γ-weighted in- 639

equality is whether the family of probability distributions also 640

adheres to the γ-weighted inequality. 641

To construct weighted averages based on the νth γ- 642

orderliness and satisfying the corresponding weighted in- 643

equality, when 0 ≤ γ ≤ 1, let Bi =
∫ (i+1)ϵ

iϵ
QA (u, γ) du, 644

ka = kϵ + c. From the γ-orderliness for a right-skewed dis- 645

tribution, it follows that, − ∂QA
∂ϵ

≥ 0 ⇔ ∀0 ≤ a ≤ 2a ≤ 646

1
1+γ

, − (QA(2a,γ)−QA(a,γ))
a

≥ 0 ⇒ Bi − Bi+1 ≥ 0, if 0 ≤ γ ≤ 1. 647

Suppose that Bi = B0. Then, the ϵ,γ-block Winsorized mean, 648

is defined as 649

BWMϵ,γ,n := 1
n

 (1−ϵ)n∑
i=nγϵ+1

Xi +
2nγϵ+1∑

i=nγϵ+1

Xi +
(1−ϵ)n∑

i=(1−2ϵ)n

Xi

 , 650

which is double weighting the leftest and rightest blocks hav- 651

ing sizes of γϵn and ϵn, respectively. As a consequence of 652

Bi − Bi+1 ≥ 0, the γ-block Winsorization inequality is valid, 653

provided that 0 ≤ γ ≤ 1. The block Winsorized mean uses 654

two blocks to replace the trimmed parts, not two single quan- 655

tiles. The subsequent theorem provides an explanation for 656

this difference. 657

Theorem .13. Asymptotically, for a right-skewed distribution 658

following the γ-orderliness, the Winsorized mean is always 659

greater than or equal to the corresponding block Winsorized 660

mean with the same ϵ and γ, for all 0 ≤ ϵ ≤ 1
1+γ

, provided 661

that 0 ≤ γ ≤ 1. 662

Proof. From the definitions of BWM and WM, the state- 663

ment necessitates
∫ 1−ϵ

γϵ
Q (u) du + γϵQ (γϵ) + ϵQ (1 − ϵ) ≥ 664∫ 1−ϵ

γϵ
Q (u) du +

∫ 2γϵ

γϵ
Q (u) du +

∫ 1−ϵ

1−2ϵ
Q (u) du ⇔ γϵQ (γϵ) + 665

ϵQ (1 − ϵ) ≥
∫ 2γϵ

γϵ
Q (u) du+

∫ 1−ϵ

1−2ϵ
Q (u) du. Define WMl(x) = 666

Q (γϵ) and BWMl(x) = Q (x). In both functions, the 667

interval for x is specified as [γϵ, 2γϵ]. Then, define 668

WMu(y) = Q (1 − ϵ) and BWMu(y) = Q (y). In both 669

functions, the interval for y is specified as [1 − 2ϵ, 1 − ϵ]. 670

The function y : [γϵ, 2γϵ] → [1 − 2ϵ, 1 − ϵ] defined by 671

y(x) = 1 − x
γ

is a bijection. WMl(x) + WMu(y(x)) = 672

Q (γϵ) + Q (1 − ϵ) ≥ BWMl(x) + BWMu(y(x)) = Q (x) + 673

Q
(
1 − x

γ

)
is valid for all x ∈ [γϵ, 2γϵ], according to the 674

definition of γ-orderliness. Integration of the left side 675

yields,
∫ 2γϵ

γϵ
(WMl (u) + WMu (y (u))) du =

∫ 2γϵ

γϵ
Q (γϵ) du + 676∫ y(2γϵ)

y(γϵ) Q (1 − ϵ) du =
∫ 2γϵ

γϵ
Q (γϵ) du +

∫ 1−ϵ

1−2ϵ
Q (1 − ϵ) du = 677

γϵQ (γϵ) + ϵQ (1 − ϵ), while integration of the right side 678

yields
∫ 2γϵ

γϵ
(BWMl (x) + BWMu (y (x))) dx =

∫ 2γϵ

γϵ
Q (u) du + 679∫ 2γϵ

γϵ
Q
(
1 − x

γ

)
dx =

∫ 2γϵ

γϵ
Q (u) du +

∫ 1−ϵ

1−2ϵ
Q (u) du, which are 680

the left and right sides of the desired inequality. Given that the 681

upper limits and lower limits of the integrations are different 682

for each term, the condition 0 ≤ γ ≤ 1 is necessary for the 683

desired inequality to be valid. 684

685

From the second γ-orderliness for a right-skewed dis- 686

tribution, ∂2QA
∂2ϵ

≥ 0 ⇒ ∀0 ≤ a ≤ 2a ≤ 3a ≤ 687

1
1+γ

, 1
a

( (QA(3a,γ)−QA(2a,γ))
a

− (QA(2a,γ)−QA(a,γ))
a

)
≥ 0 ⇒ if 688

0 ≤ γ ≤ 1, Bi −2Bi+1 +Bi+2 ≥ 0. SMϵ can thus be interpreted 689

as assuming γ = 1 and replacing the two blocks, Bi + Bi+2 690
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with one block 2Bi+1. From the νth γ-orderliness for a right-691

skewed distribution, the recurrence relation of the derivatives692

naturally produces the alternating binomial coefficients,693

(−1)ν ∂νQA
∂ϵν

≥ 0 ⇒ ∀0 ≤ a ≤ . . . ≤ (ν + 1)a ≤ 1
1 + γ

,694

(−1)ν

a

 QA(νa+a,γ)
. . .

a
− . . .

QA(2a,γ)
a

a
−

QA(νa,γ)
. . .

a
− . . .

QA(a,γ)
a

a

695

≥ 0 ⇔ (−1)ν

aν

(
ν∑

j=0

(−1)j

(
ν

j

)
QA ((ν − j + 1) a, γ)

)
≥ 0696

⇒ if 0 ≤ γ ≤ 1,

ν∑
j=0

(−1)j

(
ν

j

)
Bi+j ≥ 0.697

Based on the νth orderliness, the ϵ,γ-binomial mean is intro-698

duced as699

BMν,ϵ,γ,n := 1
n

 1
2 ϵ−1(ν+1)−1∑

i=1

ν∑
j=0

(
1 − (−1)j

(
ν

j

))
Bij

 ,700

where Bij =
∑nϵ(j+(i−1)(ν+1)+1)

l=nγϵ(j+(i−1)(ν+1))+1 (Xl + Xn−l+1). If ν is701

not indicated, it defaults to ν = 3. Since the alternating sum702

of binomial coefficients equals zero, when ν ≪ ϵ−1 and ϵ → 0,703

BM → µ. The solutions for the continuity of the breakdown704

point is the same as that in SM and not repeated here. The705

equalities BMν=1,ϵ = BWMϵ and BMν=2,ϵ = SMϵ,b=3 hold,706

when γ = 1 and their respective ϵs are identical. Interestingly,707

the biases of the SMϵ= 1
9 ,b=3 and the WMϵ= 1

9
are nearly indis-708

tinguishable in common asymmetric unimodal distributions709

such as Weibull, gamma, lognormal, and Pareto (SI Dataset710

S1). This indicates that their robustness to departures from711

the symmetry assumption is practically similar under uni-712

modality, even though they are based on different orders of713

orderliness. If single quantiles are used, based on the second714

γ-orderliness, the stratified quantile mean can be defined as715

SQMϵ,γ,n := 4ϵ

1
4ϵ∑

i=1

1
2(Q̂n ((2i − 1)γϵ) + Q̂n (1 − (2i − 1)ϵ)),716

SQMϵ= 1
4

is the Tukey’s midhinge (38). In fact, SQM is a717

subcase of SM when γ = 1 and b → ∞, so the solution for the718

continuity of the breakdown point, 1
ϵ

mod 4 ̸= 0, is identical.719

However, since the definition is based on the empirical quantile720

function, no decimal issues related to order statistics will arise.721

The next theorem explains another advantage.722

Theorem .14. For a right-skewed second γ-ordered distri-723

bution, asymptotically, SQMϵ,γ is always greater or equal to724

the corresponding BMν=2,ϵ,γ with the same ϵ and γ, for all725

0 ≤ ϵ ≤ 1
1+γ

, if 0 ≤ γ ≤ 1.726

Proof. For simplicity, suppose the order statistics of the sam-727

ple are distributed into ϵ−1 ∈ N blocks in the computa-728

tion of both SQMϵ,γ and BMν=2,ϵ,γ . The computation of729

BMν=2,ϵ,γ alternates between weighting and non-weighting,730

let ‘0’ denote the block assigned with a weight of zero and731

‘1’ denote the block assigned with a weighted of one, the se-732

quence indicating the weighted or non-weighted status of each733

block is: 0, 1, 0, 0, 1, 0, . . . . Let this sequence be denoted by734

aBMν=2,ϵ,γ (j), its formula is aBMν=2,ϵ,γ (j) =
⌊

j mod 3
2

⌋
. Simi- 735

larly, the computation of SQMϵ,γ can be seen as positioning 736

quantiles (p) at the beginning of the blocks if 0 < p < 1
1+γ

, and 737

at the end of the blocks if p > 1
1+γ

. The sequence of denoting 738

whether each block’s quantile is weighted or not weighted is: 739

0, 1, 0, 1, 0, 1, . . . . Let the sequence be denoted by aSQMϵ,γ
(j), 740

the formula of the sequence is aSQMϵ,γ
(j) = j mod 2. If pair- 741

ing all blocks in BMν=2,ϵ,γ and all quantiles in SQMϵ,γ , there 742

are two possible pairings of aBMν=2 (j) and aSQMϵ,γ
(j). One 743

pairing occurs when aBMν=2,ϵ,γ (j) = aSQMϵ,γ
(j) = 1, while the 744

other involves the sequence 0, 1, 0 from aBMν=2,ϵ,γ (j) paired 745

with 1, 0, 1 from aSQMϵ,γ
(j). By leveraging the same principle 746

as Theorem .13 and the second γ-orderliness (replacing the two 747

quantile averages with one quantile average between them), 748

the desired result follows. 749

The biases of SQMϵ= 1
8

, which is based on the second order- 750

liness with a quantile approach, are notably similar to those 751

of BMν=3,ϵ= 1
8

, which is based on the third orderliness with a 752

block approach, in common asymmetric unimodal distributions 753

(Figure 1). 754

Hodges–Lehmann Inequality and γ-U -Orderliness 755

The Hodges–Lehmann estimator stands out as a unique robust 756

location estimator due to its definition being substantially 757

dissimilar from conventional L-estimators, R-estimators, and 758

M -estimators. In their landmark paper, Estimates of location 759

based on rank tests, Hodges and Lehmann (9) proposed two 760

methods for computing the H-L estimator: the Wilcoxon score 761

R-estimator and the median of pairwise means. The Wilcoxon 762

score R-estimator is a location estimator based on signed- 763

rank test, or R-estimator, (9) and was later independently 764

discovered by Sen (1963) (39). However, the median of pairwise 765

means is a generalized L-statistic and a trimmed U -statistic, 766

as classified by Serfling in his novel conceptualized study in 767

1984 (40). Serfling further advanced the understanding by 768

generalizing the H-L kernel as hlk (x1, . . . , xk) = 1
k

∑k

i=1 xi, 769

where k ∈ N (40). Here, the weighted H-L kernel is defined 770

as whlk (x1, . . . , xk) =
∑k

i=1
xiwi∑k

i=1
wi

, where wis are the weights 771

applied to each element. 772

By using the weighted H-L kernel and the L-estimator, it 773

is now clear that the Hodges-Lehmann estimator is an LL- 774

statistic, the definition of which is provided as follows: 775

LLk,ϵ,γ,n := Lϵ0,γ,n

(
sort

(
(whlk (XN1 , ··· , XNk ))(

n
k)

N=1

))
, 776

where Lϵ0,γ,n (Y ) represents the ϵ0,γ-L-estimator that uses 777

the sorted sequence, sort
(

(whlk (XN1 , ··· , XNk ))(
n
k)

N=1

)
, as in- 778

put. The upper asymptotic breakdown point of LLk,ϵ,γ is 779

ϵ = 1 − (1 − ϵ0)
1
k , as proven in REDS II. There are two ways 780

to adjust the breakdown point: either by setting k as a constant 781

and adjusting ϵ0, or by setting ϵ0 as a constant and adjusting 782

k. In the above definition, k is discrete, but the bootstrap 783

method can be applied to ensure the continuity of k, also 784

making the breakdown point continuous. Specifically, if k ∈ R, 785

let the bootstrap size be denoted by b, then first sampling the 786

original sample (1 − k + ⌊k⌋)b times with each sample size of 787

⌊k⌋, and then subsequently sampling (1 − ⌈k⌉ + k)b times with 788

each sample size of ⌈k⌉, (1 − k + ⌊k⌋)b ∈ N, (1 − ⌈k⌉ + k)b ∈ N. 789
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The corresponding kernels are computed separately, and the790

pooled sorted sequence is used as the input for the L-estimator.791

Let Sk represent the sorted sequence. Indeed, for any fi-792

nite sample, X, when k = n, Sk becomes a single point,793

whlk=n (X1, . . . , Xn). When wi = 1, the minimum of Sk794

is 1
k

∑k

i=1 Xi, due to the property of order statistics. The795

maximum of Sk is 1
k

∑k

i=1 Xn−i+1. The monotonicity of the796

order statistics implies the monotonicity of the extrema with797

respect to k, i.e., the support of Sk shrinks monotonically. For798

unequal wis, the shrinkage of the support of Sk might not be799

strictly monotonic, but the general trend remains, since all800

LL-statistics converge to the same point, as k → n. Therefore,801

if
∑n

i=1
Xiwi∑n

i=1
wi

approaches the population mean when n → ∞,802

all LL-statistics based on such consistent kernel function ap-803

proach the population mean as k → ∞. For example, if804

whlk = BMν,ϵk,n=k, ν ≪ ϵ−1
k , ϵk → 0, such kernel function is805

consistent. These cases are termed the LL-mean (LLMk,ϵ,γ,n).806

By substituting the WAϵ0,γ,n for the Lϵ0,γ,n in LL-statistic,807

the resulting statistic is referred to as the weighted L-statistic808

(WLk,ϵ,γ,n). The case having a consistent kernel function is809

termed as the weighted L-mean (WLMk,ϵ,γ,n). The wi = 1810

case of WLMk,ϵ,γ,n is termed the weighted Hodges-Lehmann811

mean (WHLMk,ϵ,γ,n). The WHLMk=1,ϵ,γ,n is the weighted812

average. If k ≥ 2 and the WA in WHLM is set as TMϵ0 , it813

is called the trimmed H-L mean (Figure 1, k = 2, ϵ0 = 15
64 ).814

The THLMk=2,ϵ,γ=1,n appears similar to the Wilcoxon’s one-815

sample statistic investigated by Saleh in 1976 (41), which816

involves first censoring the sample, and then computing the817

mean of the number of events that the pairwise mean is greater818

than zero. The THLM
k=2,ϵ=1−(1− 1

2 )
1
2 ,γ=1,n

is the Hodges-819

Lehmann estimator, or more generally, a special case of the820

median Hodges-Lehmann mean (mHLMk,n). mHLMk,n is821

asymptotically equivalent to the MoMk,b= n
k

as discussed pre-822

viously, Therefore, it is possible to define a series of location823

estimators, analogous to the WHLM, based on MoM. For824

example, the γ-median of means, γmoMk,b= n
k

,n, is defined by825

replacing the median in MoMk,b= n
k

,n with the γ-median.826

The hlk kernel distribution, denoted as Fhlk , can be de-827

fined as the probability distribution of the sorted sequence,828

sort
(

(hlk (XN1 , ··· , XNk ))(
n
k)

N=1

)
. For any real value y, the cdf829

of the hlk kernel distribution is given by: Fhk (y) = P(Yi ≤ y),830

where Yi represents an individual element from the sorted831

sequence. The overall hlk kernel distributions possess a two-832

dimensional structure, encompassing n kernel distributions833

with varying k values, from 1 to n, where one dimension is834

inherent to each individual kernel distribution, while the other835

is formed by the alignment of the same percentiles across all836

kernel distributions. As k increases, all percentiles converge837

to X̄, leading to the concept of γ-U -orderliness:838

(∀k2 ≥ k1 ≥ 1, γmHLM
k2,ϵ=1−

(
γ

1+γ

) 1
k2 ,γ

≥ γmHLM
k1,ϵ=1−

(
γ

1+γ

) 1
k1 ,γ

)∨839

(∀k2 ≥ k1 ≥ 1, γmHLM
k2,ϵ=1−

(
γ

1+γ

) 1
k2 ,γ

≤ γmHLM
k1,ϵ=1−

(
γ

1+γ

) 1
k1 ,γ

),840

where γmHLMk sets the WA in WHLM as γ-median, with841

γ being constant. The direction of the inequality depends842

on the relative magnitudes of γmHLMk=1,ϵ,γ = γm and843

γmHLMk=∞,ϵ,γ = µ. The Hodges-Lehmann inequality can be844

defined as a special case of the γ-U -orderliness when γ = 1.845

When γ ∈ {0, ∞}, the γ-U -orderliness is valid for any dis- 846

tribution as previously shown. If γ /∈ {0, ∞}, analytically 847

proving the validity of the γ-U -orderliness for a paramet- 848

ric distribution is pretty challenging. As an example, the 849

hl2 kernel distribution has a probability density function 850

fhl2 (x) =
∫ 2x

0 2f (t) f (2x − t) dt (a result after the transfor- 851

mation of variables); the support of the original distribution is 852

assumed to be [0, ∞) for simplicity. The expected value of the 853

H-L estimator is the positive solution of
∫ H-L

0 (fhl2 (s)) ds = 1
2 . 854

For the exponential distribution, fhl2,exp(x) = 4λ−2xe−2λ−1x, 855

λ is a scale parameter, E[H-L] = −W−1(− 1
2e )−1

2 λ ≈ 0.839λ, 856

where W−1 is a branch of the Lambert W function which can- 857

not be expressed in terms of elementary functions. However, 858

the violation of the γ-U -orderliness is bounded under certain 859

assumptions, as shown below. 860

Theorem .15. For any distribution with a finite second cen- 861

tral moment, σ2, the following concentration bound can be 862

established for the γ-median of means, 863

P
(

γmoMk,b= n
k

,n − µ >
tσ√

k

)
≤ e

− 2n
k

(
1

1+γ
− 1

k+t2

)2

. 864

Proof. Denote the mean of each block as µ̂i, 1 ≤ i ≤ b. Ob- 865

serve that the event
{

γmoMk,b= n
k

,n − µ > tσ√
k

}
necessitates 866

the condition that there are at least b(1 − γ
1+γ

) of µ̂is larger 867

than µ by more than tσ√
k

, i.e.,
{

γmoMk,b= n
k

,n − µ > tσ√
k

}
⊂ 868{∑b

i=1 1(
µ̂i−µ

)
> tσ√

k

≥ b
(
1 − γ

1+γ

)}
, where 1A is the indica- 869

tor of event A. Assuming a finite second central moment, 870

σ2, it follows from one-sided Chebeshev’s inequality that 871

E
(

1(
µ̂i−µ

)
> tσ√

k

)
= P

(
(µ̂i − µ) > tσ√

k

)
≤ σ2

kσ2+t2σ2 . 872

Given that 1(
µ̂i−µ

)
> tσ√

k

∈ [0, 1] are independent 873

and identically distributed random variables, accord- 874

ing to the aforementioned inclusion relation, the one- 875

sided Chebeshev’s inequality and the one-sided Ho- 876

effding’s inequality, P
(

γmoMk,b= n
k

,n − µ > tσ√
k

)
≤ 877

P
(∑b

i=1 1(
µ̂i−µ

)
> tσ√

k

≥ b
(
1 − γ

1+γ

))
= 878

P
(

1
b

∑b

i=1

(
1(

µ̂i−µ
)

> tσ√
k

− E
(

1(
µ̂i−µ

)
> tσ√

k

))
≥ 879(

1 − γ
1+γ

)
− E

(
1(

µ̂i−µ
)

> tσ√
k

))
≤ 880

e

−2b

((
1− γ

1+γ

)
−E

(
1(

µ̂i−µ

)
> tσ√

k

))2

≤ 881

e
−2b
(

1− γ
1+γ

− σ2
kσ2+t2σ2

)2

= e
−2b
(

1
1+γ

− 1
k+t2

)2

. 882

Theorem .16. Let B(k, γ, t, n) = e
− 2n

k

(
1

1+γ
− 1

k+t2

)2

. If 883

n ∈ N, γ ≥ 0, 0 ≤ t2 < γ + 1, and γ − t2 + 1 ≤ k ≤ 884
1
2

√
9γ2 + 18γ − 8γt2 − 8t2 + 9+ 1

2

(
3γ − 2t2 + 3

)
, B is mono- 885

tonic decreasing with respect to k. 886

Proof. Since ∂B
∂k

=

(
2n
(

1
γ+1 − 1

k+t2

)2

k2 −
4n
(

1
γ+1 − 1

k+t2

)
k(k+t2)2

)
887

e−
2n

(
1

γ+1 − 1
k+t2

)2

k and n ∈ N, ∂B
∂k

≤ 0 ⇔ 888
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2n
(

1
γ+1 − 1

k+t2

)2

k2 −
4n
(

1
γ+1 − 1

k+t2

)
k(k+t2)2 ≤ 0 ⇔889

2n(−γ+k+t2−1)(k2−3(γ+1)k+2kt2+t2(−γ+t2−1))
(γ+1)2k2(k+t2)3 ≤ 0 ⇔890 (

−γ + k + t2 − 1
) (

k2 − 3(γ + 1)k + 2kt2 + t2 (−γ + t2 − 1
))

891

≤ 0. When the factors are expanded, it yields a cubic inequal-892

ity in terms of k: k3 + k2 (3t2 − 4(γ + 1)
)

+ 3k
(
γ − t2 + 1

)2 +893

t2 (γ − t2 + 1
)2 ≤ 0. Assuming 0 ≤ t2 < γ + 1 and γ ≥ 0,894

using the factored form and subsequently applying the895

quadratic formula, the inequality is valid if γ − t2 + 1 ≤ k ≤896
1
2

√
9γ2 + 18γ − 8γt2 − 8t2 + 9 + 1

2

(
3γ − 2t2 + 3

)
.897

Let X be a random variable and Ȳ = 1
k

(Y1 + · · · + Yk) be898

the average of k independent, identically distributed copies899

of X. Applying the variance operation gives: Var(Ȳ ) =900

Var
(

1
k

(Y1 + · · · + Yk)
)

= 1
k2 (Var(Y1) + · · · + Var(Yk)) =901

1
k2 (kσ2) = σ2

k
, since the variance operation is a linear op-902

erator for independent variables, and the variance of a scaled903

random variable is the square of the scale times the vari-904

ance of the variable, i.e., Var(cX) = E[(cX − E[cX])2] =905

E[(cX−cE[X])2] = E[c2(X−E[X])2] = c2E[((X)−E[X])2] =906

c2Var(X). Thus, the standard deviation of the hlk kernel907

distribution, asymptotically, is σ√
k

. By utilizing the asymp-908

totic bias bound of any quantile for any continuous distribu-909

tion with a finite second central moment, σ2 (2), a conser-910

vative asymptotic bias bound of γmoMk,b= n
k

can be estab-911

lished as γmoMk,b= n
k

− µ ≤
√

γ
1+γ

1− γ
1+γ

σhlk =
√

γ
k

σ. That912

implies in Theorem .15, t <
√

γ, so when γ = 1, the upper913

bound of k, subject to the monotonic decreasing constraint,914

is 2 +
√

5 < 1
2

√
9 + 18 − 8t2 − 8t2 + 9 + 1

2

(
3 − 2t2 + 3

)
≤ 6,915

the lower bound is 1 < 2 − t2 ≤ 2. These analyses elucidate a916

surprising result: although the conservative asymptotic bound917

of MoMk,b= n
k

is monotonic with respect to k, its concentration918

bound is optimal when k ∈ (2 +
√

5, 6].919

Then consider the structure within each individual hlk ker-920

nel distribution. The sorted sequence Sk, when k = n − 1,921

has n elements and the corresponding hlk kernel distribu-922

tion can be seen as a location-scale transformation of the923

original distribution, so the corresponding hlk kernel dis-924

tribution is νth γ-ordered if and only if the original dis-925

tribution is νth γ-ordered according to Theorem .2. Ana-926

lytically proving other cases is challenging. For example,927

f ′
hl2 (x) = 4f (2x) f (0)+

∫ 2x

0 4f (t) f ′ (2x − t) dt, the strict neg-928

ative of f ′
hl2 (x) is not guaranteed if just assuming f ′(x) < 0,929

so, even if the original distribution is monotonic decreasing,930

the hl2 kernel distribution might be non-monotonic. Also,931

unlike the pairwise difference distribution, if the original dis-932

tribution is unimodal, the pairwise mean distribution might933

be non-unimodal, as demonstrated by a counterexample given934

by Chung in 1953 and mentioned by Hodges and Lehmann in935

1954 (42, 43). Theorem .9 implies that the violation of νth936

γ-orderliness within the hlk kernel distribution is also bounded,937

and the bound monotonically shrinks as k increases because938

the bound is in unit of the standard deviation of the hlk kernel939

distribution. If all hlk kernel distributions are νth γ-ordered940

and the distribution itself is νth γ-ordered and γ-U -ordered,941

then the distribution is called νth γ-U -ordered. The following942

theorem highlights the significance of symmetric distribution.943

Theorem .17. Any symmetric distribution is νth U-ordered.944

Proof. A random variable is symmetric about zero if and only 945

if its characteristic function is real valued. Since the character- 946

istic function of the average of k independent, identically dis- 947

tributed random variables is the product of the kth root of their 948

individual characteristic functions : φȲ (t) =
∏k

r=1(φYr (t)) 1
k , 949

Ȳ is symmetric. The conclusion follows immediately from the 950

definition of νth U -orderliness and Theorem .2, .3, and .4. 951

952

The succeeding theorem shows that the whlk kernel distri- 953

bution is invariably a location-scale distribution if the original 954

distribution belongs to a location-scale family with the same 955

location and scale parameters. 956

Theorem .18. whlk (x1 = λx1 + µ, . . . , xk = λxk + µ) = 957

λwhlk (x1, . . . , xk) + µ. 958

Proof. whlk (x1 = λx1 + µ, ··· , xk = λxk + µ) = 959∑k

i=1
(λxi+µ)wi∑k

i=1
wi

=
∑k

i=1
λxiwi+

∑k

i=1
µwi∑k

i=1
wi

= λ

∑k

i=1
xiwi∑k

i=1
wi

+ 960∑k

i=1
µwi∑k

i=1
wi

= λ

∑k

i=1
xiwi∑k

i=1
wi

+ µ = λwhlk (x1, ··· , xk) + µ. 961

According to Theorem .18, the γ-weighted inequality for 962

a right-skewed distribution can be modified as ∀0 ≤ ϵ01 ≤ 963

ϵ02 ≤ 1
1+γ

, WLM
k,ϵ=1−(1−ϵ01 )

1
k ,γ

≥ WLM
k,ϵ=1−(1−ϵ02 )

1
k ,γ

, 964

which holds the same rationale as the γ-weighted inequal- 965

ity defined in the last section. If the νth γ-orderliness 966

is valid for the whlk kernel distribution, then all results 967

in the last section can be directly implemented. From 968

that, the binomial H-L mean (set the WA as BM) can 969

be constructed (Figure 1), while its maximum breakdown 970

point is ≈ 0.065 if ν = 3. A comparison of the biases 971

of STMϵ= 1
8
, SWMϵ= 1

8
, BWMϵ= 1

8
, BMν=2,ϵ= 1

8
, BMν=3,ϵ= 1

8
, 972

SQMϵ= 1
8
, THLMk=2,ϵ= 1

8
, WiHLMk=2,ϵ= 1

8
(Winsorized H- 973

L mean), SQHLM
k= 2 ln(2)−ln(3)

3 ln(2)−ln(7) ,ϵ= 1
8

, mHLM
k= ln(2)

3 ln(2)−ln(7) ,ϵ= 1
8

, 974

THLMk=5,ϵ= 1
8
, and WiHLMk=5,ϵ= 1

8
is appropriate (Figure 975

1, SI Dataset S1), given their same breakdown points, with 976

mHLM
k= ln(2)

3 ln(2)−ln(7) ,ϵ= 1
8

exhibiting the smallest biases. An- 977

other comparison among the H-L estimator, the trimmed mean, 978

and the Winsorized mean, all with the same breakdown point, 979

yields the same result that the H-L estimator has the smallest 980

biases (SI Dataset S1). This aligns with Devroye et al. (2016) 981

and Laforgue, Clemencon, and Bertail (2019)’s seminal works 982

that MoMk,b= n
k

and MoRMk,b,n are nearly optimal with re- 983

gards to concentration bounds for heavy-tailed distributions 984

(18, 19). 985

In 1958, Richtmyer introduced the concept of quasi-Monte 986

Carlo simulation that utilizes low-discrepancy sequences, re- 987

sulting in a significant reduction in computational expenses for 988

large sample simulation (44). Among various low-discrepancy 989

sequences, Sobol sequences are often favored in quasi-Monte 990

Carlo methods (45). Building upon this principle, in 1991, 991

Do and Hall extended it to bootstrap and found that the 992

quasi-random approach resulted in lower variance compared 993

to other bootstrap Monte Carlo procedures (46). By using 994

a deterministic approach, the variance of mHLMk,n is much 995

lower than that of MoMk,b= n
k

(SI Dataset S1), when k is small. 996

This highlights the superiority of the median Hodges-Lehmann 997

mean over the median of means, as it not only can provide an 998

10 | Li
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Fig. 1. Standardized biases (with respect to µ) of fifteen robust location estimates (including two parametric estimators from REDS II for better comparison) on large
quasi-random samples in four two-parameter right skewed unimodal distributions, as a function of the kurtosis. The methods are described in the SI Text.

accurate estimate for moderate sample sizes, but also allows999

the use of quasi-bootstrap, where the bootstrap size can be1000

adjusted as needed.1001

Methods1002

The robust location estimates presented in Figure 1 and SI Dataset1003

S1 were obtained using large quasi-random samples (44, 45) with1004

sample size 3.686 million for the Weibull, gamma, Pareto, and1005

lognormal distributions within specified kurtosis ranges as shown in1006

Figure 1 to study the large sample performance. The standard errors1007

of these estimators were computed by approximating the sampling1008

distribution using 1000 pseudorandom samples of size n = 5184 for1009

these distribution and the generalized Gaussian distributions with1010

the parameter settings detailed in the SI Text.1011

Data and Software Availability. Data for Figure 1 are given in1012

SI Dataset S1. All codes have been deposited in GitHub.1013
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