
A. Artifact Appendix
A.1 Abstract
We provide artifacts to measure key results to perform the
trace-based simulation resulting in the numbers in Table 6.
While we provide artifacts to reproduce all results as well as
all our measurement and simulation results, only a subset of
the experiments is described in this document and part of the
artifact reproducibility evaluation.

A.2 Artifact check-list (meta-information)
• Program: SPEC-CPU2017 (proprietary, not included)
• Compilation: gcc / g++
• Run-time environment: debian-based Linux, root access
• Hardware: Intel CPU x generation
• Execution: Sole user, process pinning
• Metrics: Power savings, performance impact
• Experiments: CPU Microbenchmarks and Simulation
• How much disk space required (approximately)?: ≈ 200GB

• How much time is needed to prepare workflow (approxi-
mately)?: 4 h

• How much time is needed to complete experiments (approx-
imately)?: 24 h

• Publicly available?: Yes
• Code licenses (if publicly available)?: GPLv3 License
• Data licenses (if publicly available)?: MIT License
• Archived?: 10.5281/zenodo.10479443

A.3 Description
A.3.1 How to access
All code and data is available at 10.5281/zenodo.10479443.
Due to license restrictions, the user has to provide an iso
image of the SPEC CPU2017 benchmarks

A.3.2 Hardware dependencies
An Intel CPU where undervolting with the 0x150 MSR still
works. Every CPU of the 9th generation or older should
work if SGX is disabled in the BIOS. The following tool
can be used to test if the CPU supports undervolting:
https://github.com/georgewhewell/undervolt.

A.3.3 Software dependencies
Debian-based Linux distribution with root permissions and
the possibility to install kernel modules, we used Ubuntu
20.04.
SPEC CPU2017 iso image.

A.3.4 Data sets
We provide some data that takes too long to record for the
artifact evaluation. However, all code and instructions to
record this data are available.

A.4 Installation
Every experiment directory contains a Makefile to build the
program required for the experiment. There are some build
dependencies:

a p t i n s t a l l c o r e u t i l s b u i l d − e s s e n t i a l \
l i b a r c h i v e −dev make \
l i n u x − t o o l s − g e n e r i c

A.5 Experiment workflow
The experiments consist of C programs, kernel modules and
python scripts. Outputs of earlier experiments are inputs for
later experiments.

We provide artifacts to verify the following claims.
Chained together they result in similar numbers to the num-
bers of Table 6. Due to process variations every CPU is
affected differently by undervolting, therefore, the results
will not exactly, i.e., they depend on the specific variations.

C1 Voltage Change Delay

C2 Frequency Change Delay

C3 Efficiency and Performance Impact of Undervolting

C4 Final Simulation

Some experiments take hundreds of hours to run, while
we publish all artifacts to run these experiments we also pub-
lish the results. In particular these are the gem5 simulations
of the increased IMUL latency and the recording of the in-
struction traces of the SPEC CPU2017 benchmarks.

All experiments come with a README.md file containing
additional information that does not fit this document.

A.6 Disclaimer
CPU undervolting can cause instabilities! This can break
file systems and cause data loss or corruption. Never run
this software on a system containing important data without
backups. We are not responsible for any damage caused by
this software. A -70mV voltage offset was stable on all CPUs
we tested.

A.7 Evaluation and expected results
For the first three claims C1 to C3 we do not expect specific
results. The simulation results of C4 show that SUIT has an
overall positive impact on CPU energy efficiency.

A.7.1 Voltage Change Delay
Measure the voltage change delay from Section 5.2.

Path: 5 microbenchmarks/1 voltage change delay

Prepare: –

Run: ./run.sh

The run script first builds the kernel module and user space
application. It then loads the kernel module. If success-
ful, the measurement is run, measuring 20 voltage offset

1

https://zenodo.org/doi/10.5281/zenodo.10479443
https://zenodo.org/doi/10.5281/zenodo.10479443
https://github.com/georgewhewell/undervolt

changes of −70mV. Finally, it calls the plot script with the
result.csv file to plot the data.

Plot: python3 user/plot.py result.csv

The plot script also prints the average time it takes to change
the voltage to stdout. This time is required later to define the
CPU for the simulation. To plot the data without invoking the
measurement again start the plot script directly like shown.

Result: Time it takes to change the core voltage.

A.7.2 Frequency Change Delay
Measure the voltage change delay from Section 5.2.

Path: 5 microbenchmarks/3 freq change delay

Prepare: Turn off hardware controlled p-states (HWP).
To easily be able to change the core clock frequency from the
operating system, the CPU must not use HWP. To disable it,
boot the kernel with the intel pstate=passive command
line option.

Run: ./run.sh

The run script first builds the kernel module and user space
application. It then loads the kernel module. If successful,
the measurement is run, measuring 20 frequency changes of
−500MHz from 3GHz. Finally it calls the plot script with
the result.csv file to plot the data.

Plot: python3 user/plot.py result.csv

The plot script also prints the average time it takes to change
the frequency to stdout. This time is required later to define
the CPU for the simulation. To plot the data without invok-
ing the measurement again start the plot script directly like
shown.

Result: Time it takes to change the frequency.

A.7.3 Efficiency and Performance Impact of
Undervolting

Measure the efficiency and performance impact of under-
volting from Section 5.4.

Path: 5.4 power efficiency and performance

The README.md in this directory contains additional details.

Prepare: There are multiple preparation steps:

Install SPEC CPU2017
Do not forget to runcpu --update to update the installa-
tion to the newest version. Not up-to-date versions may have
complications when compiling.

Update the SPEC PATH in the first line of
5.4 power efficiency and performance/Makefile to
point to the SPEC CPU2017 installation directory.

Build with make and copy the built and axillary files into
the SPEC CPU2017 installation directory with make copy.
The later command requires root privileges to set the root
sticky bit for the measure binary, because it must run as root
but we do not want to start the SPEC CPU2017 benchmarks
as root.

Test the SPEC CPU2017 installation with:
runcpu --config=power --size=test --define \
undervolting=0 specrate

Run: With the preparation done SPEC CPU2017 is run
twice, once with the CPU at the default operating voltage
and once with the CPU undervolted. The undervolt offset is
defined in the --define undervolting=X command line
argument when starting the benchmark.

Run with the default voltage:
runcpu --config=power --size=ref -n 2 \
--output format config,csv --copies=$(nproc) \
--define undervolting=0 specrate

Run with a −70mV offset:
runcpu --config=power --size=ref -n 2 \
--output format config,csv --copies=$(nproc) \
--define undervolting=-70 specrate

This runs all integer and floating point SPEC CPU2017
rate benchmarks. It will take several hours to finish.

Gather Results: The power measurement results are in
$SPEC PATH/power measurements the benchmark scores
in $SPEC PATH/results. Combine them by copying them
into one results directory:

mkdir -p results/spec

cp $SPEC PATH/power measurements/* results/

cp $SPEC PATH/results/* results/spec

The files for the three CPUs from Table 2 are available at
10.5281/zenodo.10479443.

Plot: ./plot.py result

This plots the changes in CPU frequency, voltage, power and
benchmark scores. It additionally prints the exact changes in
% to stdout.

Result: In the last printed table, the relevant columns are:
pct showing the benchmark score increase and eff show-
ing the efficiency increase at −70mV. We expect the bench-
mark scores and efficiency to increase.

A.7.4 Final Simulation
Perform the final simulation from Section 6.

Path: 6.2 instruction trace based evaluation

Prepare:

CPU Configuration File
Copy cpus/i9-9900K-70mV.csv to
cpus/cpu name-70mV.csv as a starting point. The file is
then configured with the results from the previous experi-
ments. An exact description of all fields is in the README.md
file.

2

https://zenodo.org/doi/10.5281/zenodo.10479443

Instruction Traces
Recording the instruction traces of all benchmarks with
qemu takes a very long time. We provide the instruc-
tion traces for all benchmarks at 10.5281/zenodo.10479443
instruction traces.tar.gz except for 520.omnetpp
and 521.wrf because they are too large.

Run: ./simulate all.py cpu name-70mV \
30,15,3,14 voltfreq "" path/to/spec/traces/5*

The simulation is multithreaded and performs best on a
CPU with 21 or more cores. It takes several hours to run.

Postprocess: ./postprocess.py results XXX.json

The simulation creates an output .json file containing the
results of each benchmark. Running the post-process script
prints the results formatted as a table to stdout and creates a
.csv file with the same content.

Result: The last three columns of the results table are the
most relevant, the row geomean contains the numbers of
Table 6:

• power perc: change in power consumption in %: “Pwr”
• perf perc: change in performance in %: “Perf.”
• eff perc: change in efficiency in %: “Eff.”

We expect the efficiency change to be positive to show
that SUIT is viable. Additionally, all three numbers should
be similar to numbers of A1 with the fV operating strategy
and column SPECgmean. The performance impact is allowed
to be slightly negative.

Because we cannot provide the traces for 520.omnetpp
and 521.wrf the resulting mean is slightly better than with
the two benchmarks included. On our tested CPU A at
−70mV, excluding the two benchmarks increases the ef-
ficiency gain from 5.7% (see Table 6) to 6.1%.

A.7.5 Regenerate Table 6
We are now able to generate Table 6 from the paper with the
additional results from this evaluation.

Path: 6.2 instruction trace based evaluation/scripts

Prepare: Update the file path at
generate results table.py:246 to point to the .json
result file from the simulation.

Run: ./generate results table.py --full

Result: results table.tex

When compiled it shows Table 6 with an additional CPU D
showing the results of this evaluation.

3

https://zenodo.org/doi/10.5281/zenodo.10479443

	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies
	Data sets

	Installation
	Experiment workflow
	Disclaimer
	Evaluation and expected results
	Voltage Change Delay
	Frequency Change Delay
	Efficiency and Performance Impact of Undervolting
	Final Simulation
	Regenerate Table 6

