

Perspectives of hybridization for commercial aircraft: the lessons learned from the IMOTHEP project

Ph. Novelli Director Propulsion & Environment – ONERA Coordinator of IMOTHEP

Keynote - MEA'24 - Toulouse, 7 February 2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006

• What is it ?

- Basically the combination of thermal and electric energy sources with thermal and electric motors for the propulsion of aircraft
- Also some time extended to the use of fuel cells as energy sources

• What for ?

- An attempt to reduce aircraft fuel burn and CO₂ emissions in the context of aviation's effort to reduce its climatic impact
- An idea that emerged and developed during the 2010's

Why not simply electric?

Because batteries capabilities limit fully electric propulsion to small aircraft

> A 500 Wh/kg battery allows the flight of a 40-50 PAX aircraft on 200 nm

Multiple architecture options

PARALLEL HYBRID-ELECTRIC

SERIES HYBRID-ELECTRIC

• But how does it reduce fuel burn ?

- Hybridization does not improve efficiency per se

- Additional mass of electric systems and sources
- Introduction of additional losses in the power chain (e.g. turboelectric)
- No automatic improvement of propulsive efficiency

- Benefit of hybridization is to be obtained through:

- Energy substitution ⇒ Parallel hybrid : energy stored in the battery
- Enlarged design space ⇒ more degrees of freedom for propulsion optimization and integration
- Possibilities of synergies between airframe, aircraft control and propulsion

Distributed electric propulsion, boundary layer ingestion, use of propulsion for control...

Strong interdependency and synergy between aircraft configuration and propulsion architecture

> Numerous possible architectures and aircraft configurations

CENTRELINE (H2020) BLI turboelectric tail-fan

Generator off-takes from

advanced GTF power plants

EPS EC0150-300 Distributed propulsion

ONERA DRAGON Distributed propulsion

NASA SUZAN Distributed propulsion +BLI tail-fan

NASA N3-X DEP + BLI + Superconductivity

5

The IMOTHEP project

Imhotep - Egyptian architect, doctor and philosopher A great and innovative builder...

- A Horizon 2020 project (CINEA)
- Rationale:
 - What could be the actual benefit of hybrization ? For which missions?
 - Willingness to perform an analysis with a consistent set of assumptions and design approaches
- Objectives : achieving a key step in assessing potential benefits of HEP for emissions reductions of commercial aircraft
 - Identifying propulsion architectures & aircraft concepts benefiting from HEP
 - Investigating technologies for HE power train architecture and components
 - Analysing required tools, infrastructures, demonstrations and regulatory adaptations for HEP development
 - Synthesising results through the elaboration of the development roadmap for HEP

IMOTHEP project

Four-year research project (2020-2024)

Coordinated by ONERA

e 29 partners

> 9 European countries + 2 international partners from Canada

IMOTHEP's methodological approach

GETTING * HYBRID * FLECTRIC

Investigating hybrid power train in close relation with its integration on a representative configuration of aircraft

8

Project's scope & targets

• Reference missions

- **Short/medium range:** minimum segment for a significant impact on aviation emissions
- **Regional:** more accessible, potential intermediate step toward SMR

Mission PAX		Speed	Range	
Regional	Regional 40		600 nm (typ. 200 nm)	
SMR 150		Mach 0,78	>= 1200 nm (typ. 800 nm)	

- > Two configurations studied per mission: a "conservative" one and a "radical one"
- EIS: 2035+

Technological scope

- Central focus on thermal hybrid with drop-in fuel
- Conventional conductivity + exploration of superconductivity as a potential enabler
- Ambition: 10% more emissions reductions than Clan Sky 2 targets with conventional technologies
 - > Assessment against "baseline" aircraft: 2014 reference aircraft adapted to TLARs and projected to 2035
- Note : micro-hybridization for operative assistance to UHBR or USF not in the scope of IMOTHEP

Highlights on IMOTHEP configurations

Regional conservative : parallel hybrid

- Combined electric assistance to shaft and core cycle
- Up to 1 MW electric assistance to turboshafts
- 2670 kg of batteries (405 Wh/kg, pack level)
- 540 DC voltage
- Heat rejection on aircraft wetted surfaces

Regional radical : distributed electric propulsion

- ➢ Initially : Pure turboelectric propulsion ⇒ abandoned
- "plug-in": fully electric over 200 nm + range extender for 600 nm
- 8 x 300 KW electric motors
- One 2345 kW generator
- 6115 kg of batteries (360 Wh/kg)
- 800 V DC voltage

8 electric engines + battery packs

Highlights on IMOTHEP configurations

SMR conservative : turboelectric DEP tube & wings

- 24 electric fans, 820 kW each
- 2 turbogenerators : 2 x 11 MW
- 3000 V DC voltage

• SMR Radical: turboelectric + DEP + BLI + BWB

- 8 electric fan, 2400 kW each
- 2 turbogenerators : 2 x 11 MW
- 3000 V DC voltage

Different classes of electric systems for HEP

	Regional	SMR
Distribution	< 1 kV	~3 kV
Electric motor	0.3 to 1 MW	~1 to 10 MW
Generator	~1 MW / 3 MW* * Regional "plug-in"	~5 MW / 10 MW
	TRL 6 by 2030	TRL 6 after 2035

From configurations studies:

> Clearly set a much higher challenge for SMR regarding:

- distribution and associated issues (insulation, arcing, discharge...)
- electric machines
 - > Benefit from DEP for reducing motors' power level
- Generator might also be challenging for our regional radical configuration

Longer time horizon to develop hybrid SMR technologies

Energy generation - Batteries

- Assumptions based on industry announcement + existing battery roadmaps
- Primary performance parameter: specific energy (SE, Wh/kg)
 - IMOTHEP assumptions : 475 545 Wh/kg (cell), cell-to-pack 0.74
 - Expectations by 2030+: up to 600 Wh/kg (cell, 2C)*
 - Significant variations in batteries' performance projections over the duration of IMOTHEP
 - Li-ion battery R&D mostly for road transport
 - Aviation gaining importance
- * Battery with moderate power (type for regional aircraft)
 450 Wh/kg for high power cells (8-10C) (e.g. for eVTOL)
 Power requirement: moderately high for HE REG-CON (≤3C) and E REG-RAD (~1.5C)

Year	2023	2030(+)	
Battery technology	Gen3	Adv. Gen4c ASSB	
Cell GED [Wh/kg]	250 - 290	500 - 600	
Packaging efficiency	70-82%	85-90%	
Pack GED [Wh/kg]	200 - 238	~500(+)	

Energy generation – Electric generator

(SoA + technology at TRL 6 by 2030) Rated Rated External SoA 2020 Rated Active Power Projection efficiency (kW/kg) 2035 speed mass diameter density power (kW) (rpm) (%) (kg) (m) (kW/kg) (1 MW) (litterature) **REG-RAD** ~ 9 2250 15000 98,7 124,0 0,343 20 - 25 kW/kg $10 - 15 \, kW/kg$ **η** = 0.95 η = 0.98 SMR 5740 8000 98.8 325,2 0.576 9-13

Source: U. Lorraine

Specification

Regional radical: 2,25 MW – 15000 rpm

Technological Assumptions

spray + channels on the external surface

Frequency limited to 1,5 kHz (fundamental)

"Medium" aggressive technology assumptions

٠

•

SMR :

Electric motors

- > Choice of best classes electric components
- Electrical Machines (EM) = Permanent Magnet Synchronous Machine (PMSM)
- Power Electronics (PE) = Two-Level Inverter with SiC Power Modules
- Liquid cooling

Aircraft	Motor specification	Tmax	Specific power kW/kg	Efficiency %	SoA	Projection 2035 (littérature)
REG-CON	600 kW 20-35 kRPM		19.1	97.8		
REG-RAD (integral drive)	300 kW 1500 RPM		13.1	95.5	6 kW/kg	[11 - 17]
SMR-CON	0.82 MW / 5700 rpm	180°C / 300°C	12.9 / 16.6	98.00 / 97.74	95 % ≤ 500 kW	98 % MW class
SMR-RAD	2300 kW / 3100 rpm		6.5	98.12		

Results from Conservative Approach = SoA + First mature technologies by 2030

→ If disruptive assumptions introduced: +95% specific power @EPU level

Electrical wiring interconnection system (EWIS)

> SMR radical case

3000 V

ID	Core material	Wire Gauge	Number of wires	Linear mass density	Efficiency	Equivalent diameter of the power line
F1	Copper	#0000	18	26 kg/m	99.96 %	143 mm
F2	Aluminium	#0000	8	4 kg/m	99.97 %	69 mm
F3	Aluminium	#0000	6	3 kg/m	99.94%	62 mm
F4	Aluminium	#0	12	3 kg/m	99.96 %	81 mm

1000 V

ID	Core material	Wire Gauge	Number of wires	Linear mass density	Efficiency	Equivalent diameter of the power line	
F1	INFEASIBLE – T cable > Tmax						
F2	Aluminium	#0000	20	9 kg/m	99.9 %	195 mm	
F3	Aluminium	#0000	16	8 kg/m	99.83%	163 mm	
F4	Aluminium	#0	24	11 kg/m	99.98 %	130 mm	

Electric architecture

Outcomes for electric power train studies

• Safe and operable electric architectures could be designed for all configurations

- Yet for DEP architecture, reliability issues in operation could be encountered for conservative assumptions on components' reliability
- For most electrical components, design could be identified (at paper level) that surpasses SoA and approach projection for 2035

• Cooling of generators and motors with their electronics is key (TMS)

- Call for the highest possible efficiency for electrical machine or alternatively, electrical machines that withstand high temperatures (300°C)
- > Optimal design for cooling solution and consequences on aircraft performances? \Rightarrow system level

Feasibility of cabling is a major issue

- Regional (800 V): mostly size and integration issues
- SMR (3 kV) : no possible extrapolation from current installation rules and guidelines
 - insulation solution to ensure lifetime duration ?
 - numerous issues for protection devices partial discharge, arcing, breaking capacities
 - integration issues

Configurations studies : regional aircraft

Regional conservative : parallel hybrid

- 2670 kg of batteries (408 Wh/kg, pack)
- Up to 2 x 1 MW electric assistance 540 V DC
- MTOW : +30% vs "baseline aircraft"
- 9.6% fuel reduction over a 200 nm typical mission
- But 6% increase on design mission (600 nm)
- Battery specific energy is the main driver
- Limited benefit expected from electric system improvement

Regional radical :

- Turboelectric not promising ⇒ move to electric + range extender
- 8 x 300 KW electric motors One 2345 kW generator 800 V DC
- 6115 kg of batteries (360 Wh/kg)
- 60% block energy reduction over 200 nm (fully electric)
- 36% fuel burn reduction over 600 nm (with extender)
- Efficiency gain from electric chain + configuration-specific optimization
- Not too sensitive to battery specific energy

Configuration studies: regional aircraft

• Complementary observations from literature survey (end 2022)

- Mostly parallel hybrid + some turboelectric
- Still strong divergences between studies regarding the potential benefit of HEP
- Convergence of assumptions on batteries on "reasonable" values (\leq 500 Wh/kg pack)
- Difficult to infer from this survey an clear benefit of HEP
- At least, battery energy density at the upper bound of the assumptions range + reduced mission range seem to be required for parallel hybrid
 - ⇒ Consistent with IMOTHEP findings

Conclusions for regional aircraft

- **Turboelectric:** improvement of propulsive efficiency brought by distributed electric propulsion is not sufficient to compensate mass increase
- **Parallel hybrid:** best suited for short range (typically 200 nm)
 - fuel burn reduction limited to 10 or 15% on 200 nm with assumptions on batteries' specific energy at the upper end of current expectations for the next decade
- Hybrid "plug-in" (thermal range extender) : most promising configuration

- Main enablers:

- Batteries (in particular specific energy)
- Limited sensitivity to electric system performances (specific power, efficiency, etc.)
- Critical point : cabling feasibility (mostly volume and installation constraints)

Configuration studies : SMR aircraft

SMR conservative : turboelectric DEP tube & wings

- 24 electric fans, 820 kW each
- 2 turbogenerators : 2 x 11 MW
- 3000 V DC voltage
- MTOW : +10% vs "baseline aircraft"

• SMR Radical: turboelectric + DEP + BLI + BWB

- 8 electric fan, 2400 kW each
- 2 turbogenerators : 2 x 11 MW
- 3000 V DC voltage

For both configurations: No benefit from hybridization

- Refined analysis negated initial benefit (6 to 11%) from conceptual studies
 - > DEP increases propulsion efficiency but does not compensate increased weight and losses
- Strong influence of turboshaft SFC
- Limited expectation from electric systems performances improvements (under consolidation)
- Huge technological step due to high power / high voltage electric power chain

Configuration studies: SMR aircraft

- **Complementary observations from literature survey** ٠
 - **CENTRELINE** (H2020): partially turboelectric + BLI tail fan Modest 3.2% fuel burn reduction compared to reference 2035
 - **NOVAIR** (CS2): parallel hybrid assistance to turbofan with downsizing —
 - > 7% FB reduction (3% block energy reduction, bat: 500 Wh/kg pack) **Conceptual** study
 - **NASA SUZAN:** turboelectric + DEP + BLI tail fan _ \succ Fuel burn reduction < 7% (w.r.t. 2035 reference conventional aircraft)
 - **UTRC** (Lens & al.): configuration screening of parallel hybrid (conceptual) \succ All configurations close to each other with max fuel burn reduction of ~5%
 - General remark: refined analysis tends to decrease benefits compared to conceptual Low-Fi design

Conclusions for SMR aircraft

Perspective of benefit looks rather modest for all configurations

- > Modest benefit at conceptual level not likely to be confirmed by refined HiFi studies
- > Promising configuration still to be identified for investigated TLARS
- > Or TLARs and aircraft operations to be revisited
- Not clear from IMOTHEP studies whether improved performance of electric systems could change the conclusion (under consolidation but sensitivity is low)
- Potential benefit from superconductivity to be investigated by the end of the project

Huge technological challenges associated to high voltage (~ 3 kV)

- Major disruption with aviation current electrical system (< 540 V)</p>
 - Partial discharges, space charges skin effects, etc.
 - Design and integration issues: heating, arcing, cable size and bending radius, etc.
 - Step increase in electric machine power

Toward a roadmap for hybrid electric propulsion

• From IMOTHEP results, primary focus on regional aircraft

> For SMR, more exploratory research needed on TLARs + fleet scenarios + configurations

Configurations : plug-in and parallel hybrid

- Share a number of similar technologies
- Primary focus on "scope 1 technologies": up to 1 kV and 1 MW
 - > Caveats:
 - Higher power (3 MW) to be targeted for generators
 - Feasibility of 800 V distribution may be an issue for integration

• Note: fuel cell based systems, not studied, but possibly important part of the roadmap

Toward a roadmap for hybrid electric propulsion

Batteries : key enabler

- Primary KPI: specific energy (Wh/kg) ⇒ cell chemistry but also integration (cell-to-pack)
- Also key: safety (ASSB), chemistry/cell design suitable for aviation and certification

• Electric motors: mature and demonstrate IMOTHEP techno and design level

- IMOTHEP configurations not much sensitive to motor specific power
- Key requirements : cooling (key role of efficiency), reliability and life time

• Electric generators: need to push the technology toward aggressive design

- Potential benefit from improved performance compared to IMOTHEP techno level
- Key requirements : high DC voltage, cooling (key role of efficiency), reliability

• Power electronics: design component packages suitable for flight conditions

- Components suitable for 800 V power distribution announced by 2025/2026
- EWIS: mature, develop & certify cables, contactors, protection & breakers for 800V
 - + Research needs on fault arc detection
 - ✤ Integration of cables remains in key issue

• Thermal management: key role of components' efficiency and max operating T

Conclusions

• Final conclusions and roadmap from IMOTHEP available in June 2024

- Final refinements and consolidation going-on on radical configurations
- Roadmap to be completed

• Trends for the potential and applicability of HEP have been identified

- For SMR :
 - potential of HEP not confirmed at this stage for considered TLARs
 - the huge technology step pushes hybrid SMR to a longer term
- For regional aircraft, technological solutions have been identified
 - Most convincing configuration is full electric + range extender
 - No revolutionary development seems required by 2035 for the targeted applications
 - > Yet wiring remains an issue

THANK YOU !

Contact points for any question:

Project Coordinator

- Philippe NOVELLI (ONERA)
- Email: <u>philippe.novelli@onera.fr</u>
- Office: +33 1 80 38 69 14

IMOTHEP team at work

Team workshop, Eurocontrol, Sept. 2022

PMO

- Peggy FAVIER (L-UP)
- Email : <u>peggy.favier@l-up.com</u>
- Office: +33 4 78 41 44 47
- Solution Mobile: +33 6 75 64 10 78

www.imothep-project.eu

Team workshop, ONERA, Oct. 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006

