
Indian Journal of Artificial Intelligence and Neural Networking (IJAINN)

ISSN: 2582-7626 (Online), Volume-4 Issue-2, February 2024

 1

Retrieval Number: 100.1/ijainn.A108204011223

DOI:10.54105/ijainn.B1082.04020224

Journal Website: www.ijainn.latticescipub.com

Published By:

Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Long Horizon Episodic Decision Making for

Cognitively Inspired Robots

Shweta Singh, Vedant Ghatnekar, Sudaman Katti

Abstract: The Human decision-making process works by

recollecting past sequences of observations and using them to

decide the best possible action in the present. These past sequences

of observations are stored in a derived form which only includes

important information the brain thinks might be useful in the

future, while forgetting the rest. we propose an architecture that

tries to mimic the human brain and improve the memory efficiency

of transformers by using a modified Transformer XL architecture

which uses Automatic Chunking which only attends to the relevant

chunks in the transformer block. On top of this, we use Forget Span

which is technique to remove memories that do not contribute to

learning. We also theorize the technique of Similarity based

forgetting to remove repetitive memories. We test our model in

various tasks that test the abilities required to perform well in a

human-robot collaboration scenario.

Keywords: Robotics, Machine Vision and Scene

Understanding, Reasoning Under Uncertainty

I. INTRODUCTION

Human cognition and decision-making works on

reflection on only relevant parts of memory. We can recall

specific past sequences of events in detail, without paying

attention to everything in our memory (Chan et al., 2017, [1])

(Sols et al., 2017, [2]). Irrelevant and repetitive parts of

memory are overlooked, preferring storage of a broader

picture of events based on the importance of each event.

Robotic agents should have similar cognition to function well

in long horizon and multi-modal tasks like navigation or

human-robot collaboration. The memory buffer should be

concise, containing events that will be useful for decision

making in the present and future while forgetting the rest

(Nematzadeh et al., 2020, [3][8][9][10]). To emulate this in

our architecture we propose the use of Automatic Chunking

and Forget Span on the TransformerXL memory buffer.

Automatic chunking helps by chunking the memory and only

using the relevant chunks in the TransformerXL layers while

ForgetSpan masks out unnecessary and repetitive elements

from the memory creating a more concise memory buffer

which improves memory efficiency and performance.

Manuscript received on 01 December 2023 | Revised Manuscript

received on 10 December 2024 | Manuscript Accepted on 15

February 2024 | Manuscript published on 28 February 2024.
* Correspondence Author (s)

Shweta Singh, Department of Brain, Cognition and Computation Lab, IIIT,

Hyderabad (Telangana), India. E-mail: shweta.singh@research.iiit.ac.in,
ORCID ID: 0009-0003-7055-0251

Vedant Ghatnekar*, Department of Mechanical Engineering, MIT WPU,

Pune (Maharashtra), India. E-mail: 1032190997@mitwpu.edu.in, ORCID
ID: 0009-0006-4004-6646

Sudaman Katti, Department of Mechanical Engineering, MIT WPU, Pune

(Maharashtra), India. E-mail: sudaman.katti19@vit.edu, ORCID ID: 0000-
0002-9082-0103

© The Authors. Published by Lattice Science Publication (LSP). This is

an open access article under the CC-BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

We also test a preliminary version of Similarity Weight which

decides whether a current observation should be stored in the

memory by comparing it with the existing elements in the

buffer.

II. ARCHITECTURE AND TESTING

METHODOLOGY

Figure 1: Transformer XL Architecture

We use a Gated TransformerXL backbone (Pleines et al.,

2023, [4]) which we modify to add Automatic Chunking,

Forget Span and Similarity Weight. The main architecture of

Gated TransformerXL consists of a cyclic memory buffer

which stores a specified number of pre-processed

observations. The input observations are first pre-processed

by a 3 layered convolutional encoder. This encoded

observation is stored in memory and also fed to the

TransformerXL block as the query. The memory buffer is

used to calculate the key and value in the TransformerXL

block. The output of the transformer block is then used to

create a categorical distribution over the action space, from

which actions are sampled. PPO2 (proximal policy

optimization) is used to in all models to perform consistent

updates and to limit how far we can change the policy in each

iteration using KL-divergence. The network policy learns to

take appropriate actions based on the current observation and

memory during training.

A. Automatic Chunking

In Automatic chunking, we insert our chunking algorithm

in between the step where the memory buffer is passed to the

Transformer XL block to calculate the key and value.

http://doi.org/10.54105/ijainn.B1082.04020224
https://www.ijainn.latticescipub.com/
mailto:shweta.singh@research.iiit.ac.in
https://orcid.org/0009-0003-7055-0251
mailto:1032190997@mitwpu.edu.in
https://orcid.org/0009-0006-4004-6646
mailto:sudaman.katti19@vit.edu
https://orcid.org/0000-0002-9082-0103
https://orcid.org/0000-0002-9082-0103
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.54105/ijainn.B1082.04020224&domain=www.ijainn.latticescipub.com

Long Horizon Episodic Decision Making for Cognitively Inspired Robots

 2

Retrieval Number: 100.1/ijainn.A108204011223

DOI:10.54105/ijainn.B1082.04020224

Journal Website: www.ijainn.latticescipub.com

Published By:

Lattice Science Publication (LSP)
© Copyright: All rights reserved.

The memories are instead split into sequential chunks of

constant size and each chuck is assigned a summary value

which is calculated through mean pooling. The memory mask

is taken into account while chunking so unfilled memory

elements do not contribute to the summary value. Attention is

performed on these mean values and the query to calculate the

top-k chunks of memory that are relevant to the current

scenario. These top-k memories are then combined and sent

to the Transformer XL block to be used as the key and value

in place of the whole memory buffer. This reduces the number

of memories that need to be attended by the transformer block

as well as provides more contextual memories. This allows

the transformer to work more efficiently with lesser memories

as well as provide a more accurate output in the current

context. The chunk size and number of chunks used in our

experiments have been detailed in the appendix.

B. ForgetSpan

In ForgetSpan, we use masking to remove memories from

the memory buffer after a certain span of time. The model

learns to decide the span each memory element will stay in

the buffer using the logic below and removes memories that

do not contribute to learning. This allows the transformer to

learn from a more concise memory buffer, improving learning

as well as reducing the memory requirement of the model.

We calculate a ForgetSpan fi ∈ [0, F] for every element in

memory mi

fi = Fσ(WT mi + B) (1)

Here W and B are a trainable weight and bias, sigma is a

sigmoid function for activation and F is the maximum span

an element can stay in memory. W and B constitute a basic

linear layer applied to the memories which learns to

approximate an ideal function for calculating the span each

memory element should stay in the memory as it trains.

We calculate the remaining span rti at every timestep t for the

ith memory element.

rti = fi − (t − i) (2)

When rti becomes negative, it means the element has to be

forgotten and can be masked out of the memory buffer. We

use a soft masking function that creates a smooth mask from 1

to 0 once the element has to be forgotten.

sti = max(0, min(1, 1 + rti/R)) (3)

Where R is the ramp length of the ramp between 1 and 0.

This allows fi to receive a gradient to train as the masking

function has a non-zero gradient between [−R, 0]. The

parameters for ForgetSpan used in our experiments are

detailed in the appendix.

C. SimilarityWeight

In SimilarityWeight we calculate the similarity between

the current observation with all the elements currently in the

memory buffer using cosine similarity. We then bin the

similarity values into 10 bins and calculate the number of

values in the top k bins. We use k=3 for our experiment in the

Minigrid Task. This number is used to represent the similarity

of the current element with the memory as it denotes that the

number of memories the current observation is highly similar

with. We use a threshold of 0.6 was used in our experiment

which denotes that a memory element which is similar to more

than 60 percent of the memory buffer will be removed. If the

value of similarity is greater than the threshold, that means the

memory is highly similar to the memory buffer and so it is not

stored. If the value of similarity is lower than the threshold,

the memory is stored. Where similarity is:

similarity = topkbins(cossimi(obs, memory)) (4)

Where topkbins is the function to bin and choose the top-

k highest populated bins. Cosine sim- ilarity is calculated

using the torch.nn.CosineSimilarity function.

SimilarityWeight is employed to remove new observations

that are extremely similar to elements already in the memory

thus creating a small memory with highly focused elements.

D. Testing Methodology

We test our model with various combinations of our

proposed memory handling techniques on 5 different tasks.

Each task is designed to test various abilities of the model

such as memory, navigation, planning, robotic control and

multi-modal deciphering. We believe these to be important

abilities a robotic agent would require in achieving human-

robot collaboration tasks in real world applications. We train

the models on each task till they achieve a satisfactory

performance and then modify the environment during testing

to test the generalizability of the trained model. Training

parameters used in each task as stated in Appendix A.

The Minigrid memory task was implemented using the

Minigrid environment package (Chevalier- Boisvert et al.,

2023, [5]). Unity MLAgents toolkit (Juliani et al., 2020, [6])

was used for implementing the Audio-Visual Instructions

Task and Visual Corridor task. The Visual Instructions task

was implemented using the Miniworld environment package

(Chevalier-Boisvert et al., 2023, [5][11][12]), the Humanoid

locomotion task was implemented using the Mujoco physics

engine. We interface the environments with our models coded

in PyTorch using the OpenAI Gym API (Brockman et al.,

2016, [7]). The tasks are discussed in detail in the Section 3

below. Various combinations of Gated and Ungated

TransformerXL, Automatic Chunking, ForgetSpan and

SimilarityWeight were tested in all the tasks to see the effects

on training performance.

III. RESULTS AND DISCUSSIONS

A. Minigrid Memory Task

Figure 2: Minigrid Task

http://doi.org/10.54105/ijainn.B1082.04020224
https://www.ijainn.latticescipub.com/

Indian Journal of Artificial Intelligence and Neural Networking (IJAINN)

ISSN: 2582-7626 (Online), Volume-4 Issue-2, February 2024

 3

Retrieval Number: 100.1/ijainn.A108204011223

DOI:10.54105/ijainn.B1082.04020224

Journal Website: www.ijainn.latticescipub.com

Published By:

Lattice Science Publication (LSP)
© Copyright: All rights reserved.

The goal of this task is to correctly remember the object

seen in the initial room (on the left) and then navigate to the

end of the corridor and touch the same object. The agent’s

observation space includes a 5x5 square image of the grid

ahead of the agent. The action space is discrete with the

actions Turn left, Turn right and Move forward. This task tests

the agent’s ability to remember the information at the start of

the episode and use it effectively to reach the final goal. In

Figure 3, we plot then average rewards across episodes for

Baseline Gated TransformerXL, Gated TransformerXL with

Automatic chunking, Gated TransformerXL with Automatic

chunking and ForgetSpan and Automatic chunking with

ForgetSpan and Similarity Weight.

Figure 3: Minigrid Task training rewards

Automatic Chunking with ForgetSpan learns the task

slightly faster than Gated TransformerXL with Automatic

chunking which in turn trains faster than the baseline Gated

TransformerXL. Automatic Chunking with ForgetSpan and

SimilarityWeight gives the best results by training the fastest

and with the highest reward. Automatic Chunking with

ForgetSpan and SimilarityWeight gives the best results by

pre-processing the memories and complimenting Automatic

Chunking but the computational cost increase is significant as

we have to calculate similarity of a new observation with the

whole memory buffer every timestep.

B. Audio Visual Instructions Task

Figure 4: Audio-Visual Instructions Task with and

without wall

In this task the agent gets one of two audio commands

randomly at the start of each episode, either “red cube” or

“green cube”. The agent then has to navigate based on visual

inputs to the specified cube. The observation space consists of

audio spectrograms of size 41 X 42 X 1 along with visual

observations of size 41 X 42 X 3. This task tests the agent’s

recollection as well as multi-modal instruction deciphering

ability. The episode ends whenever the agent touches one of

the objects. We tested three versions of this task:

1. Static Boxes with static reward (+10 for reaching the

correct goal and -1 for not)

2. Moving Boxes with dynamic rewards based on the

distance from the correct goal

3. Moving Boxes with dynamic rewards and a moving

wall for partial observations

The Static version was used in the results shown in Figure

5 and Table 1 while we used the Moving versions to test the

generalizability of the Automatic Chunking with ForgetSpan

model in a more dynamic environment. Dynamic rewards

were used to incentivize the correct goal and the positions of

the boxes and wall were randomized at the start of every

episode. The trained model was tested for 100 episodes and

the results are shown in Table 2.

In Figure 5, we plot the average training rewards for Gated

TransformerXL, Gated TransformerXL with Automatic

chunking, Automatic chunking TransformerXL with

ForgetSpan with ramp length 64 and 32. As we can see

Automatic chunking with ForgetSpan with Ramp length 32

has the best performance with the highest rewards and fastest

training. Increasing the Ramp length to 64 led to worsening

performance. This is probably caused by the gradient used to

train the ForgetSpan is more gradual leading to slower

learning of the ForgetSpan layer. Automatic Chunking

TransformerXL performed better than baseline

TransformerXL while being better than ForgetSpan with

ramp length 64 and worse than ForgetSpan with ramp length

32.

Figure 5: Audio-Visual Instructions Task Rewards

Table 1: Audio-Visual Instructions with Static Boxes

Task Testing Results

Task Success/Total episodes Fail/Total episodes

Static Boxes with same

positions

27/29 2/29

Static Boxes with

changed positions

24/29 5/29

Static Boxes with Color

changed

51/100 49/100

To test whether our model was generalizable and had

learned a correct mapping between the color of the box and

the audio instruction we tested the trained model on three

scenarios:

1. Static boxes in the same positions as in training

2. Static boxes in different positions than in training

3. Static boxes in the same positions as in training but

the green box color is changed to blue

http://doi.org/10.54105/ijainn.B1082.04020224
https://www.ijainn.latticescipub.com/

Long Horizon Episodic Decision Making for Cognitively Inspired Robots

 4

Retrieval Number: 100.1/ijainn.A108204011223

DOI:10.54105/ijainn.B1082.04020224

Journal Website: www.ijainn.latticescipub.com

Published By:

Lattice Science Publication (LSP)
© Copyright: All rights reserved.

This would test if the model had learned a proper mapping

between audio and visual observations. Table 1 shows the

number of episodes where the agent went to the correct goal.

As we can see the model was able to go to the correct target

with a success rate of 93% and 82% in the first two scenarios

proving that it had learnt to navigate to the target correctly.

The episodes where it missed the targets could be attributed

to the agent travelling past the boxes and not being having

them in its view. In scenario 3 the agent achieved a success

rate of 51% when the audio ”red cube” was played. But it was

observed that when the ”green cube” audio was played, the

agent avoided going to the blue box and just roamed around

the arena searching for a green box. This proves that it had

learnt a correct mapping between the color of the target and

the audio cue.

Table 2: Audio-Visual Instructions with Moving

Boxes Task Testing Results

Task Success/Total episodes Fail/Total episodes

Moving Boxes without Wall 94/100 6/100

Moving Boxes with Wall 96/100 4/100

As can be seen in Table 2, the trained model was able to

achieve a success rate of 94% and 96% in the Moving cubes

version of the Audio-Visual Instructions Task with and

without the wall respectively. These results prove that

Automatic Chunking with ForgetSpan help achieve

generalization by reaching the goal even when the

environment is dynamic with changing goal positions,

obstructions and partial observations. Automatic Chunking

with ForgetSpan help the model to give more importance to

the goals and thus is able to adapt in a dynamic goal scenario.

C. Visual Corridor Task with Variable Distractor

Figure 6: Visual Corridor Task environment in

Unity

In this task the agent observes one of the two cubes either

red or green in color at the start of each episode. The agent

then has to navigate along a long corridor of variable length

until it reaches the end at which time it is teleported to the

final room where it has to go to the cube it saw at the start of

the episode. The observation space consists of visual

observations of size 40 X 40 X 3 and the position of the agent.

This task tests the agent’s ability to recall information after a

variable distractor phase. We only tested Automatic Chunking

with ForgetSpan in this task as we wanted to test the forgetting

of ForgetSpan as well as the chunk selection of Automatic

Chunking in a more dynamic scenario.

In Figure 7 we can see that Automatic Chunking with

ForgetSpan using ramp length 100 trained by 150 episodes

and learnt to do the task even with the variable distractor

phase. Automatic chunking without ForgetSpan took longer

to train but reached the same final rewards.

Figure 7: Visual Corridor Task Rewards

This shows that ForgetSpan improves training

performance of Automatic Chunking significantly while also

improving memory efficiency. To test whether our model was

generalizable, during the test scenario we doubled the length

of the variable distractor and tested for 30 episodes. Both

models managed to reach the final goal for 30 out of 30

episodes as shown by the approximately 15 reward received

by each of them every episode in Figure 8.

Figure 8: Visual Corridor Test Rewards

D. Visual Instructions Task

In this task the goal of the agent is to perceive a sign

present in the environment which displays the name of a

specific color. The agent then has to use its visual navigation

abilities to navigate to the object with the specified color. The

action space is discrete, with 3 actions, Turn right, Turn left

and Go forward. RGB Visual observations of size 80 X 60 x

3 were used. This task tests the ability of the agent to

remember the information seen at the start of the episode and

correctly decipher to navigate to the final goal. Thus, this task

tests the agent’s memory along with its visual navigation

abilities.

In Figure 10, we plot the average worker rewards and

average entropy (randomness) of the model across episodes

respectively for Ungated Transformer XL, Gated Transformer

XL, Ungated

http://doi.org/10.54105/ijainn.B1082.04020224
https://www.ijainn.latticescipub.com/

Indian Journal of Artificial Intelligence and Neural Networking (IJAINN)

ISSN: 2582-7626 (Online), Volume-4 Issue-2, February 2024

 5

Retrieval Number: 100.1/ijainn.A108204011223

DOI:10.54105/ijainn.B1082.04020224

Journal Website: www.ijainn.latticescipub.com

Published By:

Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Figure 9: Visual Instructions Task

(a) Rewards

(b) Entropy

Figure 10: Visual Instructions Task Results

TransformerXL with Automatic chunking, Gated

TransformerXL with Automatic chunking and Gated

Automatic chunking without mean pooling. Gated

TransformerXL with Automatic chunking had the highest

rewards and lowest entropy during training. Decrease in

entropy signifies successful training. Both gated algorithms

showed superiority in terms of training time, randomness and

rewards achieved. Gated Automatic chunking and Ungated

Automatic chunking showed better results as compared to

Gated TransformerXL and Ungated TransformerXL

respectively. The purple line in corresponds to Gated

Automatic chunking without use of mean pooling. In this

case, direct averaging across chunks was done to calculate

mean values. Although this method led to lower entropy

values, the reward values were considerably lower during

training. Only Gated automatic chunking with mean pooling

managed to surpass Gated TransformerXL due to a more

concise memory being used by the transformer.

E. Humanoid Task

Figure 11: Humanoid Task

In this task, the main goal is to make the humanoid agent

balance standing upright for as long as possible. The

observation space used is 376 dimensional, consisting of the

position values, angular values and the forces applied across

the various joints. The reward is directly proportional to the

amount of time spent by the agent in standing position. The

action space for this task is 17 dimensional, which includes

movement of all its body parts. This task tests agent’s ability

to perform effectively when dealing with huge action and

observation spaces, generally found in real world robotic

tasks. Training results for Gated Automatic chunking using 2

transformer blocks, Gated TransformerXL with 2 blocks and

Gated TransformerXL with 1 block are plotted in Figure 12.

The gated algorithms with two transformer blocks proved

to be better in terms of training rewards as compared to Gated

TransformerXL with 1 transformer block. The entropy for

Gated TransformerXL was lower with 1 transformer block

however the fluctuations were also higher. Gated

TransformerXL with Automatic chunking and two

transformer blocks had the highest re- ward and lowest

entropy (randomness in actions taken) during training. This

shows that increasing the number of transformer blocks is

beneficial when dealing with high dimensional action and

observation spaces.

(a) Rewards

http://doi.org/10.54105/ijainn.B1082.04020224
https://www.ijainn.latticescipub.com/

Long Horizon Episodic Decision Making for Cognitively Inspired Robots

 6

Retrieval Number: 100.1/ijainn.A108204011223

DOI:10.54105/ijainn.B1082.04020224

Journal Website: www.ijainn.latticescipub.com

Published By:

Lattice Science Publication (LSP)
© Copyright: All rights reserved.

(b) Entropy

Figure 12: Humanoid Task Results

IV. CONCLUSION

Transformers with Automatic chunking and memory

handling techniques like ForgetSpan and SimilarityWeight

showed greater memory efficiency and performance over

regular trans- formers models in memory, robot navigation,

and multi-modal tasks. Automatic chunking im- proved the

baseline TransformerXL by giving a more focused memory for

the transformer block to attend to. ForgetSpan and

SimilarityWeight showed good synergy with Automatic

chunking, improving the training speed as well as the memory

efficiency of the model by creating a concise memory with

only relevant memories for the transformer architecture to

work on. This work aims to improve the performance of

Robotic agents in Human-Robot Collaboration tasks which

are generally multi-modal, long horizon and dynamic in

nature and would greatly benefit from human-like memory.

Automatic Chunking, ForgetSpan and SimilarityWeight are a

step towards emulating human-like cognition in robots.

DECLARATION STATEMENT

Funding No, I did not receive.

Conflicts of Interest
No conflicts of interest to the best of my
knowledge.

Ethical Approval and
Consent to Participate

No, the article does not require ethical

approval and consent to participate with
evidence.

Availability of Data and

Material/ Data Access

Statement

Not relevant.

Authors Contributions
All authors have equal participation in this

article.

REFERENCES

1. Stephanie CY Chan, Marissa C Applegate, Neal W Morton, Sean M

Polyn, and Kenneth A Norman (2017) ’Lingering representations of

stimuli influence recall organization’, Neuropsychologia, vol. 97, pp.

72–82, DOI: 10.1016/j.neuropsychologia.2017.01.029

2. Sols, I. et al. (2017) ‘Event Boundaries Trigger Rapid Memory

Reinstatement of the Prior Events to Promote Their Representation in

Long-Term Memory’, Current Biology, 27(22), pp. 3499-3504.e4. doi:

10.1016/j.cub.2017.09.057.

3. Aida Nematzadeh, Sebastian Ruder, and Dani Yogatama (2020) ’On

memory in human and artificial language processing systems’, ICLR

2020: In Bridging AI and Cognitive Science Workshop, 26 April-

1 May. Available at:

https://api.semanticscholar.org/CorpusID:221088218.

4. Pleines, M. et al. (2023) ‘TransformerXL as Episodic Memory in

Proximal Policy Optimization’, GitHub Repository. Available at:

https://github.com/MarcoMeter/episodic-transformer-memory-ppo.

5. Chevalier-Boisvert et al. (2023) ‘Minigrid & Miniworld: Modular &

Customizable Reinforcement Learning Environments for Goal-

Oriented Tasks’, CoRR, abs/2306.13831.

6. Juliani, A. et al. (2020) ‘Unity: A general platform for intelligent

agents’, arXiv preprint arXiv:1809.02627. Available at:

https://arxiv.org/pdf/1809.02627.pdf.

7. Brockman, G. et al. (2016) ‘OpenAI Gym’, arXiv Eprint

arXiv:1606.01540. Available at: http://arxiv.org/abs/1606.01540.

8. Patil, Dr. K., & Kulkarni, Dr. M. S. (2019). Artificial Intelligence in

Financial Services: Customer Chatbot Advisor Adoption. In

International Journal of Innovative Technology and Exploring

Engineering (Vol. 9, Issue 1, pp. 4296–4303).

https://doi.org/10.35940/ijitee.a4928.119119

9. Hudaa, S., Setiyadi, D. B. P., Lydia, E. L., Shankar, K., Nguyen, P. T.,

Hashim, W., & Maseleno, A. (2019). Natural Language Processing

utilization in Health care. In International Journal of Engineering and

Advanced Technology (Vol. 8, Issue 6s2, pp. 1117–1120).

https://doi.org/10.35940/ijeat.f1305.0886s219

10. Vatan, Sharma, A., & Goyal, S. (2019). Artificial Intelligence on the

Move: A Revolutionary Technology. In International Journal of Recent

Technology and Engineering (IJRTE) (Vol. 8, Issue 4, pp. 12112–

12120). https://doi.org/10.35940/ijrte.d7293.118419

11. Mishra, S. (2022). A Comparative Analysis of Diabetes Prediction

using Different Machine Learning Algorithms. In Indian Journal of

Artificial Intelligence and Neural Networking (Vol. 2, Issue 5, pp. 1–

7). https://doi.org/10.54105/ijainn.e1057.082522

12. P A, J., & N, A. (2022). Faceium–Face Tracking. In Indian Journal of

Data Communication and Networking (Vol. 2, Issue 5, pp. 1–4

https://doi.org/10.54105/ijdcn.b3923.082522

AUTHORS PROFILES

Shweta Singh, I work as a Researcher in the Brain,
Cognition & Computation Lab at IIIT Hyderabad. My

focus lies in the interdisciplinary field merging

cognitive science, artificial intelligence, and robotics. I
specialize in crafting AI models influenced by cognitive

science principles, aiming to create intelligent AI agents

with cognitive abilities. My work revolves around
developing AI that emulates human cognitive

processes, paving the way for agents capable of understanding, learning, and

adapting like humans. My goal is to bridge the gap between AI technology
and human cognition, offering a pathway to more advanced, cognitively

adept artificial intelligence.

Vedant Ghatnekar, I am a student from MIT-WPU,

Pune studying BTech in Mechanical Engineering. My

research interests include Cognitive Robotics, Human-
Robot Collaboration, Memory in AI Agents,

Reinforcement Learning and Deep Learning. I have

been pursuing these interests in my various projects
and internships to builds a deep and intuitive

understanding of various concepts in these fields. I have published multiple

papers on the reinforcement learning models and their memory architectures
that I have worked on. My eventual career goals include building

collaborative robots that help people in their day to day lives as well as

improve the quality of life of elderly or differently abled people.

Sudaman Katti, I am a student at VIT, Pune studying

BTech in Mechanical Engineering. My research
interests include Memory based Reinforcement

Learning, Transformers and Robotics. In my research

work, reinforcement learning using proximal policy
optimization was used for learning of various visual

navigation, locomotion through limb manipulation and

memory intensive tasks related to robotics. Unity development software was
used for creation of various 3D environments and PyTorch was used for

designing the algorithm. I am working towards improving my knowledge in

this field and wish to work on Artificial Intelligence for robots in the future.

http://doi.org/10.54105/ijainn.B1082.04020224
https://www.ijainn.latticescipub.com/
https://api.semanticscholar.org/CorpusID:221088218
https://github.com/MarcoMeter/episodic-transformer-memory-ppo
https://arxiv.org/pdf/1809.02627.pdf
http://arxiv.org/abs/1606.01540
https://doi.org/10.35940/ijitee.a4928.119119
https://doi.org/10.35940/ijeat.f1305.0886s219
https://doi.org/10.35940/ijrte.d7293.118419
https://doi.org/10.54105/ijainn.e1057.082522
https://doi.org/10.54105/ijdcn.b3923.082522

Indian Journal of Artificial Intelligence and Neural Networking (IJAINN)

ISSN: 2582-7626 (Online), Volume-4 Issue-2, February 2024

 7

Retrieval Number: 100.1/ijainn.A108204011223

DOI:10.54105/ijainn.B1082.04020224

Journal Website: www.ijainn.latticescipub.com

Published By:

Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Appendix A. Parameters and Implementation Details

All the hyperparameters used while training the models in this

research work are listed below.

Appendix A.1. PPO Parameters

• learning rate(initial): 3e-4 (decays consistently during

training, final value is 3e-5)

• gamma: 0.995

• lambda: 0.95

• updates: 100

• epochs: 5

• n workers: 20

• n mini batch: 10

The above standard Proximal policy optimization parameters

were chosen with extensive testing for the purpose of making

sure that optimal behavior is learnt within 200-250 training

episodes for the standard TransformerXL model. These

parameters were kept the same across all the models used in

this research work in order to obtain appropriate comparative

results. All tasks made use of 20 workers and 10 mini

batches in order to reduce training time.

Appendix A.2. Transformer Parameters

• embed dim: 250

• number of heads: 5

• memory length: 64

• positional encoding: True

• gating: True

With extensive testing, the above parameters were changed

based on the task in order to speed up training and get stable

results. However, the same values were taken during

comparative study with different architectures. The embed

dimension parameter specifies the common dimension to

which the keys, queries and values will be converted to make

the multilevel attention mechanism work. The number of

heads parameter specifies the amount of transformer heads.

For all tasks, the embed dimension was 250 and the number

of heads were 5. Both positional encoding and layer

normalization were set to true for all the tasks to ensure that

proper and effective sequence processing is performed by the

transformer. The memory length parameter specifies the

amount of time step information stored in the memory buffer.

Memory length for the humanoid loco- motion task was set

to 300 and for the audio-visual navigation task it was set to

384. For the visual instructions task and minigrid task, it was

set to 250 and for the visual corridor task was set to 500. In

order to understand the effectiveness of a single automatic

chunking mechanism operating on the entire memory, only a

single transformer block was used for all the experiments

except the humanoid locomotion task. The Gating parameter

was used to decide whether a gating mechanism is

implemented.

Appendix A.3. Memory Parameters

• n chunks: 3

• chunk size: 50

• max span: 250

• ramp length: 50

The chunk size and number of chunks denote the length and

number of sequential events being selected during training.

The number of chunks were set to 3 for all experiments. For

the humanoid locomotion and audio-visual instructions task,

the chunk size was set to 80. For the visual instructions and

minigrid tasks the chunk size was set to 50 while for the

visual corridor task the chunk size was set to 100. We

decided the chunk size so that the summarized memory

buffer size was approximately 60% of the complete memory

buffer as this gave better results during testing. In all tasks

the max span of ForgetSpan was kept to be the size of the

memory buffer while ramp lengths were changed according

to the task. While testing we concluded that lower ramp

lengths gave better results.

Disclaimer/Publisher’s Note: The statements, opinions and

data contained in all publications are solely those of the

individual author(s) and contributor(s) and not of the Lattice

Science Publication (LSP)/ journal and/ or the editor(s). The

Lattice Science Publication (LSP)/ journal and/or the

editor(s) disclaim responsibility for any injury to people or

property resulting from any ideas, methods, instructions or

products referred to in the content.

http://doi.org/10.54105/ijainn.B1082.04020224
https://www.ijainn.latticescipub.com/

