

 Abstract—Wide applicability of concurrent programming
practices in developing various software applications leads to
different concurrency errors amongst which data race is the most
important. Java provides greatest support for concurrent
programming by introducing various concurrency packages. Aspect
oriented programming (AOP) is modern programming paradigm
facilitating the runtime interception of events of interest and can be
effectively used to handle the concurrency problems. AspectJ being
an aspect oriented extension to java facilitates the application of
concepts of AOP for data race detection. Volatile variables are
usually considered thread safe, but they can become the possible
candidates of data races if non-atomic operations are performed
concurrently upon them. Various data race detection algorithms have
been proposed in the past but this issue of volatility and atomicity is
still unaddressed. The aim of this research is to propose some
suggestions for incorporating certain conditions for data race
detection in java programs at the volatile fields by taking into account
support for atomicity in java concurrency packages and making use
of pointcuts. Two simple test programs will demonstrate the results
of research. The results are verified on two different Java
Development Kits (JDKs) for the purpose of comparison.

Keywords—Aspect Bench Compiler (abc), Aspect Oriented
Programming (AOP), AspectJ, Aspects, Concurrency packages,
Concurrent programming, Cross-cutting Concerns, Data race,
Eclipse, Java, Java Development Kits (JDKs), Pointcuts

I. INTRODUCTION

ONCURRENT programming errors including data races,
deadlocks, starvation and live locks affect the results and

performance of concurrent applications. Data race is a
concurrent programming error in which more than one threads
try to access the same memory location at the same time
without acquiring any lock and at least one of the accesses is
for writing to memory [1]. Various race detection algorithms
have been proposed in the past to address the issue of data
race. ERASER the lockset based algorithm is basic
contribution to the field of data race detection [2]. RACER
algorithm enhances the phenomenon of data race detection in
java based programs by making use of AOP [3], [4]. AOP is
the modern programming paradigm that facilitates the handling
of crosscutting concerns through provision of pointcuts.

 Sadaf Khalid is with the Department of Computer Software Engineering,
Military College of Signals, National University of Sciences and Technology,
Islamabad, Pakistan (e-mail: makkah-madina@hotmail.com).

Fahim Arif is with the Department of Computer Software Engineering,
Military College of Signals, National University of Sciences and Technology,
Islamabad, Pakistan (e-mail: fahimarif@gmail.com).

Pointcuts and joinpoints help to intercept the events of
interest at runtime.Amongst different programming languages,
java provides huge support for concurrent programming by
introducing various concurrency packages and improving them
with every new release of JDK. Java concurrency utilities
include java.util.concurrent package containing classes useful
for concurrent programming, java.util.concurrent.locks
package and java.util.concurrent.atomic package which is
actually a small toolkit of classes allowing lock free
programming on atomic variables.Use of volatile keyword
indicates that application is multithreaded. Volatile variables
are usually considered thread safe. But volatile variables
become the possible candidates of data races if non-atomic
operations are performed concurrently upon them. Volatile
variables are considered self-synchronized but the need of
synchronization for volatile variables cannot be completely
neglected especially if some non-atomic operation is being
performed upon the volatile field, since some other thread can
intervene and may affect the final results.The aim of this
research is to address the issue of volatility and atomicity by
making use of java concurrency packages and AOP. This
research work proposes some suggestions for incorporating
certain conditions for data race detection at the volatile fields
in java programs by taking into account support for atomicity
provided in java concurrency packages and making use of
pointcuts. By considering RACER algorithm as base, an
additional state to the RACER state machine is suggested to
address atomicity issue for data race detection. It is also
described that how the atomicity issue can also be handled by
introducing new pointcuts only without modifying the RACER
state machine. The results of research are demonstrated by
using two test programs. The results are tested on two different
JDKs for the purpose of comparison.The rest of the paper is
organized as follows. Section II is a brief description of related
work, Section III highlights some important concepts of AOP,
Section IV demonstrates the proposed research solution,
Section V illustrates and analyzes the results of research,
Section VI presents a comparison of proposed solution with
that of other data race detection techniques and finally paper
concludes by suggesting some future work.

II. RELATED WORK

 Savage proposed the ERASER algorithm for detecting
potential data races in lock-based multithreaded programs.
ERASER makes use of lockset algorithm whose refinement at
appropriate times leads to the detection of data races.
ERASER was used by many researchers as the basis for their

Application of Java-based Pointcuts in Aspect
Oriented Programming (AOP) for Data Race

Detection
Sadaf Khalid, Fahim Arif

C

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:1, 2012

116International Scholarly and Scientific Research & Innovation 6(1) 2012 scholar.waset.org/1307-6892/8088

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:6
, N

o:
1,

 2
01

2
w

as
et

.o
rg

/P
ub

lic
at

io
n/

80
88

http://waset.org/publication/Application-of-Java-based-Pointcuts-in-Aspect-Oriented-Programming-(AOP)-for-Data-Race-Detection/8088
http://scholar.waset.org/1307-6892/8088

race detection algorithms, but ERASER had some
shortcomings. ERASER could not handle the issue of object
initialization properly because it cannot guess when
initialization phase is complete and when variable becomes
actually shared, thus missing out many data races as well as
generating many false alarms. Harrow proposed an extension
to ERASER that used thread segments to model lock free
handover of objects between parent and child threads [5]. But
this technique used the same state machine as proposed by
ERASER algorithm, so it also missed out the issue of object
initialization leading to false alarms.O’Callahan and Choi
proposed another improvement to ERASER algorithm [6].
They refined lockset algorithm implemented by ERASER by
using the happens-before graph of the program under test. This
happens-before graph contains happens-before edges at calls
to Thread.start (), Thread.join (), Object.wait () and
Object.notify (). They used some low level bytecode
instrumentation toolkit to add instrumentation to the bytecode
and did not include any concept of providing instrumentation
at higher level of abstraction as possible with AOP
paradigm.RACER is the most refined aspect oriented version
of ERASER algorithm for detecting data races in java based
programs. It refines the lockset algorithm of ERASER by
appropriately addressing the object initialization issue.
Moreover, RACER also introduced the concept of access
periods for lock free handover of object between parent and
child threads, but it differs from the scheme proposed by
Harrow in the way that it modifies the state machine of
ERASER by adding two new states thus handling object
initialization by considering reads and writes from the very
beginning. The biggest advantage of RACER above all of the
previous race detection techniques is that it provides
instrumentation at higher level of abstraction by making use of
AOP paradigm. Three new pointcuts lock (), unlock () and
maybeShared () are introduced as language extension to
AspectJ to intercept the events of locking and unlocking and
accessing shared memory locations in multithreaded programs.

III. ASPECT ORIENTED PROGRAMMING

AOP is the modern programming paradigm simplifying the
implementation of cross-cutting concerns [7]. Concern space is
multi-dimensional, so in order to avoid tangling, redundancy
and complications caused by scattered functionality, these
cross-cutting concerns are modularized in the form of aspects.
Aspects are modular implementation of cross-cutting
functionality. Aspects can be developed independent of the
target application even by some third party reducing the
application development time and then woven into the base
program through a process called weaving.

Aspect comprises pointcuts, joinpoints and advice which are
the fundamental concepts of AOP. Joinpoints are actually the
execution points for advice. Pointcuts select certain joinpoints
on which certain advice has to be executed, whereas advice is
the additional functionality needed to be performed when
certain execution point in the program has been reached.

AspectJ is an aspect oriented extension to java [8]. It
facilitates the implementation of fundamentals of AOP in java.
In AspectJ, aspects are simple class like structures

implementing the desired functionality through advice
execution on certain execution points selected by pointcuts.
Advice in AspectJ is much like a simple function in normal
java programming, but here advice is not called explicitly but
implicitly invoked by pointcuts and joinpoints.

AOP facilitates application development independent of
writing various aspects, so any application can be made aspect
oriented by writing suitable aspects for desired situation. The
aim of this research is to merge AOP with concurrency support
provided by java in order to handle the issue of data race
detection effectively.

IV. PROPOSED ENHANCEMENTS FOR DATA RACE DETECTION

Multithreaded programs may exhibit non-deterministic
behavior giving rise to data races. A lot of work has been done
in the past to cope with the concurrent programming errors
especially with the situations giving rise to data race. Data
races can be minimized by strict adherence to certain
programming disciplines. Use of synchronized blocks reduces
memory consistency errors. Volatile variables are often used in
multithreaded programs for data sharing among threads.
Though considered self-synchronized, they cannot be
completely neglected for being the candidate of data races.
Volatile variables become the possible candidates of data races
if non-atomic operations are performed concurrently upon
them. Java provides support for concurrency by introducing
concurrency package containing atomic classes. Use of these
atomic classes can reduce the chances of data race. The
authors aim to use RACER algorithm as base and propose
some suggestions for data race detection at volatile fields in
java programs by availing the benefits of java concurrency
packages for atomicity and by using AOP.

A. Observations
Though considered to be self synchronized, volatile fields

are not completely thread safe. If some non-atomic operation
like increment (i++) operation is being performed on certain
volatile field, then there is greater chance of thread
interference. Because the increment operation comprises of
get, increase and set sub-operations, so there is a chance that
another thread might get the incorrect result if volatile field is
concurrently accessed by more than one threads. Similar is the
case with other non-atomic operations. Continuous testing
revealed that besides unary operations, expressions making use
of conditional operators also become non-atomic. So, in this
case volatile field become the possible candidate of data race.
This research work proposes suggestions to handle the race
conditions arising from these kinds of situations in java based
programs.

B. Proposed Solution for Data Race detection at Volatile
Fields Undergoing Non-atomic Operations
 Three different ways to detect and avoid data races at
volatile fields undergoing non-atomic operations proposed in
this research work include:
i. Use of synchronization block for accessing volatile fields.
ii. Use of atomic classes introduced by java concurrency
packages to accommodate atomicity issue.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:1, 2012

117International Scholarly and Scientific Research & Innovation 6(1) 2012 scholar.waset.org/1307-6892/8088

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:6
, N

o:
1,

 2
01

2
w

as
et

.o
rg

/P
ub

lic
at

io
n/

80
88

http://waset.org/publication/Application-of-Java-based-Pointcuts-in-Aspect-Oriented-Programming-(AOP)-for-Data-Race-Detection/8088
http://scholar.waset.org/1307-6892/8088

iii. Suggesting a new state machine for handling atomicity.

 1) Use of Synchronization Block for Accessing Volatile
Fields
 Use of synchronized block guarantees safe operation with
no chance of data race. It is one of the ways to perform atomic
operation without using any concurrency package for
atomicity, since there is no chance of thread interference. Use
of synchronized block for accessing volatile fields is shown in
Fig. 1. In this case, volatile variable counter is being accessed
for performing two non-atomic operations, one the increment
operation at line 13 and another conditional expression at line
14. Performing these non-atomic operations on volatile fields
within synchronized block eliminate the chance of data race.

Fig. 1 Use of Synchronized Block for Accessing Volatile Fields

We introduced a new aspect VolatileChk keeping track of

accesses to volatile fields by making use of two additional
pointcuts volatileFieldSet() and VolatileFieldGet() as shown in
Fig. 2. Without a synchronized block, data race will be fired
for volatile fields undergoing non-atomic operations.

Fig. 2 Aspect Introducing Pointcuts for Detecting Reads and

Writes to Volatile Fields
Maybe, shared () pointcut developed by E. Bodden and K.

Havelund is also used. Results of this test program will be
discussed in Section V.

 2) Use of Atomic Classes Introduced by Java Concurrency
Packages to Accommodate Atomicity Issue
 With evolution of JDKs, java introduced concurrency
package java.util.concurrent.atomic for safe handling of

atomic operations avoiding data races. A simple increment
operation is non-atomic, if performed on volatile fields without
using synchronization mechanism, there is a great possibility
of data race in case of concurrent access of volatile field by
more than one threads leading to incorrect results. But if
atomic classes introduced by java concurrency package are
used then volatile fields can undergo simple non-atomic
increment operation without making use of synchronized
blocks. A test program in Fig. 3 shows the usage of atomic
classes for performing non-atomic operations atomically. We
only make use of AtomicInteger class for the purpose of
demonstration in this test program.

Fig. 3 Test Class Showing the Usage of Atomic Test Class

Introduced by java.util.concurrent.atomic Concurrency Package

Fig. 4 shows a new aspect AtomicityChk containing two
pointcuts AtomicityCheck_Read () and AtomicityCheck_Write
(). These new pointcuts are created to detect the accesses to the
volatile fields making use of atomic test classes. If such a field
is accessed outside synchronization block, no data race will be
fired since atomicity is guaranteed by the usage of atomic
concurrency package. Fig. 4 also shows a new pointcut
neverShared (). Its purpose is to create an impact that fields
can never become shared if atomic operations are performed.
Section V explains the results of the test program in detail.

Fig. 4 Aspect Introducing Pointcuts for Detecting Reads and Writes

to Volatile Fields Making Use of Atomic Test Classes

3) Suggesting a New State Machine for Handling Atomicity
We suggest a new state machine with two states Virgin and

Atomic for handling atomic operations. In this case, the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:1, 2012

118International Scholarly and Scientific Research & Innovation 6(1) 2012 scholar.waset.org/1307-6892/8088

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:6
, N

o:
1,

 2
01

2
w

as
et

.o
rg

/P
ub

lic
at

io
n/

80
88

http://waset.org/publication/Application-of-Java-based-Pointcuts-in-Aspect-Oriented-Programming-(AOP)-for-Data-Race-Detection/8088
http://scholar.waset.org/1307-6892/8088

immediate state of the variable just after its creation is Virgin.
If the newly created field is undergoing atomic operations by
making use of java atomic classes, then once the field is read
or written by any thread, its state is transitioned to Atomic and
then no data race will be fired for such volatile variables
undergoing atomic operations. Rest of the transitions and
working will be same as that of RACER state machine [3]. Fig.
5 shows the proposed state machine for handling atomic
operations.

Fig. 5 Proposed State Machine for Handling Atomicity Issue

V. ANALYSIS

Test results are obtained using AspectJ in Eclipse and
providing runtime environment of abc. In this section, results
obtained using JavaSE 1.6 as JRE System Library (SUN JDK)
and ibm_sdk60 as JRE System Library (IBM JDK) are
described in detail.

A. Testing Proposed Solution with SUN JDK

Volatile variables are used to share the values among
threads in multithreaded programs. They are usually not
cached in thread local memory and contain the most recent
value updated by any thread. Volatile variables are usually
considered thread safe and are accessed without strict
adherence to locking discipline. However, this is not the case
with all of the accesses to volatile fields. In the test program of
Fig. 1, volatile variable counter is undergoing two different
kinds of non-atomic operations. In line 13, value of counter is
incremented whereas in line 14, counter is undergoing another
non-atomic operation in conditional expression. We classify
this operation within the conditional expression as non-atomic
because through continuous testing, it was observed that new
value of counter is misread by some threads because it has
already been changed during the condition testing, which is not
detected. But if this operation is performed atomically within
the synchronized block then such kind of errors can be
avoided. The increment operation is already non-atomic since
there is the chance of thread interference, so it is better to
perform such operations atomically within the synchronized
block. Executing this test program using AspectJ and
providing runtime environment of abc containing newly
created pointcuts yields the output shown in Fig. 6. Here, no
data race is reported at the volatile field counter, since it is
accessed within the synchronized block. We enhanced RACER
by making it sensitive to such volatile field accesses via
pointcuts introduced in newly created aspect shown in Fig. 2.
However, the data race is being reported at another instance
variable test which is quite true because this variable is
actually shared among the threads.

Fig. 6 Output with NO Data Race at Volatile Field Accessed within

the Synchronized Block

 If we execute the test program in Fig. 1 without using
synchronized block, output shown in Fig. 7 is produced. Here,
newly created pointcuts detect the unprotected access to
volatile fields undergoing non-atomic operations to fire data
race on it.

Fig. 7 Output Showing Data Race at the Volatile Field undergoing

Non-atomic Operations

 With the evolution of java programming language, new
concurrency package java.util.concurrent.atomic supporting
atomicity is introduced. Atomic operations are safe and cannot
become victims of thread interference. So, there are no
chances of data race in case of atomic operations. So, if
support provided by java.util.concurrent.atomic package is
availed, then chances of data race are eliminated and volatile
variables can be accessed without any synchronization
mechanism. In order to adjust support for atomicity in existing
race detection algorithm RACER, we introduced a new aspect
shown in Fig. 4. Two pointcuts atomicityCheck_Read () and
atomicityCheck_Write () detect if any volatile field making use
of atomic classes introduced by java.util.concurrent.atomic is
used. If such classes are used, then the purpose of
neverShared() pointcut is to implement the assumption that
such fields can never be shared among the threads, so there is
no chance of data race at volatile fields making use of atomic
classes. Result of executing the test program of Fig. 3 is shown
in Fig. 8.

Fig. 8 Output with NO Data Race at Volatile Field using Java Atomic

Classes (Detected via Pointcut neverShared ())

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:1, 2012

119International Scholarly and Scientific Research & Innovation 6(1) 2012 scholar.waset.org/1307-6892/8088

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:6
, N

o:
1,

 2
01

2
w

as
et

.o
rg

/P
ub

lic
at

io
n/

80
88

http://waset.org/publication/Application-of-Java-based-Pointcuts-in-Aspect-Oriented-Programming-(AOP)-for-Data-Race-Detection/8088
http://scholar.waset.org/1307-6892/8088

 In test program shown in Fig. 3, our main concern is with
the usage of atomic classes for creating atomic variables.
Volatile variable counter is created as an instance of
AtomicInteger class introduced by concurrency package
java.util.concurrent.atomic. Since use of atomic classes
guarantee safe operations without thread interference, so here
no data race is being reported at the volatile field counter even
it is not accessed within the synchronized block. This is
because newly developed pointcut neverShared () made the
assumption that fields on which atomic operations are being
performed can never become the shared fields. The other two
data races being reported as shown in Fig. 8 are true one, as
the instance fields temp and test are actually shared among
threads.If the pointcut neverShared () is not created, then in
order to deal with atomic operations, we suggest a new state
machine shown in Fig. 5. After a new variable is created, its
state is declared as Virgin, after checking that whether it is
created by making use of java atomic classes, whenever a
thread reads or write this variable, its state is switched to
Atomic. No data race is fired in Atomic state because this state
is introduced as an indication of atomic operations. Output of
the same test program shown in Fig. 3 when tested with the
implementation of new state machine is shown in Fig. 9. This
state machine only handles the atomic operations on volatile
fields; the rest of the implementation we used is same as that
of RACER state machine.

Fig. 9 Output showing NO Data Race at the Volatile Field using Java

Atomic Classes (Detected via Proposed State Machine)

 Output in Fig. 9 shows that when a volatile field counter
declared using java atomic classes is accessed at line 4 for
writing purpose by thread, its state is transitioned to Atomic
and a message saying ‘Fields using JAVA ATOMIC
CLASSES ARE NOT THE CANDIDATES OF DATA
RACES’ is displayed. After this, whichever thread accesses
this field counter for either read or write purpose, its state will
remain the same and no data race will be reported for such
volatile fields on which atomic operation is being performed.

B. Testing Proposed Solution with IBM JDK

IBM JDK provides utility classes containing support for
concurrency same as that in SUN JDK. We propose some
suggestions to handle volatility and atomicity issue for data
race detection and tested the results on smaller test programs.
So no change in results is obtained. We obtain the same results
for both SUN and IBM JDKs. Differences in thread
management in SUN and IBM JDK might be observed for
some larger programs.

VI. COMPARISON OF DATA RACE DETECTION TECHNIQUES

Data race is a serious programming error in multithreaded
programs. A lot of work has been done on fixing various
concurrent programming errors especially data races in
concurrent programs. Various race detection algorithms have
been proposed in past to address the issue of data race
detection in different programming languages. ERASER is the
lock-set based race detection algorithm for C and C++
programs. Harrow proposed an extension to ERASER by
introducing the concept of thread segments implemented in
Visual Threads. Mayur Hiru Naik presented his algorithm for
static race detection in java programs [9], [10]. RACER on
the other hand is the most recent aspect oriented race detection
algorithm for java based programs. All of these algorithms
address the race detection issue in their own style. In this
research work, we propose suggestions to address a unique
issue of data race detection at the volatile fields, and how
concurrency utilities for atomicity provided by evolution of
java programming language can be utilized to handle the issue
effectively. This research work demonstrates how the
application of common programming practice normally used
for writing concurrent programs can help address the race
detection issue at the volatile fields. Volatile variables being
considered as self-synchronized have never become the focus
of the data race issue. But through careful usage of volatile
variables and taking into account the atomicity issue, another
aspect of data race detection issue can be resolved. Table I
highlights the comparison among different race detection
techniques. None of the existing race detection techniques
particularly focused on the volatility and atomicity issue, so we
propose suggestions to address this issue for detecting data
races in multithreaded programs.

TABLE I
COMPARISON BETWEEN DIFFERENT DATA RACE DETECTION TECHNIQUES

Data Race
Detection
Techniqu

e

Object
Initializatio

n

Aspect
Oriented

Accesses
to

Volatile
Variable

s

Atomicity Issue

ERASER N N N N
RACER Y Y N N
Static
Race

Detection
Tech. by
Mayur

N N N N

Visual
Threads

by
Harrow

N N N N

We have presented the results of two different test
programs making use of static, volatile and atomic
variables. Fig. 10 summarizes the results by highlighting the
total number of data races in test program of Fig.1 while
accessing the volatile field outside the synchronized block.
The total numbers of data races existing in the test program
of Fig. 1 are two. Data race at the simple instance field test
is detected via RACER logic while data race at the volatile
field is being reported through the addition of pointcuts
volatileFieldSet() and volatileFieldGet().

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:1, 2012

120International Scholarly and Scientific Research & Innovation 6(1) 2012 scholar.waset.org/1307-6892/8088

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:6
, N

o:
1,

 2
01

2
w

as
et

.o
rg

/P
ub

lic
at

io
n/

80
88

http://waset.org/publication/Application-of-Java-based-Pointcuts-in-Aspect-Oriented-Programming-(AOP)-for-Data-Race-Detection/8088
http://scholar.waset.org/1307-6892/8088

Fig. 10 Data Race Detection

 Test program in Fig. 3 contains two data races at the
instance fields test and temp, while the data race at the volatile
field counter is avoided by using java atomic classes. Our
newly created pointcuts atomicityCheck_Read,
atomicityCheck_Write() and neverShared() help to resolve the
issue. atomicityCheck_Read and atomicityCheck_Write()
detect the accesses to atomic volatile fields and neverShared()
pointcut checks that these fields are never shared among
threads and can never become the possible candidates of data
races, thus avoiding false alarms.

VII. CONCLUSION

AOP is modern programming paradigm facilitating the
implementation of cross-cutting concerns in modular style. Its
simplicity, ease of use and ability to intercept events of
interest at runtime increases its usage for solving various
issues. For the same reason, it can also be used for solving
concurrent programming errors like data races, starvation etc.
In this research work, we have used AspectJ to address data
race issue by combining the benefits of AOP and java
concurrency utilities. We have presented the race detection
issue at the volatile fields and atomicity concept for java
programming language, but this concept can be extended to
other programming languages by considering the concurrency
utilities and aspect-oriented support provided by them. By
using AspectC, Aspect# etc, concept of data race detection by
using aspects and pointcuts can be extended to C and C#
programming languages. Moreover, we can devise aspect
oriented algorithms for addressing other concurrent
programming errors like starvation, live locks etc.

ACKNOWLEDGMENT

 We thank Eric Bodden for providing us with the
implementation of RACER algorithm which helped us
understanding the algorithm and facilitate implementing our
proposed modifications in the algorithm. We also thank
National University of Sciences and Technology, Islamabad,
Pakistan for facilitating us in carrying out this research work
and for provision of equipment required for implementation
and testing of our results.

REFERENCES
[1] “Oracle Solaris Studio 12.2 Thread Analyzer User’s Guide,” Internet:

download.oracle.com/docs/cd/E18659_01/pdf/821-2124.pdf [6 Sep.
2010].

[2] S.Savage, M.Burrows, G.Nelson, P.Sobalvarro and T.Anderson,
“Eraser: A Dynamic Data Race Detector for Multithreaded Programs,”
ACM Trans. Computer Systems, Vol.15, No.4, pp. 391-411, 1997.

[3] Eric Bodden and Klaus Havelund, “Aspect-Oriented Race Detection in
Java”, IEEE Trans. on Software Engineering, Vol.36, N0.4, July/August
2010.

[4] Eric Bodden and Klaus Havelund, “Racer: Effective Race Detection
Using AspectJ”, Proc. Int’l Symp. Software Testing and Analysis, pp.
155-165, July 2008.

[5] J.Harrow, “Runtime Checking of Multithreaded Application with Visual
Threads”, SPIN Model Checking and Software Verification, Springer,
pp. 331-342, 2000.

[6] R. O’Callahan and J-D. Choi, “Hybrid Dynamic Data Race Detection”,
Proc. ACM SIGPLAN Symp. Principles and Practice of Parallel
Programming, pp. 167-178, 2003.

[7] Pouria Shaker and Dennis K. Peters, “An Introduction to Aspect-
Oriented Software Development”, Proc. Newfoundland Electrical and
Computer Engineering Conference, October 2005.

[8] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm
and William G. Griswold, “An Overview of AspectJ”, ECOOP’01 Proc.
of 15th European Conference on Object Oriented Programming, 2001.

[9] Mayur Hiru Naik, “Effective Static Race Detection for Java”, Ph.D
Dissertation, March 2008.

[10] Mayur Naik and Alex Aiken, “Conditional Must Not Aliasing for Static
Race Detection”, Proc. of the 34th annual ACM SIGPLAN, 2007.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:6, No:1, 2012

121International Scholarly and Scientific Research & Innovation 6(1) 2012 scholar.waset.org/1307-6892/8088

In
te

rn
at

io
na

l S
ci

en
ce

 I
nd

ex
, C

om
pu

te
r

an
d

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

 V
ol

:6
, N

o:
1,

 2
01

2
w

as
et

.o
rg

/P
ub

lic
at

io
n/

80
88

http://waset.org/publication/Application-of-Java-based-Pointcuts-in-Aspect-Oriented-Programming-(AOP)-for-Data-Race-Detection/8088
http://scholar.waset.org/1307-6892/8088

