International Science Index, Computer and Information Engineering Vol:6, No:1, 2012 waset.org/Publication/8088

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:1, 2012

Application of Java-based Pointcuts in Aspect
Oriented Programming (AOP) for Data Race
Detection

Sadaf Khalid, Fahim Arif

Abstract—Wide applicability of concurrent
practices in developing various software applica&ioleads to
different concurrency errors amongst which datee recthe most
important. Java provides greatest support for corot
programming by introducing various concurrency pags. Aspect
oriented programming (AOP) is modern programmingaggm
facilitating the runtime interception of eventsioferest and can be
effectively used to handle the concurrency problefispect being
an aspect oriented extension to java facilitates dpplication of
concepts of AOP for data race detection. Volatitgiables are
usually considered thread safe, but they can becdtmepossible
candidates of data races if non-atomic operatiomes performed
concurrently upon them. Various data race detectlgarithms have
been proposed in the past but this issue of vilyatihd atomicity is
still unaddressed. The aim of this research is top@se some
suggestions for incorporating certain conditiong fdata race
detection in java programs at the volatile fielgigtdking into account
support for atomicity in java concurrency packaged making use
of pointcuts. Two simple test programs will demoais the results
of research. The results are verified on two difier Java
Development Kits (JDKSs) for the purpose of companris

programming

Pointcuts and joinpoints help to intercept the ¢veof
interest at runtime.Amongst different programmiagduages,
java provides huge support for concurrent programgrby
introducing various concurrency packages and inmpgothem
with every new release of JDK. Java concurrenclities
include java.util.concurrent package containingssts useful
for concurrent programming, java.util.concurrertke
package and java.util.concurrent.atomic packagectwhis
actually a small toolkit of classes allowing locked
programming on atomic variables.Use of volatile Wwesd
indicates that application is multithreaded. Vdtatrariables
are usually considered thread safe. But volatileiates
become the possible candidates of data races Hatmmnic
operations are performed concurrently upon themlatie
variables are considered self-synchronized but rteed of
synchronization for volatile variables cannot bemptetely
neglected especially if some non-atomic operat®rbeing
performed upon the volatile field, since some otheead can
intervene and may affect the final results.The afmthis
research is to address the issue of volatility atwhicity by

Keywords—Aspect Bench Compiler (abc), Aspect Orientedmaking use of java concurrency packages and AORs Th

Programming (AOP), Aspect], Aspects, Concurrencgkages,
Concurrent programming, Cross-cutting Concerns, aDahce,
Eclipse, Java, Java Development Kits (JDKs), Paistc

. INTRODUCTION

research work proposes some suggestions for incatipg
certain conditions for data race detection at thiatite fields
in java programs by taking into account supportdtomicity
provided in java concurrency packages and makirg afs
pointcuts. By considering RACER algorithm as baae,

7 NONCURRENT programming errors including data racesdditional state to the RACER state machine is ssiggl to

\—’deadlocks, starvation and live locks affect theultssand
performance of concurrent applications. Data rase ai
concurrent programming error in which more than ttmeads
try to access the same memory location at the Same
without acquiring any lock and at least one of doceesses is
for writing to memory [1]. Various race detectioly@ithms
have been proposed in the past to address the ddsdata
race. ERASER the lockset based algorithm
contribution to the field of data race detectiof. [RACER
algorithm enhances the phenomenon of data racetietén
java based programs by making use of AOP [3], M)P is
the modern programming paradigm that facilitateshtandling
of crosscutting concerns through provision of pmits.

Sadaf Khalid is with the Department of Comp8eftware Engineering,
Military College of Signals, National University 8tiences and Technology,
Islamabad, Pakistan (e-mail: makkah-madina@ hotowail).

Fahim Arif is with the Department of Computer Safte Engineering,
Military College of Signals, National University 8tiences and Technology,
Islamabad, Pakistan (e-mail: fahimarif@gmail.com).

International Scholarly and Scientific Research & Innovation 6(1) 2012

116

address atomicity issue for data race detectionis Ialso
described that how the atomicity issue can alsbaralled by
introducing new pointcuts only without modifyingetfRACER
state machine. The results of research are deratedtby
using two test programs. The results are testawomifferent
JDKs for the purpose of comparison.The rest ofggaper is
organized as follows. Section Il is a brief destoip of related

is baswork, Section Il highlights some important concepf AOP,

Section IV demonstrates the proposed research i@olut
Section V illustrates and analyzes the results edearch,
Section VI presents a comparison of proposed swiutiith
that of other data race detection techniques amallyi paper
concludes by suggesting some future work.

Il. RELATED WORK
Savage proposed the ERASER algorithm for detgcti
potential data races in lock-based multithreadeagqams.
ERASER makes use of lockset algorithm whose refergrat
appropriate times leads to the detection of dateesa
ERASER was used by many researchers as the bagisefo

scholar.waset.org/1307-6892/8088

http://waset.org/publication/Application-of-Java-based-Pointcuts-in-Aspect-Oriented-Programming-(AOP)-for-Data-Race-Detection/8088
http://scholar.waset.org/1307-6892/8088

International Science Index, Computer and Information Engineering Vol:6, No:1, 2012 waset.org/Publication/8088

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:1, 2012

race detection algorithms, but ERASER had
shortcomings. ERASER could not handle the issuebjéct
initialization properly because it cannot
initialization phase is complete and when variabé&Eomes
actually shared, thus missing out many data rasesedl as
generating many false alarms. Harrow proposed &mnsion
to ERASER that used thread segments to model losk f
handover of objects between parent and child tlr¢ald But
this technique used the same state machine as sgopgoy
ERASER algorithm, so it also missed out the issuiebject
initialization leading to false alarms.O’Callahamda Choi

somenplementing

the desired functionality through advi
execution on certain execution points selected bintputs.

guess mwvheAdvice in Aspect) is much like a simple functionriormal

java programming, but here advice is not calledieitly but
implicitly invoked by pointcuts and joinpoints.

AOP facilitates application development independeht
writing various aspects, so any application cambee aspect
oriented by writing suitable aspects for desirddation. The
aim of this research is to merge AOP with conclyesupport
provided by java in order to handle the issue dfadace
detection effectively.

proposed another improvement to ERASER algorithin [6

They refined lockset algorithm implemented by ER&RSEy
using the happens-before graph of the program wederThis
happens-before graph contains happens-before edgeslls
to Thread.start (), Thread.join (), Object.wait @nd
Object.notify (). They used some low level bytecod
instrumentation toolkit to add instrumentation he tytecode
and did not include any concept of providing instemtation
at higher level of abstraction as possible with AO
paradigm.RACER is the most refined aspect orientadion
of ERASER algorithm for detecting data races inajdased
programs. It refines the lockset algorithm of ERASBY
appropriately addressing the object initializatiassue.
Moreover, RACER also introduced the concept of ssce
periods for lock free handover of object betweereptiand

IV. PROPOSEDENHANCEMENTSFOR DATA RACE DETECTION

Multithreaded programs may exhibit non-deterministi
behavior giving rise to data races. A lot of wodstbeen done
in the past to cope with the concurrent programnengrs
®specially with the situations giving rise to datxe. Data
races can be minimized by strict adherence to icerta

rogramming disciplines. Use of synchronized bloaduces

memory consistency errors. Volatile variables dteroused in

multithreaded programs for data sharing among twea
Though considered self-synchronized, they cannot
completely neglected for being the candidate ofdaices.
Volatile variables become the possible candidatesita races
if non-atomic operations are performed concurrentpon
them. Java provides support for concurrency byoéhcing

be

child threads, but it differs from the scheme msgrl by oncrrency package containing atomic classes.dfisbese
Harrow in the way that it modifies the state maehiof ,iomic classes can reduce the chances of data Tawe.

ERASER by adding two new states thus handling objeg,ihors aim to use RACER algorithm as base andoseop
initialization by considering reads and writes frahe very ¢ suggestions for data race detection at elélds in

beginning. The biggest advantage of RACER abovefdte
previous race detection techniques is that it plewi
instrumentation at higher level of abstraction bgking use of
AOP paradigm. Three new pointcuts lock (), uni@gcland
maybeShared () are introduced as language extertsion
AspectJ to intercept the events of locking and ckitoy and
accessing shared memory locations in multithregaegrams.

AOP is the modern programming paradigm simplifyihg
implementation of cross-cutting concerns [7]. Cancpace is
multi-dimensional, so in order to avoid tanglingdundancy
and complications caused by scattered functionatitese
cross-cutting concerns are modularized in the fofraspects.
Aspects are modular implementation of
functionality. Aspects can be developed independdnthe
target application even by some third party redycthe
application development time and then woven inte base
program through a process called weaving.

Aspect comprises pointcuts, joinpoints and advib&lare
the fundamental concepts of AOP. Joinpoints araadlgtthe
execution points for advice. Pointcuts select @efj@npoints
on which certain advice has to be executed, whadeice is
the additional functionality needed to be performelen
certain execution point in the program has beeche

Aspect] is an aspect oriented extension to java [8]
facilitates the implementation of fundamentals @HRin java.
In Aspect], aspects are simple class like strustur

ASPECT ORIENTED PROGRAMMING

International Scholarly and Scientific Research & Innovation 6(1) 2012

117

java programs by availing the benefits of java ecorency
packages for atomicity and by using AOP.

A. Observations

Though considered to be self synchronized, voldidkls
are not completely thread safe. If some non-ataopieration
like increment (i++) operation is being performea certain
volatile field, then there is greater chance ofedar
interference. Because the increment operation cisagprof
get, increase and set sub-operations, so therelsce that
another thread might get the incorrect result iatite field is
concurrently accessed by more than one threadslaBisithe
case with other non-atomic operations. Continucestirtg
revealed that besides unary operations, expressiakig use

cross-cuttingf conditional operators also become non-atomic. iSdhis

case volatile field become the possible candidattata race.
This research work proposes suggestions to hahélerace
conditions arising from these kinds of situationgava based
programs.

B. Proposed Solution for Data Race detection at Volatile
Fields Undergoing Non-atomic Operations

Three different ways to detect and avoid data races at
volatile fields undergoing non-atomic operations proposed in
this research work include:
i. Use of synchronization block for accessing titddields.
ii. Use of atomic classes introduced by java commcy
packages to accommodate atomicity issue.

scholar.waset.org/1307-6892/8088

http://waset.org/publication/Application-of-Java-based-Pointcuts-in-Aspect-Oriented-Programming-(AOP)-for-Data-Race-Detection/8088
http://scholar.waset.org/1307-6892/8088

International Science Index, Computer and Information Engineering Vol:6, No:1, 2012 waset.org/Publication/8088

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:1, 2012

iii. Suggesting a new state machine for handlirmgrégity. atomic operations avoiding data races. A simpleeiment
operation is non-atomic, if performed on volatiedds without
1)Use of Synchronization Block for Accessing Volatile using synchronization mechanism, there is a greasipility
Fields of data race in case of concurrent access of \®lféld by
Use of synchronized block guarantees safe operatith more than one threads leading to incorrect resiig. if
no chance of data race. It is one of the ways tiopa atomic atomic classes introduced by java concurrency packae
operation without using any concurrency package farsed then volatile fields can undergo simple namrid
atomicity, since there is no chance of thread fatence. Use increment operation without making use of synclzedi
of synchronized block for accessing volatile fieisshown in blocks. A test program in Fig. 3 shows the usagatomic
Fig. 1. In this case, volatile variabteunter is being accessed classes for performing non-atomic operations atalyic\We
for performing two non-atomic operations, one therément only make use of Atomicinteger class for the puepad
operation at line 13 and another conditional exgicesat line demonstration in this test program.
14. Performing these non-atomic operations on ieléelds

within synchronized block eliminate the chance atiadrace. 1 import java.util.concurrent.atomic.*;
public class AtomicTestClass implements Runnable

1 public clags TaskForVolatile implements Runnable 1 private wolatile AtomicInteger counter= new AtomicInteger
2 [5 int test = 0;
3 int test=0;

private volatile int counter = 07 C

publiec vold run () { 8 while(test < 5) {

while{te=st < 5) { try |
try { 10 Thread.sleep(100);

Thrced, s1ccp(100) - } catch (Excepti

} catch (Except

=" 4+ counter)
12 synchronized (TaskFor 1le.class) |
3 System.out.printlin ("Counter:™ + COUNCEX+4) ! =
1f (counter >= 5) {
2TopMe () ! Af (Cemp >= 5) {
i stopMe () 7
(_'U"‘w'_J‘ counter = new AtomicInteger (0):
}
}
’ 29 private void stopMe() {
private void stopMe() | TESTH+]
teatits 28
public static void main (Scring [] args) {
public static veoid main(String []1 args) | 28 RtomicTestcClass tl = new AtomicTestClass ()
TaskForvolatile tl = new TaskForvolatile(); 29 for (int 4 = B: £ < 5: i++)
for (1nt 1 = 0; 1 <€ 37 1++) { Thread threadl = new Thread(tl):

Inread threadl = new Ihread(tl); 31 threadl.start ():

threadl.starc (};

Fig. 3 Test Class Showing the Usage of Atomic Tdass
Introduced by java.util.concurrent.atomic ConcueseRackage

Fig. 4 shows a new aspegtomicityChk containing two
pointcuts AtomicityCheck Read () and AtomicityCheck Write

We introduced a new aspedblatileChk keeping track of (). These new pointcuts are created to detect the sesés the
accesses to volatile fields by making use of twditamhal volatile fields making use of atomic test class$esuch a field
pointcutsvolatileFieldSet() andVolatileFieldGet() as shown in IS accessed outside synchronization block, no iaa will be
Fig. 2. Without a synchronized block, data racd md fired fired since atomicity is guaranteed by the usageatoinic

for volatile fields undergoing non-atomic operasion concurrency package. Fig. 4 also shows a new pdintc
neverShared (). Its purpose is to create an impact that fields

can never become shared if atomic operations aferped.
PSSy e Section V explains the results of the test progirmdetail.

Fig. 1 Use of Synchronized Block for Accessing \iddaFields

ialds

pointcot vo
pointout vo

Fig. 2 Aspect Introducing Pointcuts for Detectingalls and
Writes to Volatile Fields
Maybe, shared () pointcut developed by E. Boddeah kan
Havelund is also used. Results of this test progwélinbe
discussed in Section V.

()i set (volatile * *) &i set|lAtomic* *) samayl
{): get (volatile ¥ *) L& get|'Atomict *) &tma

public aspect AtomicityChk
f

pointont atemicityCheck Read(): get(volatile Atomic* *| &f neverSharsd|();

pointent acemicityCheck Rrite(): seb{volatile Atomic* *) & neverShared();

neverShared () if(false),

Fig. 4 Aspect Introducing Pointcuts for Detectingglds and Writes
to Volatile Fields Making Use of Atomic Test Classe

2) Use of Atomic Classes Intr_oqluced by Java Concurrency 3) Suggesting a New State Machine for Handling Atomicity
Packages to Accommodate Atomicity Issue We suggest a new state machine with two stelegin and

With evolution of JDKs, java introduced cOnCUrmenc aromic for handling atomic operations. In this case, the
package java.util.concurrent.atomic for safe hamgdliof

International Scholarly and Scientific Research & Innovation 6(1) 2012 118 scholar.waset.org/1307-6892/8088

http://waset.org/publication/Application-of-Java-based-Pointcuts-in-Aspect-Oriented-Programming-(AOP)-for-Data-Race-Detection/8088
http://scholar.waset.org/1307-6892/8088

International Science Index, Computer and Information Engineering Vol:6, No:1, 2012 waset.org/Publication/8088

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:1, 2012

immediate state of the variable just after its togais Virgin.
If the newly created field is undergoing atomic @i®ns by
making use of java atomic classes, then once &ié i read
or written by any thread, its state is transitionedtomic and
then no data race will be fired for such volatilaerigbles
undergoing atomic operations. Rest of the transsti@and Fig. 6 Output with NO Data Race at Volatile Fieldo&ssed within

atile.test' is accessed unprotected.

working will be same as that of RACER state maciidjeFig. the Synchronized Block
5 shows the proposed state machine for handlingniato
operations. If we execute the test program in Fig. 1 withosing

synchronized block, output shown in Fig. 7 is prostli Here,
read(t’) / write(t') newly created pointcuts detect the unprotected sacde
N volatile fields undergoing non-atomic operationsfite data

{]

race on it.
.

read(t’y f write(t™

If (atomic)___

' 15 accessed unprotected.

Fig. 5 Proposed State Machine for Handling Atoryitssue

V.ANALYSIS —

Test results are obtained using Aspect in Eclipsd
providing runtime environment of abc. In this sentiresults
obtained using JavaSE 1.6 as JRE System Libraril (HDK)

and ibm_sdk60 as JRE System Library (IBM JDK) arc— - — -
described in detail. Fig. 7 Output Showing Data Race at the Volatildd-iendergoing

Non-atomic Operations

A. Testing Proposed Solution with SUN JDK

Volatile variables are used to share the valuesngmo
threads in multithreaded programs. They are usuady

With the evolution of java programming languagewn
concurrency packaggava.util.concurrent.atomic supporting

cached in thread local memory and contain the mes¢nt atomicity is introduced. Atomic operations are safié cannot

value updated by any thread. Volatile variables @seally Pecome victims of thread interference. So, there mo

considered thread safe and are accessed withoidt Stphances of ‘?';‘t% rsce_ n ca_lse of atomic op_eranSns. '_f
adherence to locking discipline. However, this @ the case SUp,Fl’Oét phrow ﬁ y Jafvg.utl .concurrentigtpmlcéd\k:ﬂjle 'IIS
with all of the accesses to volatile fields. In thst program of 2vailed, then chances of data race are eliminatevelatile

Fig. 1, volatile variablecounter is undergoing two different Variables can be accessed without any synchroofzati
kinds of non-atomic operations. In line 13, valdeaunter is mechanlsm_. In order to adjust support. for atomiritgxisting
incremented whereas in line Jebunter is undergoing another "ac€ detection algorithm RACER, we introduced a aspect
non-atomic operation in conditional expression. Wassify S"OWn in Fig. 4. Two pointcutatomicityCheck Read () and
this operation within the conditional expressiomas-atomic atomcn)_/Check_ert_e () detect if any volat_lle field maklng use
because through continuous testing, it was obsetivetnew of atomic classes introduced by java.util.concuretamic is
value of counter is misread by some threads because it h&S€d- If such classes are used, then the purpose of
already been changed during the condition testitggh is not neverShared() pointcut is to implement the assumption _that
detected. But if this operation is performed atatjcwithin ~ SUCh fields can never be shared among the threadbere is
the synchronized block then such kind of errors ¢@n N chance of data race at volatile fields making ofatomic
avoided. The increment operation is already nomat since classes. Result of executing the test programaf3-is shown

there is the chance of thread interference, ss better to "M Fig. 8.
perform such operations atomically within the sywoclized
block. Executing this test program using Aspectd ar
providing runtime environment of abc containing hew
created pointcuts yields the output shown in FigHére, no
data race is reported at the volatile fielslinter, since it is
accessed within the synchronized block. We enhaR&CER
by making it sensitive to such volatile field acses via
pointcuts introduced in newly created aspect shimwrig. 2.
However, the data race is being reported at andtstance
variable test which is quite true because this variable idig. 8 Output with NO Data Race at Volatile Fieling Java Atomic
actually shared among the threads. Classes (Detected via Pointcut neverShared ())

International Scholarly and Scientific Research & Innovation 6(1) 2012 119 scholar.waset.org/1307-6892/8088

http://waset.org/publication/Application-of-Java-based-Pointcuts-in-Aspect-Oriented-Programming-(AOP)-for-Data-Race-Detection/8088
http://scholar.waset.org/1307-6892/8088

International Science Index, Computer and Information Engineering Vol:6, No:1, 2012 waset.org/Publication/8088

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:1, 2012

In test program shown in Fig. 3, our main condsrmith VI. COMPARISONOF DATA RACE DETECTION TECHNIQUES
the usage of atomic classes for creating atomicabies.
Volatile variable counter is created as an instance of
Atomicinteger class introduced by concurrency pgeka
java.util.concurrent.atomic. Since use of atomiasses
guarantee safe operations without thread interéereso here
no data race is being reported at the volatilel ftelnter even
it is not accessed within the synchronized blockisTis
because newly developed pointaaverShared () made the
assumption that fields on which atomic operatiores lzeing

performed can never become the shared fields. THer ov0 \/isya| Threads. Mayur Hiru Naik presented his alan for
data races being reported as shown in Fig. 8 aeedne, as giatic race detection in java programs [9], [LBACER on

the instance fieldsemp and test are actually shared among e other hand is the most recent aspect orieateidetection
threads.If the pointcuteverShared () is not createdthen in algorithm for java based programs. All of theseosthms

order to deal with atomic operations, we suggesew state qqress the race detection issue in their own .stylethis
machine shown in Fig. 5. After a new variable ieated, its | agearch work, we propose suggestions to addrassqae
state is declared adirgin, after checking that whether it is jsg,6 of data race detection at the volatile fieltsd how
created by making use of java atomic classes, Wen& oncyrrency utilities for atomicity provided by éwtion of
thread reads or write this variable, its state vistched 10 a4 programming language can be utilized to hati#dssue
Atomic. No data race is fired iAtomic state because this Stateeffectively. This research work demonstrates hove th
is introduced as an indication o_f ato_mic operatiddatput of application of common programming practice normaised
the same test program shown in Fig. 3 when tesiiuthe ¢ \yriting concurrent programs can help address ttace
implementation of new state machine is shown in BigThis getection issue at the volatile fields. Volatilerigales being
state machine only handles the atomic operationsatatile qnsjdered as self-synchronized have never bechenéotus
fields; the rest of the ?mplementation we usedaisis as that ¢ the data race issue. But through careful usdgeolatile
of RACER state machine. variables and taking into account the atomicityiéssanother
aspect of data race detection issue can be resohsie |
highlights the comparison among different race ciain
technigues. None of the existing race detectiorriggies
particularly focused on the volatility and atomydissue, so we
propose suggestions to address this issue for tdefedata

Data race is a serious programming error in muédded
programs. A lot of work has been done on fixingimas
concurrent programming errors especially data ratces
concurrent programs. Various race detection algmst have
been proposed in past to address the issue of da&
detection in different programming languages. ERRS&the
lock-set based race detection algorithm for C ant+ C
programs. Harrow proposed an extension to ERASER b
introducing the concept of thread segments impléeaein

azz.temp' iz acces=zed unprotected. I’aCGS |n mu|tlthl'ead6d prOgI'amS
TABLE |
et i memeen meeea COMPARISONBETWEENDIFFERENTDATA RACE DETECTION TECHNIQUES
B Data Race Object Aspect Accesses Atomicity Issue
Detection Initializatio Oriented to
Fig. 9 Output showing NO Data Race at the Vol&ikdd using Java Tecgn'qu n \\//;rlf‘atgfz
Atomic Classes (Detected via Proposed State Maghine s
o o ERASER N N N N
Output in Fig. 9 shows that when a volatile fiellnter RACER Y Y N N
declared using java atomic classes is accesseitieatd|for Static N N N N
writing purpose by thread, its state is transitibrie Atomic De?:;?on
and a message saying ‘Fields using JAVA ATOMIC 1 - 'by

CLASSES ARE NOT THE CANDIDATES OF DATA mayur

RACES’ is displayed. After this, whichever threaccesses Visual N N N N
this field counter for either read or write purpose, its state will Threads
remain the same and no data race will be repodedsich Harryow
volatile fields on which atomic operation is bepegrformed.
B. Testing Proposed Solution with 1BM JDK We have presented the results of two different test

programs making use of static, volatile and atomic
variables. Fig. 10 summarizes the results by higlilng the
total number of data races in test program of Figtlle
accessing the volatile field outside the synchrediblock.
The total numbers of data races existing in thegesyram

of Fig. 1 are two. Data race at the simple instdiedd test

is detected via RACER logic while data race atwblatile
field is being reported through the addition of rgouts
volatileFieldSet() andvolatileFieldGet().

IBM JDK provides utility classes containing suppdéot
concurrency same as that in SUN JDK. We proposeesom
suggestions to handle volatility and atomicity sdor data
race detection and tested the results on smaBemptegrams.
So no change in results is obtained. We obtairsénee results
for both SUN and IBM JDKs. Differences in thread
management in SUN and IBM JDK might be observed for
some larger programs.

International Scholarly and Scientific Research & Innovation 6(1) 2012 120 scholar.waset.org/1307-6892/8088

http://waset.org/publication/Application-of-Java-based-Pointcuts-in-Aspect-Oriented-Programming-(AOP)-for-Data-Race-Detection/8088
http://scholar.waset.org/1307-6892/8088

International Science Index, Computer and Information Engineering Vol:6, No:1, 2012 waset.org/Publication/8088

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering
Vol:6, No:1, 2012

(1

15 2]
05 + Seriesl [3]

Data Races Data Races at [4]
Detected Via RACER Volatile fields
(UnSynchronized De d via
Praposad Solution [5]

Total No.of Data
Races

access to Volatile
variable)

Fig. 10 Data Race Detection [6]

Test program in Fig. 3 contains two data raceghat 7
instance fielddest andtemp, while the data race at the volatile
field counter is avoided by using java atomic classes. Our
newly created pointcuts atomicityCheck Read, [8]
atomicityCheck Wkite() and never Shared() help to resolve the
issue. atomicityCheck Read and atomicityCheck Write()
detect the accesses to atomic volatile fields raever Shared()
pointcut checks that these fields are never shamadng
threads and can never become the possible carsliohtata
races, thus avoiding false alarms.

[9]

[10]

VII. CONCLUSION

AOP is modern programming paradigm facilitating the
implementation of cross-cutting concerns in modstgte. Its
simplicity, ease of use and ability to intercepemts of
interest at runtime increases its usage for solwagous
issues. For the same reason, it can also be usesbffiang
concurrent programming errors like data racesyatam etc.

In this research work, we have used Aspect]) toeadddata
race issue by combining the benefits of AOP andajav
concurrency utilities. We have presented the ragteation
issue at the volatile fields and atomicity concémt java
programming language, but this concept can be dgtéro
other programming languages by considering the woency
utilities and aspect-oriented support provided thym. By
using AspectC, Aspect# etc, concept of data ratecten by
using aspects and pointcuts can be extended todCCan
programming languages. Moreover, we can devise caspe
oriented algorithms for addressing other concurrent
programming errors like starvation, live locks etc.

ACKNOWLEDGMENT

We thank Eric Bodden for providing us with the
implementation of RACER algorithm which helped us
understanding the algorithm and facilitate impletimen our
proposed modifications in the algorithm. We alsanth
National University of Sciences and Technologyanshbad,
Pakistan for facilitating us in carrying out thissearch work
and for provision of equipment required for implenation
and testing of our results.

International Scholarly and Scientific Research & Innovation 6(1) 2012 121

REFERENCES
“Oracle Solaris Studio 12.2 Thread Analyzer Us&iside,” Internet:
download.oracle.com/docs/cd/E18659_01/pdf/821-2id4. [6 Sep.
2010].
S.Savage, M.Burrows, G.Nelson, P.Sobalvarro and ndefson,
“Eraser: A Dynamic Data Race Detector for Multithreaded Programs,”
ACM Trans. Computer Systems, Vol.15, No.4, pp. 321; 1997.
Eric Bodden and Klaus Havelundjspect-Oriented Race Detection in
Java”, IEEE Trans. on Software Engineering, Vol.36, 4Qluly/August
2010.
Eric Bodden and Klaus HavelundRécer: Effective Race Detection
Using AspectJ’, Proc. Int'l Symp. Software Testing and Analysip.
155-165, July 2008.
J.Harrow, Runtime Checking of Multithreaded Application with Visual
Threads’, SPIN Model Checking and Software Verificatiorpri®iger,
pp. 331-342, 2000.
R. O'Callahan and J-D. ChoiHYybrid Dynamic Data Race Detection”,
Proc. ACM SIGPLAN Symp. Principles and Practice Parallel
Programming, pp. 167-178, 2003.
Pouria Shaker and Dennis K. Peter&n“Introduction to Aspect-
Oriented Software Development”, Proc. Newfoundland Electrical and
Computer Engineering Conference, October 2005.
Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik isgen, Jeffrey Palm
and William G. Griswold, An Overview of AspectJ’, ECOOP’01 Proc.
of 15th European Conference on Object OrientedrBrmming, 2001.
Mayur Hiru Naik, “Effective Static Race DetectioorfJava”, Ph.D
Dissertation, March 2008.
Mayur Naik and Alex Aiken, Conditional Must Not Aliasing for Static
Race Detection”, Proc. of the 34th annual ACM SIGPLAN, 2007.

scholar.waset.org/1307-6892/8088

http://waset.org/publication/Application-of-Java-based-Pointcuts-in-Aspect-Oriented-Programming-(AOP)-for-Data-Race-Detection/8088
http://scholar.waset.org/1307-6892/8088

