
Designing Synthetic Networks in silico:
Supplementary Information

Robert W. Smith∗ †, Bob van Sluijs∗, Christian Fleck∗‡

Contents

1 Implementation of EA algorithm 3
1.1 Overview . 3
1.2 Current dictionaries . 5

1.2.1 Reaction library . 5
1.2.2 System input definition . 7
1.2.3 Example of encoding binary strings 7

1.3 Basic instructions to create a new EA study 8
1.4 Possible extensions and generalisations 9

1.4.1 Reaction library . 9
1.4.2 Scoring . 10
1.4.3 Solver . 10
1.4.4 Evolutionary Tracking . 11

2 Simulation Tests Performed in Main Text 12

3 Scoring Functions 13
3.1 Concentration profiles . 13
3.2 Oscillations . 13
3.3 Robustness . 14
3.4 Feed-forward loops . 15

∗Laboratory of Systems & Synthetic Biology, Wageningen UR, PO Box 8033, 6700 EJ Wa-
geningen, The Netherlands.
†LifeGlimmer GmbH, 12163 Berlin, Germany
‡Corresponding author: christian.fleck@wur.nl.

1

4 Multi-objective analysis of feed-forward networks 17
4.1 Results . 17

4.1.1 Type-1 incoherent feed-forward loops 17
4.1.2 All feed-forward loops . 18

3 References 21

4 Supplementary Tables 22

5 Supplementary Figures 31

2

1 Implementation of EA algorithm

1.1 Overview

The EA (available at https://gitlab.com/wurssb) makes use of the standard tool-
boxes found in the Anaconda package for Python version 2.7 (www.continuum.io).
The files within the algorithm folder are automatically called once the main file
(main.py) is executed. The inputs for the algorithm are within main.py. These con-
tain everything from mutation probabilities to input patterns and can therefore be
adjusted in this file by the user. For more complex adjustments, such as scoring
functions or reaction equation libraries, see Section 1.4. The layout of the main file
is as follows:

• Store data: This function stores all the data output by the algorithm. By default
the algorithm stores the final optimised network and its parameters.

• Algorithm (name): This function calls the EA, requiring the defined options
within main.py as input. These inputs are:

pool: This variable contains the distributions with which certain attributes
occur in the ‘network space’ (e.g. whether a protein is a transcriptional regu-
lator or a ubiquitinase, etc.) and are distributed over the binary genes.

boundaries: The boundaries variable is a dictionary containing the param-
eter value boundaries for each parameter type. The user can modify these
boundaries at their own discretion.

simulation time: The overall simulation time used in the solver for each
each individual in each generation. The number of integration steps is auto-
matically multiplied by 60 such that each integration step represents 1 second.

promoter length, gene length, subunit length, basal length, dimer length: The
number of bits every attribute occupies on the genes — a relatively longer bit
size increases the probability that this part of the gene is mutated.

operon: The sum of all the bit lengths assigned by the previous 5 variables.

plasmid number: The number of plasmids that are in the system, In the
continuous solver this is the factor with which the transcription rates are mul-
tiplied. In the stochastic solver these are the number of identically transcribed
genes in the system.

output genes: Number of output genes.

input genes: Number of input genes.

min genes: Minimum number of genes every individual in a generation
must have.

3

max genes: Maximum number of genes every individual in a generation is
allowed to have.

initial gene number: Number of initial genes in the first parental networks.

add gene: Probability of a gene addition occurring within a network (p ∈
[0, 1]).

mutate gene: Probability of a gene mutation occurring within a network
(p ∈ [0, 1]).

add connection: Probability of a connection being added in a network (p ∈
[0, 1]).

del connection: Probability of a network connection being deleted (p ∈
[0, 1]).

move connection: Probability of moving a connection between a network
(p ∈ [0, 1]).

del gene: Probability of deleting a gene in a network (p ∈ [0, 1]).

event probability: An array that contains all mutational probabilities, i.e.
the previous 7 variables.

input map: A dictionary that contains the information regarding the target
of input signals and the input type. The dictionary key is a number that rep-
resents the product of the node that is activated. The value is the manner in
which an input is applied to this product, either directly or indirectly.

input type: Classify the input type (only required for networks regulated
by an external source, Section 1.3.2).

pulse size: The parameter value assigned to the method of activation.

input pattern: A list with alternating numbers representing the time points
at which an input is given. If no input is given then the number is turned into
‘None’. Every integer in the list represents a simulation time of 1 minute or 60
integration steps.

selection method: The method by which the individuals are selected in each
generation. There are three selection options available in string form: ‘Elite’,
‘Proportional’ and ‘Semi Proportional’.

mutation method: The method by which parameters are mutated. There are
three mutation methods available in string form: ‘Global’, ‘Local’, and ‘Both’.

parameter mutation: Number of parameter mutations every individual un-
dergoes in a given generation.

network mutation: Number of network mutations every individual under-
goes each generation.

4

offspring number: Number of individuals in every generation (default =
10).

max iteration: Maximum number of generations the EA cycles through be-
fore it is stopped.

path: File path where the user wishes to store the results.

output: The output concentration profiles that are scored. This is a list with
numbers where every number corresponds to a specific node in the network.
You cannot score a node that does not exist, if your minimum number of genes
is 2 but the output is related to a third node then the EA will eventually crash.

In main.py there is a function called order. The order function takes the attributes
in the pool variable and distributes these over different binary permutations for
each regulatory function (see Fig 1). The resulting variable ’order’ acts like a master
key that can translate the binary genes and the interactions between them in the
appropriate reaction equations. Thus, in some high-dimensional cases the order
dictionary requires a large amount of CPU memory.

1.2 Current dictionaries

1.2.1 Reaction library

The networks that are constructed within our algorithm are based on the central
dogma of biology: DNA/promoter → mRNA → protein. Thus, for a gene, G, in
network node, X, we construct three differential equations for the promoter GX, the
mRNA Gm

X , and protein Gp
X. Within each reaction there are several options that are

available to be implemented within the networks. For example, a promoter could
be regulated by cooperative transcription factors (TFs) via an to produce mRNA.
The resulting protein could then undergo homo- or hetero-dimerisation reactions
to target other proteins for degradation or could become a TF to regulate other
nodes within the network (see Main Text). Here we will briefly describe all possible
reactions that are currently encoded within our algorithm as default.

• Promoter regulation (Supplementary Table 2): When a node produces a TF, then
the TF can act as an activator or an inhibitor to regulate the mRNA production
of a connecting node. Within our algorithm, the regulation of mRNA by TFs
can take place via one of three effective regulatory functions. We define three
forms of effective regulatory functions: competitive (TFs compete for a single
binding site), cofactoring (TFs form complexes to aid regulation on a single
binding site), or sign-dependent competition (where TFs of the same sign —
activation or inhibition — form complexes that compete for promoter activ-
ity). Whether a TF activates or inhibits a promoter is dependent on matching

5

between the promoter and protein section of the gene string. If the gene string
aligns with the promoter domains then activation takes place, if these are not
matched then inhibition takes place.

• Protein dimerisation (Supplementary Table 3): The proteins formed by transla-
tion have the option to form reversible homo-dimers regardless of their later
function.

• Protein regulation (Supplementary Table 4): As well as homo-dimerisation, pro-
tein products can also undergo a range of post-translational modifications
such as phosphorylation, sequestration and degradation. Within our algo-
rithm, reactions can be encoded for: protein degradation through complex
formation between the ubiquitinating protein and the target protein, protein
activation (such as via phosphorylation kinases) through complex formation
with an activating protein, and protein sequestration through reversible com-
plex formation with interaction partners.

• Protein switches (Supplementary Table 5): External signals, such as chemicals
or light, can also influence the activity of proteins. We account for this via
reversible reactions that are dependent on the external inputs. Using similar
reaction structures, protein transport can also be accounted for.

• Subunit regulation (Supplementary Table 6): Finally, some proteins are formed by
subunits translated from different mRNA strands. Our algorithm can account
for these reactions through the ordered binding of protein subunits produced
through translation of the mRNA strands.

One should note that all transcription reactions, in reality, are dependent on the
availability of polymerases, whilst translation depends on the presence of ribo-
somes. Whilst we have not directly addressed these components here (we assume
that these components maintain a constant level throughout simulations), one can
extend the reactions to incorporate such processes.

The creation of the reaction library is in reaction.py. This function takes as input
the graph structure of the network (nodes and connections) with the type of reac-
tions and its interaction partners. This means that any adjustment in the form of
a new reaction type that is added needs to be included in the encryption possibil-
ities of the binary genes and incorporated as an option for the graph structure in
graph.py. By adding the reaction in this structure the user has the ability to distin-
guish between reaction types once the reaction equations are created (i.e. the graph
structure serves as an input into the function responsible for the creation of a reac-
tion library). In order to unpack this set of nodes and connections into differential
equations, reactions have the following format

6

[[substrates], parameter rate ID: input reactions + reaction type, [product]].

For each node in a network a gene is created in the form of string characters ‘g0-
gi’, where i refers to the ith row and column of the network adjacency matrix. The
numbering allows the algorithm to distinguish between specific reactions that occur
in a network such that they can be passed on to the next generation without actively
tracking these reactions in the form of class objects.

1.2.2 System input definition

Our system definition is also able to identify input signals into the network to a pro-
tein of a specified node. The input can be defined as either direct or indirect and can
refer to either an activation or inhibition reaction (Supplementary Table 4). A direct
input signal mediates switching between different conformational states of a node,
whilst an indirect signal requires an intermediate inducer molecule (as in e.g. phos-
phorylation cycles). This inducer molecule is added to the network and is regulated
by synthesis and degradation in a similar manner to other network components. To
define the duration of the input, the total simulated time of the network is split into
blocks of 60 time-steps (as default — this value can be changed). Each block is then
defined to provide a given input from the reaction library. For example

Input Type = {1: ‘Indirect Inhibition’, 2: ‘Direct Activation’}
Input Pattern = [2,2,2,–,–,–,–,–,–,–,1,1,1,1,1,–,–,–,–,–]

where the protein of node 2 is directly activated in the first 180 time-steps (3 × 60)
of the simulation and then protein 1 is indirectly inhibited between time-steps 600
and 900 of the 1200 time-step simulation.

1.2.3 Example of encoding binary strings

As discussed in Fig 1, a section of the ‘Promoter’ region encodes the logic with
which the mRNA of the node is regulated. However, the other regions of the bi-
nary string also encode important information. Whilst, in practice, the binary genes
can contain a wider range of information (as discussed above), we hope this more
detailed example is illustrative of how nodes are encoded. In this example, we
highlight a node that is regulated by a transcription factor and goes on to form a
protein product that is made of multiple subunits and can dimerise. Each of the
respective coding regions (red = mRNA regulation; blue = protein function) repre-
sents a different reaction from the dictionaries outlined above. For example, the red
regions will tell us whether the mRNA is inhibited or activated by a TF that binds
to the mRNA using a particular type of logic. Furthermore, the blue regions tell us

7

what the function of the dimerised protein product is within the larger network. It
is important to note that the order of these regions does not matter, as long as each
reaction is contained within the reaction dictionaries such that they can be related
to other components in the network and ODEs can be formed from the interactions.

1.3 Basic instructions to create a new EA study

One of the advantages of our EA over previously published variants is that, we be-
lieve, ours is general enough that it can tackle many biological problems. Here, we
describe the stages and considerations required to use the EA for new tasks.

1. main.py

• Here, the gene pool needs to be altered to allow for any new genes one
wishes to allow in their system (e.g. proteins that can respond to external
inputs, new complexes, etc.).

• Check parameter ranges and units.

• Alter the input vector, if desired, to incorporate multiple different inputs.

2. graph.py

• If new system components are added in main.py then new rules need to
be included here to allow for these components to be incorporated into
evolved networks.

• In this file the initial networks within the population can also be pre-
defined.

3. reactions.py

• New reactions can be added or removed in this file.

• For example, if one wished to only include post-translational dynamics
then mRNA-based reactions can be removed.

4. build.py

• Set initial conditions of the networks if they are known for specific com-
ponents.

5. solve.py

• Sort initial conditions so that the pre-defined component initial condi-
tions correspond to the correct model components.

• Change simulation time-span.

8

• Edit simulation loop to allow for multiple input conditions.

6. score.py

• Add scoring function.

7. setup.py

• In this file, one can print the ODE equations, the model components, or
the reaction list to ensure that the algorithm is functioning correctly.

• We believe this is important during testing of new EA tasks to ensure
accuracy of the resulting analysis.

1.4 Possible extensions and generalisations

The EA can be adjusted to suit the user’s needs. This includes altering the reactions
that can take place in a network, the manner in which the subsequent models are
solved and the manner in which the resulting data is subsequently scored. Altering
the EA requires intermediate to advanced programming skills in Python, following
the schema structure described in the ‘Methods’ section.

1.4.1 Reaction library

The reaction library can be extended to include any reaction or set of reactions. In
order to achieve this one needs include an element in the subsection of a binary
gene that encodes for a rule (Supplementary Fig 1 & 9). We maintained a sim-
ple structure regarding protein interactions (dimerisation, subunit formation etc.),
however we can consider larger structures such as protein pumps. Protein pumps
often consist of multiple components that are either directly or indirectly regulated
by an environmental inducer leading to downstream signalling [1]. Importantly,
this forms a feed-forward loop that limits the production of protein pump compo-
nents at the membrane, thereby preventing toxic effects (Supplementary Fig 9) [1].
The pump subsequently removes the inducer from the cell. Suppose we want the
EA to build a network responsible for the removal of this inducer after activating
the protein pump, we are required to include the appropriate reactions and rules
within our libraries to allow for this. Rules for such a reaction would include the
necessity of an external inducer to regulate a protein pump inhibitor and the pro-
tein pump directly. The external inducer is, in turn, removed from the cell by the
protein pump, creating a feedback response.

To incorporate such a reaction within our EA, we need to add a structure in the
open reading frame of the binary gene with the rules that place the protein pump
in a reaction channel (Supplementary Fig 9, right). There is a degree of freedom

9

regarding the manner in which the reaction channels are described (e.g. gene acti-
vation, repression of a repressor etc.) and assembled. For example, protein pumps
could consist of multiple subunits that bind sequentially or two larger subunits that
are combined to form the final product. To illustrate this consider the following
schematic (Supplementary Fig 9, left). The figure shows an inducer (i) that acti-
vates a protein (Gene 1) and the production of protein pump components (Gene 2).
However, Gene 1 prevents the overexpression of protein pump components that
lead to cell death. The rules in the binary genes have been expanded to include
protein pumps and their activation by external inducers. Thus, a unique reaction
channel is created capable of translating these rules into a set of reaction equations.
The result would be the formation of a complex between an inducer with the pump
that ultimately leads to the inducer being recycled outside of the cell.

1.4.2 Scoring

Objective functions are the most crucial part of the EA. Therefore we attempted to
give the user as much freedom as possible to adjust these functions. The standard
scoring function takes as an input the current substrate of the node whose con-
centration profile the user wishes to score (chosen in the main file as the variable
output) and the concentration profile as raw data taken from the solver function.
The user can subsequently manipulate this raw data as they see fit to obtain a score.
Note that the score serves as an input into the rank based selection of individuals in
a generation. In order to streamline this, we suggest all scoring functions minimise
an objective. The score or scores (depending on the number of objectives one wishes
to have) is subsequently stored in a dictionary and passed to the rank functions.

1.4.3 Solver

All of the results presented in this study have assumed that biological systems can
be described deterministically. As discussed in the ‘Methods’ of the Main Text, the
information for each network node is unpacked into ordinary differential equations
(ODEs). Consequently, to ensure that the ODEs are appropriately formulated at
each iteration of the algorithm, the reaction channels (that list all possible reactions
within a system) must be ordered (e.g. Supplementary Fig 1 and Supplementary
Fig 9). Without this ordering it is guaranteed that the ODEs are not formulated cor-
rectly and the mathematical models do not represent realistic biological scenarios.

The solvers can be adjusted in the solve.py file. The possibility exists to solve net-
works stochastically as well as deterministically. The stochastic solver takes any
model generated by the EA and sets up the reactions to be solved using the Gille-
spie algorithm [2]. The user has to state the number of individual simulations to
be performed and the simulation time in this file. Note the Gillespie algorithm we
have implemented is able to calculate 30,000 reactions per second. For larger sys-

10

tems (with larger final times) this means that it’s usage becomes infeasible from a
computational perspective. This option is therefore better suited as a post analysis
step (i.e. after the optimised network is obtained). The file output.py can therefore
be used. It calls the Gillespie solver and is capable of solving the obtained networks.

1.4.4 Evolutionary Tracking

One of the advantages of using binary strings, matrices and vectors to describe sys-
tem dynamics is that changes through evolution can be easily tracked. As discussed
in the ‘Methods’, the flipping of a certain bit could lead to an edge deletion in the
network, or change the way in which the mRNA of a node is regulated. In this
work we have not looked to develop methods of viewing evolutionary changes in
network structure, however recent work suggests that current methods could be
adapted for these needs [3, 4]. In these works, phylogenetic trees are redrawn as
‘split networks’ that show how related groups are formed through evolution. Mc-
Grane & Charleston show that nodes within the split networks can be described
based on the mutation of interaction networks, such as new edges or duplicated
nodes [4]. This information is contained within the adjacency matrices of our mod-
els. One could envision that using split networks produces a visualisation for how
the EA produces desirable networks from a random or known initial system struc-
ture. We will look to incorporate such visualisation in future work.

11

2 Simulation Tests Performed in Main Text

In order to look at the effect of different algorithm settings on computational time
and results we performed two benchmarking tests:

1. We perform the EA with a population of 10 networks to find networks of any
size that produce oscillations within a 6000 seconds time period. The duration
of time required to simulate a single generation (i.e. the 10 individuals) is then
recorded. This gives us some idea as to how computational time increases
with network complexity.

2. We randomly select algorithm parameters such as

• population size,

• mutation frequency,

• number of (parameter and network) mutations performed each genera-
tion,

• the selection method (proportional, semi-proportional, or elite),

for 1933 independent EA runs. From the results we then compute a conver-
gence score

∆C =
∆final

∆initial
. (1)

Here, ∆final and ∆initial are the scores ∆ for the fittest individual in the popula-
tion in the final and initial generations (for details of all scoring functions see
the Supplementary Information). We then check for linear regression correla-
tions between ∆C and the algorithm parameter to determine which aspects of
the EA the results are sensitive towards.

Upon completion of these tests we then selected a set of system parameters to per-
form parameter (fixed network sizes & topologies) and network optimisation to
find systems that could produce

1. the concentration profiles (red lines) of Figure 6A—C (simulated time-period
= 6000 sec),

2. Repressilator networks (7200 sec),

3. robust oscillating systems using single- and multi-objective functions (4500
sec),

4. networks that respond to input signals, like feed-forward loops (7200 sec).

12

3 Scoring Functions

To evaluate the fitness of the individual networks within the EA, we need to com-
pare simulations with a desired response. In the main text we discuss the cases
of matching concentration profiles, obtaining oscillations using both single- and
multi-objective criteria and how oscillating mechanisms can be checked for robust-
ness to internal fluctuations and, below, we discuss the analysis of feed-forward
motifs. Here, we shall provide details for each of the scoring functions used.

3.1 Concentration profiles

To compare output simulations to time-series data, we constructed two scoring
functions to calculate the score, ∆ = δ1 + δ2, whereby a perfect match implies ∆ = 0
(a minimisation problem).

The first of these is the squared residual errors between simulations, yi
j, and data,

di
j, for a subset of the nodes, m ≤ M, in the network

δ1 =
m

∑
i=1

tp

∑
j=1

(di
j − yi

j)
2, (2)

where the difference is calculated over the tp simulated time-points.

The second scoring function used is

δ2 =
m

∑
i=1

tp

∑
j=2

(∆di
j

∆t
−

∆yi
j

∆t

)2

, (3)

where ∆x/∆t is the change in x (∆xi
j = xi

j− xi
j−1) over a time-step ∆t. We found that

incorporating δ2 helped improve the optimisation of complex time-series dynamics.

3.2 Oscillations

When we evolve networks to find systems that sustain oscillations, we use the scor-
ing function from [5],

∆ = 20− 2
10

∑
i=1

|ai − ai+1|
ai + ai+1

min(1, |ai − ai+1|), (4)

where the ai’s represent the first 10 extrema (minima or maxima) of an oscillating
simulation. Thus, ∆ = 20 implies no oscillation and ∆ = 0 implies a perfect os-
cillation with 5 periods during the simulated time-frame [5]. Notably, van Dorp et

13

al. found that strong oscillations could be observed when ∆ = 4. This is reflective
of the fact that this scoring function can only achieve 0 if the oscillator (and it’s re-
action rates) exists on a specific limit cycle from the initial time-point. Thus, the
scoring function does not account for transitions towards limit cycle behaviour or
damping which increase the score away from 0 even if desired oscillations are still
present within the simulated time period. To determine whether oscillations show
limit cycle behaviour or not, we calculate eigenvalues from the systems Jacobian
matrix to assess the networks Hopf bifurcation.

To perform multi-objective optimisation for oscillations we use three objectives

δ1 =
1

P(ωmax)
,

δ2 =
1

ωmax
,

δ3 =

∫ ∞
0 P(ω)dω

P(ωmax)
, (5)

where P(ω) is the power spectrum estimated from the magnitude of the discrete
Fourier Transform of an oscillating concentration and ωmax is the frequency at which
P(ω) is greatest. Here, P(ω) is estimated via

P(ω) = |xF(ω)|2 =

∣∣∣∣ ∞

∑
t=0

x(t)e−iωt
∣∣∣∣2

with x(t) being the oscillating signal and xF(ω) the Fourier transform [6].

To improve the calculation of the Fourier transform from stochastic simulations,
the oscillating signal x(t) is initially smoothed using the Savitzky-Golay filter [7].
Each of δ1, δ2, and δ3 is minimised such that: δ1 → 0 implies higher amplitude os-
cillations, δ2 → 0 decreases the period of oscillations (increased frequency), and as
δ3 → 0 the width of the power spectra decreases implying that the concentration
profiles are closer to idealised sine waves.

Furthermore, we also explore the influence of weighting these scores such that some
features (e.g. frequency) are favoured over others (e.g. amplitude) within our rank
based selection (see the Main Text).

3.3 Robustness

One important factor when creating oscillating networks is to understand the ro-
bustness of their behaviour, as has been explored previously [5, 8–10]. Woods et al.

14

have recently used a Bayesian framework to analyse the presence of oscillations in
stochastic systems and, similar to them, we define robustness as a measure of aver-
age performance over all possible parameter perturbations [10]. To highlight how
evolving an oscillating system for robustness could take place, we perform the EA
using (4) to find an oscillating system and then change the scoring function such
that we look to maximise

ρ =
PS

PT
, (6)

where PS is the number of parameter perturbations (k j → k j(1 + α) with α ∼
U(−1, 1)) that produce oscillating systems and PT is the total number of param-
eter perturbations performed (250 perturbations for each parameter, k j). Note that
to convert this to a similar minimisation problem as before, we aim to minimise
∆ = 1/ρ.

3.4 Feed-forward loops

The objective function we employed in the analysis of feed-forward loops (FFLs) is
the same as that used in [11].

The sensitivity of an FFL is defined as the relationship between the input signal, x,
and the total production of a node of interest, y. Thus, the inverse of sensitivity is

δ1(θ, M) =
2(x(t f)− x(t0))∫ t f

t0

∣∣ dy(t|θ,M)
dt

∣∣dt
, (7)

where θ is a parameter set, M is the model simulated, t0 is the time at which the
input signal begins and t f is the final time of the input signal. Consequently, δ1 → 0
as the amount of y produced during the input signal’s presence increases.

The precision of a feed-forward loops dynamics are determined by the relaxation
of the system at the end of an input signal relative to the starting value. Thus, the
inverse of precision is

δ2(θ, M) =
y(t f |θ, M)− y(t0|θ, M)

x(t f)− x(t0)
, (8)

where δ2 → 0 as y(t f |θ, M)→ y(t0|θ, M) and an increase in precision is observed.

As noted by [11], a further constraint is required such that the concentration of y
is not too low. Without such a constraint, a large area of parameter space would
correspond to high levels of precision and low levels of sensitivity. Consequently,
we also included these constraints such that

15

∫ t f

t0

∣∣∣∣dy(t|θ, M)

dt

∣∣∣∣dt > 1,

∃ ŷ ∈ [y(t0), y(t f)] s.t.
{

ŷ > y(t0), ŷ > y(t f),
dy
dt

∣∣∣∣
y=ŷ

= 0
}

. (9)

These constraints essentially ensure the presence of a peak within the time simula-
tions and that the total concentration of y during the presence of input signal, x, is
high.

16

4 Multi-objective analysis of feed-forward networks

The abundance of feed-forward network motifs in biological systems was first noted
by the group of Uri Alon [12–14]. The motif is made up of 3 nodes (X, Y, and Z)
whereby X regulates both Y and Z, with Y also regulating Z. The FFL family con-
sists of 8 members: 4 coherent loops whereby Z is regulated either positively or
negatively by both X-dependent pathways, and 4 incoherent members whereby Z
is regulated in an opposite manner by X through the two paths [13]. These mo-
tifs have been shown to act as signal transducers in response to input signals, re-
sponding either quickly or slowly to the signal depending on the motif structure.
Recently, the type-1 incoherent FFL has been analysed using multi-objective opti-
misation to find parameter sets that either (1) respond quickly to an input signal,
or (2) relaxes precisely back to the pre-input dynamics after the signal-induced re-
sponse [11]. This work highlighted that tuning the production rates of Y, plus the
dynamics of Z can lead to an type-1 incoherent FFL switching from a sensitive to
a precise response and vice versa along the Pareto front. Here, we shall provide the
details of the objective function used in [11], show that our multi-objective EA is
able to provide similar results before generalising the approach to analyse different
logic-gates within the FFLs and the effect of different input signals.

4.1 Results

4.1.1 Type-1 incoherent feed-forward loops

In the main text (Figure 11), we show the Pareto front obtained for type-1 inco-
herent FFLs that are scored for sensitivity to input signals and their precision in
returning to their pre-input state. As further analysis we looked at the optimal pa-
rameter values for precise and sensitive FFLs (Supplementary Table 10). By exam-
ining which parameters were significantly different (p-value < 0.05), we found four
parameters that help determine whether a system responds sensitively or precisely
— k3, k9, k23, k24. These correspond to

• k3 = binding of inducer molecule to protein X,

• k9 = degradation of X when not induced,

• k23 = degradation of Z,

• k24 = unbinding rate of inducer molecule with X.

The importance of degradation rates of system components and the production of Y
and Z (that are regulated by an induced form of X) in the incoherent feed-forward

17

loop has been noted previously in [11]. Due to the qualitatively similar results with
previous observations seen in Figure 11, we now look at a more general case where
all feed-forward loops are evolved.

4.1.2 All feed-forward loops

As well as the FFL motifs having different connections between components, one
can also alter the logic with which components are regulated. This results in a
much larger number of networks within network space and properties that can be
explored. We used our EA to obtain Pareto fronts in four conditions:

1. The input signal on X is continuous and:

• components are regulated by cofactor TFs.

• components are regulated by competitive TFs.

2. The input signal on X is pulsed and:

• components are regulated by cofactor TFs.

• components are regulated by competitive TFs.

The Pareto fronts for each condition can be observed in Supplementary Fig 7. In-
terestingly the results show that only a half of the possible FFL motifs are favoured
when optimised for precision and sensitivity — incoherent FFLs type-1 & type-2
and coherent FFLs type-3 & type-4. Notably, given the four conditions tested we
make the following observations:

• incoherent FFLs type-1 are favoured for:

– high sensitivity and precision given competitive TFs and a continuous
signal is present.

– high precision and low sensitivity given pulsed signal inputs for either
regulatory form.

• incoherent FFLs type-2 are favoured for:

– high precision and low sensitivity given competitive TFs and a continu-
ous signal.

– high sensitivity but relatively low precision given pulsed inputs for ei-
ther regulatory form.

• coherent FFLs type-3 are favoured for:

– moderate sensitivity and precision given competitive TFs and a continu-
ous signal.

18

– moderate sensitivity and precision given either regulatory form and a
pulsed signal.

• coherent FFLs type-4 are favoured for:

– all levels of sensitivity and precision given cofactor TFs and a continuous
signal.

Based on these results, we make two observations. First, for the purposes of syn-
thetic design only half of the FFL motifs provide optimal or tunable responses along
the Pareto front, suggesting that other FFL motifs should not be considered for ap-
plications. Second, given that incoherent FFLs type-1 and type-2 are able to obtain
either optimal precision or sensitivity, it is interesting to note that only the incoher-
ent FFL type-1 is found commonly in nature [13]. This could suggest that species
have optimised their response to input signals such that there is high precision
rather than high sensitivity. Conversely, the reason that coherent FFL type-3 and
type-4 are relatively rare in biology could be due to their tunability, i.e. biological
systems favour motifs that provide one optimal and desired response to input sig-
nals rather than a motif that is flexible. Whilst this final conclusion is speculative,
we believe that our analysis provides a more general framework for understanding
FFL properties to previous observations.

19

References

[1] M. J. Dunlop, J. D. Keasling, and A. Mukhopadhyay. A model for improv-
ing microbial biofuel production using a synthetic feedback loop. Systems and
Synthetic Biology, 4:95–104, 2010.

[2] D. T. Gillespie. Stochastic simulation of chemical kinetics. Annual Review of
Physical Chemistry, 58:35–55, 2007.

[3] D. H. Huson and D. Bryant. Application of phylogenetic networks in evolu-
tionary studies. Molecular Biology and Evolution, 23:254–267, 2006.

[4] M. McGrane and M. A. Charleston. Biological network edit distance. Journal
of Computational Biology, 23:DOI: 10.1089/cmb.2016.0062, 2016.

[5] M. van Dorp, B. Lannoo, and E. Carlon. Generation of oscillating gene regula-
tory network motifs. Physical Review E, 88:012722, 2013.

[6] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, 19:297–301, 1965.

[7] A. Savitzky and M. J. E. Golay. Smoothing and differentiation of data by sim-
plified least squares procedures. Analytical Chemistry, 36:1627–1639, 1964.

[8] T. Y. C. Tsai, Y. S. Choi, W. Ma, J. R. Pomerening, C. Tang, and J. E. Ferrell.
Robust, tunable biological oscillations from interlinked positive and negative
feedback loops. Science, 321:126–129, 2008.

[9] Y. C. Chang, C. L. Lin, and T. Jennawasin. Design of synthetic genetic oscil-
lators using evolutionary optimization. Evolutionary Bioinformatics, 9:137–150,
2013.

[10] M. L. Woods, M. Leon, R. Perez-Carrasco, and C. P. Barnes. A statistical ap-
proach reveals designs for the most robust stochastic gene oscillators. ACS
Synthetic Biology, 5:459–470, 2016.

[11] Y. Boada, G. Reynoso-Meza, J. Pico, and A. Vignoni. Multi-objective optimiza-
tion framework to obtain model-based guidelines for tuning biological syn-
thetic devices: an adaptive network case. BMC Systems Biology, 10:27, 2016.

[12] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Net-
work motifs: Simple building blocks of complex networks. Science, 298:824–
827, 2002.

[13] S. Mangan and U. Alon. Structure and function of the feed-forward loop net-
work motif. Proceedings of the National Academy of Sciences USA, 100:11980–
11985, 2003.

20

[14] N. Kashtan and U. Alon. Spontaneous evolution of modularity and network
motifs. Proceedings of the National Academy of Sciences USA, 102:13773–13778,
2005.

21

Supplementary Tables

S1 Table: Encoding TF binding to promoters. α and β refer to binary sections of the
gene string (Fig 1).

aaaaaaaa
Promoter

TF
α β

α Activation Inhibition
β Inhibition Activation

22

S2 Table: Reactions behind promoter regulation of nodes.

Cofactor TFs

Promoter + TF (1) + TF (2) → Promoter-TF-TF
Promoter-TF-TF → Promoter + TF (1) + TF (2)
Promoter-TF-TF → Promoter-TF-TF + mRNA

Competitive TFs

Promoter + TF (1) → Promoter-TF (1)
Promoter-TF (1) → Promoter + TF (1)
Promoter + TF (2) → Promoter-TF (2)
Promoter-TF (2) → Promoter + TF (2)
Promoter-TF (1) + TF (2) → Promoter-TF-TF
Promoter-TF (2) + TF (1) → Promoter-TF-TF
Promoter-TF-TF → Promoter-TF (2) + TF (1)
Promoter-TF-TF → Promoter-TF (1) + TF (2)
Promoter-TF (1) → Promoter-TF (1) + mRNA
Promoter-TF (2) → Promoter-TF (2) + mRNA
Promoter-TF-TF → Promoter-TF-TF + mRNA

Sign-dependent competition

Promoter + TF (1) → Promoter-TF (1)
Promoter-TF (1) → Promoter + TF (1)
Promoter + TF (2) → Promoter-TF (2)
Promoter-TF (2) → Promoter + TF (2)
Promoter-TF (1) → Promoter-TF (1) + mRNA

23

S3 Table: Protein dimerisation reactions.

Dimerisation

Protein + Protein → Protein-Protein
Protein-Protein → Protein + Protein

24

S4 Table: Protein regulatory reactions.

Active Protein Inhibition

Active Inhibitor + Target → Active Inhibitor-Target Complex
Active Inhibitor-Target Complex → Active Inhibitor + Target
Active Inhibitor-Target Complex → Active Inhibitor

Passive Protein Inhibition

Passive Inhibitor + Target → Passive Inhibitor-Target Complex
Passive Inhibitor -Target Complex → Passive Inhibitor + Target

Active Protein Activator

Active Activator + Target → Active Activator-Target Complex
Active Activator - Target Complex → Active Activator + Target
Active Activator-Target Complex → Active Inhibitor + Activated Target

Passive Protein Activator

Passive Activator + Target → Passive Activator-Target Complex
Passive Activator - Target Complex → Passive Activator + Target

25

S5 Table: Protein switching reactions.

Direct Activation

Product → activated-product
Activated-Product → Product
Indirect Activation

Product + Inducer → Product-Inducer
Product-Inducer → Product + Inducer
Inducer → Ø
Direct Inhibition

Product → Deactivated-Product
Deactivated-Product → Product
Indirect Inhibition

Product + Inhibitor → Product-Inhibitor
Product-Inhibitor → Product
Inhibitor → Ø

26

S6
Ta

bl
e:

Su
bu

ni
tf

or
m

at
io

n
of

pr
ot

ei
n.

Su
bu

ni
tB

in
di

ng

G
en

e
+

Po
ly

m
er

as
e

→
G

en
e

+
Po

ly
m

er
as

e
+

m
R

N
A

(1
)+

m
R

N
A

(2
)+

m
R

N
A

(3
)

m
R

N
A

(1
)+

R
ib

os
om

e
→

m
R

N
A

(1
)+

R
ib

os
om

e
+

Pr
ot

ei
n

(1
)

m
R

N
A

(2
)+

R
ib

os
om

e
→

m
R

N
A

(2
)+

R
ib

os
om

e
+

Pr
ot

ei
n

(2
)

m
R

N
A

(3
)+

R
ib

os
om

e
→

m
R

N
A

(3
)+

R
ib

os
om

e
+

Pr
ot

ei
n

(3
)

Pr
ot

ei
n

(1
)+

Pr
ot

ei
n

(2
)

→
Pr

ot
ei

n-
Pr

ot
ei

n
Pr

ot
ei

n-
Pr

ot
ei

n
+

Pr
ot

ei
n(

3)
→

Pr
ot

ei
n-

Pr
ot

ei
n-

Pr
ot

ei
n

27

S7 Table: Default parameter ranges.

Reaction Type Reaction Rate Boundaries

Transcription 0.1-12
Translation 0.1-10
Protein-Protein binding 10-100
Gene-Protein binding 10-100
Protein activation Forward 10-1000, Reverse 0.1-10
Gene activation 10-25
Protein catalysis 10-1000
mRNA degradation 0.3-0.99
Protein degradation 0.01-0.99
Transport 0.1-100

S8 Table: Default mutation rates.

Mutation Probability

Mutate Binary Gene 0.40
Add Binary Gene 0.10
Delete Binary Gene 0.15
Add Connection 0.10
Delete Connection 0.15
Move Connection 0.10

28

S9 Table: Parameter definitions within the Repressilator of Fig 11E.

Parameter Name Definition

k1 ‘g0m0GR Rg0m0GR Rk dim’ dimerisation protein 0 protein 0
k2 ‘g1m0GR Rg1m0GR Rk dis’ dissociation protein 1 protein 1
k3 ‘g2m0GR Rg2m0GR Rk dis’ dissociation protein 2 protein 2
k4 ‘g1g0m0GR Rg0m0GR RkG A bnd’ binding dimer 0 to gene 1
k5 ‘g1m0kM deg’ degradation mRNA 1
k6 ‘g2m0GR Rg2m0GR Rk dim’ dimerisation protein 2 protein 2
k7 ‘g2m0k trns’ translation mRNA 2
k8 ‘g0m0k trns’ translation mRNA 0
k9 ‘g1m0GR RkP deg’ degradation protein 1
k10 ‘g2m0kM deg’ degradation mRNA 2
k11 ‘g1g0m0GR Rg0m0GR RkG A unbnd’ unbinding dimer 0 gene 1
k12 ‘g1m0GR Rg1m0GR Rk dim’ dimerisation protein 1 protein 1
k13 ‘g0k trcb’ transcription gene 0
k14 ‘g1k trcb’ transcription gene 1
k15 ‘g1m0k trns’ translation mRNA 1
k16 ‘g0g2m0GR Rg2m0GR RkG A unbnd’ unbinding dimer 2 gene 0
k17 ‘g2m0GR Rg2m0GR RkP deg’ degradation dimer 2
k18 ‘g2g1m0GR Rg1m0GR RkG A unbnd’ unbinding dimer 1 gene 2
k19 ‘g0g2m0GR Rg2m0GR RkG A bnd’ binding dimer 2 gene 0
k20 ‘g1m0GR Rg1m0GR RkP deg’ degradation dimer 1
k21 ‘g2g1m0GR Rg1m0GR RkG A bnd’ binding dimer 1 gene 2
k22 ‘g0m0GR RkP deg’ degradation protein 0
k23 ‘g2m0GR RkP deg’ degradation protein 2
k24 ‘g2k trcb’ transcription gene 2
k25 ‘g0m0kM deg’ degradation mRNA 0
k26 ‘g0m0GR Rg0m0GR Rk dis’ dissociation dimer 0
k27 ‘g0m0GR Rg0m0GR RkP deg’ degradation dimer 0

29

S1
0

Ta
bl

e:
Pa

ra
m

et
er

va
lu

es
fo

r
se

ns
it

iv
e

an
d

pr
ec

is
e

in
co

he
re

nt
fe

ed
-f

or
w

ar
d

lo
op

s.

Pa
ra

m
et

er
A

ve
ra

ge
(S

en
si

ti
ve

)
St

an
da

rd
Er

ro
r

A
ve

ra
ge

(P
re

ci
se

)
St

an
da

rd
Er

ro
r

P-
va

lu
e

of
si

m
ila

ri
ty

k 1
0.

73
0.

01
9

0.
74

0.
03

0.
77

6
k 2

0.
81

1
0.

07
1

0.
79

7
0.

07
2

0.
89

4
k 3

6.
95

4
0.

52
8

4.
66

5
1.

15
4

0.
05

9
k 4

4.
06

0.
59

3
3.

89
5

0.
52

8
0.

84
6

k 5
2.

23
2

0.
69

2
1.

69
5

0.
67

9
0.

6
k 6

6.
11

6
0.

51
3

5.
32

5
0.

98
3

0.
44

7
k 7

1.
68

8
0.

43
9

2.
06

7
0.

48
9

0.
57

7
k 8

4.
28

8
0.

41
4

4.
72

0.
74

7
0.

59
2

k 9
0.

24
8

0.
05

3
0.

44
2

0.
07

0.
03

7
k 1

0
5.

35
5

0.
75

7
4.

72
1.

00
4

0.
61

3
k 1

1
0.

44
8

0.
05

4
0.

45
1

0.
03

6
0.

96
2

k 1
2

2.
48

3
0.

44
1

2.
98

4
0.

39
9

0.
43

3
k 1

3
0.

66
1

0.
02

7
0.

65
0.

03
6

0.
80

7
k 1

4
0.

75
6

0.
05

3
0.

63
8

0.
07

4
0.

19
7

k 1
5

0.
76

8
0.

06
9

0.
61

3
0.

10
7

0.
21

6
k 1

6
0.

68
4

0.
06

7
0.

57
7

0.
06

7
0.

28
7

k 1
7

0.
75

6
0.

07
4

0.
66

2
0.

07
8

0.
40

6
k 1

8
0.

60
5

0.
05

3
0.

45
1

0.
06

3
0.

07
8

k 1
9

0.
3

0.
0

0.
3

0.
0

1
k 2

0
0.

73
9

0.
04

8
0.

72
3

0.
06

0.
84

k 2
1

4.
97

4
0.

59
5

4.
17

0.
68

9
0.

39
1

k 2
2

0.
71

8
0.

02
4

0.
65

2
0.

02
5

0.
08

k 2
3

0.
25

4
0.

04
3

0.
41

6
0.

05
8

0.
03

4
k 2

4
2.

27
0.

46
7

4.
06

0.
64

4
0.

03
2

30

Supplementary Figures

S1 Fig: A conceptual overview as to how reactions are ordered. From the adja-
cency matrix of the network we know that Nodes 1 and 2 regulate each other and
that Node 3 is regulated by Node 2. The binary strings of Nodes 1 and 2 tell us that
Node 1 regulates the mRNA production of Node 2 via an OR gate as the protein
sequence and function of Node 1 is matched to the promoter sequence of Node 2
(Supplementary Table 1). The rules are checked against a reaction library. Each reac-
tion is then ordered to be unpacked sequentially into the networks reaction scheme
(Eq (1) of the main text).

31

S2 Fig: Example of how reaction IDs are created. Reactions are labelled through
the use of IDs. These IDs relate to the order of reactions taking place. Both node-
specific and interacting reactions are encoded by specific IDs. Changing the order
of the reactions leads to unique IDs being created and altered system dynamics. The
ID structure makes it easier to track system-wide changes during the evolutionary
process.

32

0 2000 4000 6000 8000

Time (s)

0

5

10

15

20

25

C
o
n
ce

n
tr

a
ti

o
n

Bad ScoreA

0 2000 4000 6000 8000

Time (s)

0

10

20

30

40

50

C
o
n
ce

n
tr

a
ti

o
n

Good ScoreB

S3 Fig: Time-series of optimal oscillating networks in Fig 7. (A) Time-series of an
optimal network that has a subcritical Hopf bifurcation and (B) stable Hopf bifur-
cation.

33

2 3 4 5 6 7 8 9 10

Number of Genes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

O
sc
ill
a
ti
n
g
 F
ra
ct
io
n

Impact of Network Size on Oscillating Behavior

Multiple

Single

S4 Fig: Distribution of network sizes for networks with stable oscillations.
The distribution for network sizes is shown for networks with stable oscillations
whereby TFs have a (blue) single activation/inhibitory function or (red) both func-
tions.

34

0 2000 4000 6000 8000

Time (s)

0

50

100

150

200

250

300

C
o
n
ce

n
tr

a
ti

o
n

Concentration ProfileA

0 2000 4000 6000 8000

Time (s)

0

50

100

150

200

250

300

350

400

450

C
o
n
ce

n
tr

a
ti

o
n

Concentration ProfileB

S5 Fig: Deterministic simulations of oscillators. Simulations of network compo-
nents from (A) the most robust oscillator and (B) most sensitive network.

35

0 5 10152025

Parameters

0
5

10
15
20
25

Pa
ra
m
e
te
rs

CorrelationA

−1.0
−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

0 10 20 30 40

Parameters

0

10

20

30

40Pa
ra
m
e
te
rs

CorrelationB

−1.0
−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

S6 Fig: Pairwise parameter correlations for robust networks. Two examples of
optimally robust networks and their pairwise correlation to the objective score.

36

10-3 10-2 10-1 100 101 102

Phi(1): Sensitivity

10-6

10-5

10-4

10-3

10-2

P
h

i(
2

):
 P

re
ci

si
o

n

Continuous (OR gates)B
iFFL (1)

iFFL (2)

cFFL (3)

cFFL (4)

10-4 10-3 10-2 10-1 100 101 102

Phi(1): Sensitivity

10-5

10-4

10-3

10-2

P
h

i(
2

):
 P

re
ci

si
o

n

Continuous (AND gates)A
iFFL (1)

iFFL (2)

cFFL (1)

cFFL (3)

cFFL (4)

10-210-1100101102103104105106107108109101010111012

Phi(1): Sensitivity

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

P
h

i(
2

):
 P

re
ci

si
o

n

Pulsed (AND gates)C
iFFL (1)

iFFL (2)

cFFL (3)

cFFL (4)

10-1100101102103104105106107108109101010111012101310141015

Phi(1): Sensitivity

10-18
10-17
10-16
10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4

P
h

i(
2

):
 P

re
ci

si
o

n

Pulsed (OR gates)D
iFFL (1)

iFFL (2)

cFFL (3)

cFFL (4)

S7 Fig: Pareto front for all feed-forward loops under different conditions. FFLs
containing (A, C) AND-gates or (B, D) OR-gates are subjected to a (A, B) constant
input signal or (C, D) pulsed input.

37

S8 Fig: Example of encoding a protein pump within the reaction library. To en-
code a protein pump both the reaction library and the node schema need to be
updated to allow for the required interactions. This leads to new reaction channels
being encoded to allow for protein pump formation.

38

