

Perspectives of hybridization for commercial aircraft: the lessons learned from the IMOTHEP project

Ph. Novelli Director Propulsion & Environment – ONERA Coordinator of IMOTHEP

Keynote - MEA'24 – Toulouse, 7 February 2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006

• **What is it ?**

- − Basically the combination of thermal and electric energy sources with thermal and electric motors for the propulsion of aircraft
- − Also some time extended to the use of fuel cells as energy sources

• **What for ?**

- $-$ An attempt to reduce aircraft fuel burn and $CO₂$ emissions in the context of aviation's effort to reduce its climatic impact
- − An idea that emerged and developed during the 2010's

• **Why not simply electric?**

Because batteries capabilities limit fully electric propulsion to small aircraft

 \triangleright A 500 Wh/kg battery allows the flight of a 40-50 PAX aircraft on 200 nm

• **Multiple architecture options**

PARALLEL HYBRID-ELECTRIC

SERIES HYBRID-ELECTRIC

• **But how does it reduce fuel burn ?**

− **Hybridization does not improve efficiency per se**

- Additional mass of electric systems and sources
- Introduction of additional losses in the power chain (e.g. turboelectric)
- No automatic improvement of propulsive efficiency

− **Benefit of hybridization is to be obtained through:**

- **Energy substitution** \Rightarrow **Parallel hybrid : energy stored in the battery**
- **Enlarged design space** \Rightarrow **more degrees of freedom for propulsion optimization and integration**
- Possibilities of synergies between airframe, aircraft control and propulsion

Distributed electric propulsion, boundary layer ingestion, use of propulsion for control…

 Strong interdependency and synergy between aircraft configuration and propulsion architecture

Numerous possible architectures and aircraft configurations

Boeing Sugar Volt Electrically Assisted turbofan

ONERA/SAFRAN Distributed propulsion blown wing

BLI turboelectric tail-fan

EPS ECO150-300 Distributed propulsion

ONERA DRAGON Distributed propulsion

NASA SUZAN Distributed propulsion +BLI tail-fan

NASA N3-X $DEF + BLI +$ Superconductivity

5

The IMOTHEP project

Imhotep - Egyptian architect, doctor and philosopher A great and innovative builder…

- **A Horizon 2020 project (CINEA)**
- **Rationale:**
	- − **What could be the actual benefit of hybrization ? For which missions?**
	- − **Willingness to perform an analysis with a consistent set of assumptions and design approaches**
- **Objectives : achieving a key step in assessing potential benefits of HEP for emissions reductions of commercial aircraft**
	- − Identifying propulsion architectures & aircraft concepts benefiting from HEP
	- − Investigating technologies for HE power train architecture and components
	- − Analysing required tools, infrastructures, demonstrations and regulatory adaptations for HEP development
	- − Synthesising results through the elaboration of the development roadmap for HEP

IMOTHEP project

Four-year research project (2020-2024) \bullet

Coordinated by ONERA

29 partners \bullet

9 European countries + 2 international partners from Canada

IMOTHEP's methodological approach

GETTING * HYBRID * FLECTRIC

 Investigating hybrid power train in close relation with its integration on a representative configuration of aircraft

8

Project's scope & targets

• **Reference missions**

- − **Short/medium range:** minimum segment for a significant impact on aviation emissions
- − **Regional:** more accessible, potential intermediate step toward SMR

- **Two configurations studied per mission: a "conservative" one and a "radical one"**
- − **EIS: 2035+**

• **Technological scope**

- − Central focus on thermal hybrid with drop-in fuel
- − Conventional conductivity + exploration of superconductivity as a potential enabler
- \bullet **Ambition :** 10% more emissions reductions than Clan Sky 2 targets with conventional technologies
	- **Assessment against "baseline" aircraft:** 2014 reference aircraft adapted to TLARs and projected to 2035
- *Note : micro-hybridization for operative assistance to UHBR or USF not in the scope of IMOTHEP*

Highlights on IMOTHEP configurations

• **Regional conservative : parallel hybrid**

- − Combined electric assistance to shaft and core cycle
- − Up to 1 MW electric assistance to turboshafts
- − 2670 kg of batteries (405 Wh/kg, pack level)
- − 540 DC voltage
- − Heat rejection on aircraft wetted surfaces

• **Regional radical : distributed electric propulsion**

- \triangleright Initially : Pure turboelectric propulsion \Rightarrow abandoned
- **"plug-in" :** fully electric over 200 nm + range extender for 600 nm
- − 8 x 300 KW electric motors
- − One 2345 kW generator
- − 6115 kg of batteries (360 Wh/kg)
- − 800 V DC voltage

8 electric engines + battery packs

Highlights on IMOTHEP configurations

• **SMR conservative : turboelectric DEP tube & wings**

- − 24 electric fans, 820 kW each
- − 2 turbogenerators : 2 x 11 MW
- − 3000 V DC voltage

• **SMR Radical: turboelectric + DEP + BLI + BWB**

- − 8 electric fan, 2400 kW each
- − 2 turbogenerators : 2 x 11 MW
- − 3000 V DC voltage

Different classes of electric systems for HEP

From configurations studies:

Clearly set a much higher challenge for SMR regarding:

- − distribution and associated issues (insulation, arcing, discharge…)
- − electric machines
	- *Benefit from DEP for reducing motors' power level*
- *Generator might also be challenging for our regional radical configuration*

Longer time horizon to develop hybrid SMR technologies

Energy generation - Batteries

- **Assumptions based on industry announcement + existing battery roadmaps**
- **Primary performance parameter: specific energy** (SE, Wh/kg)
	- − IMOTHEP assumptions : **475 - 545 Wh/kg** (cell), cell-to-pack **0.74**
	- Expectations by 2030+: up to 600 Wh/kg (cell, 2C)^{*}
		- Significant variations in batteries' performance projections over the duration of IMOTHEP
		- **Li-ion battery R&D mostly for road transport**
			- \triangleright Aviation gaining importance
- * Battery with moderate power (t*ype for regional aircraft) 450 Wh/kg for high power cells (8-10C) (e.g. for eVTOL) Power requirement: moderately high for HE REG-CON (≤3C) and E REG-RAD (~1.5C*)

Energy generation – Electric generator

Litz

wires

PMs

• **Technological Assumptions**

Regional radical: 2,25 MW – 15000 rpm

• **Specification**

- Oil cooling of the generator ($T_{\text{oil}} \sim 80^{\circ}$ C) : end-winding 0 spray + channels on the external surface
- Halbach PMs to reduce the inductance and improve THD
- Frequency limited to 1,5 kHz (fundamental) \bullet
- *"Medium" aggressive technology assumptions*

(SoA + technology at TRL 6 by 2030)

Source: U. Lorraine

Carbon-

fibre

sleeve

voke

FeCo

laminations

Electric motors

- **Choice of best classes electric components**
- Electrical Machines (EM) = Permanent Magnet Synchronous Machine (PMSM)
- Power Electronics (PE) = Two-Level Inverter with SiC Power Modules
- Liquid cooling

Results from Conservative Approach = $SoA + First$ mature technologies by 2030

 \rightarrow If disruptive assumptions introduced: +95% specific power @EPU level

Electrical wiring interconnection system (EWIS)

SMR radical case

ID Core material Wire Gauge Number of wires Linear mass density Efficiency Equivalent diameter of the power line F1 Copper #0000 18 26 kg/m 99.96 % 143 mm **F2** Aluminium #0000 8 4 kg/m 99.97 % 69 mm **F3** Aluminium #0000 6 3 kg/m 99.94% 62 mm **F4** Aluminium #0 12 3 kg/m 99.96 % 81 mm

3000 V

1000 V

Electric architecture

Outcomes for electric power train studies

• **Safe and operable electric architectures could be designed for all configurations**

- \triangleright Yet for DEP architecture, reliability issues in operation could be encountered for conservative assumptions on components' reliability
- **For most electrical components, design could be identified (at paper level) that surpasses SoA and approach projection for 2035**

• **Cooling of generators and motors with their electronics is key (TMS)**

- \triangleright Call for the highest possible efficiency for electrical machine or alternatively, electrical machines that withstand high temperatures (300°C)
- \triangleright Optimal design for cooling solution and consequences on aircraft performances? \Leftrightarrow system level

• **Feasibility of cabling is a major issue**

- − Regional (800 V): mostly size and integration issues
- − SMR (3 kV) : no possible extrapolation from current installation rules and guidelines
	- insulation solution to ensure lifetime duration ?
	- numerous issues for protection devices partial discharge, arcing, breaking capacities
	- integration issues

Configurations studies : regional aircraft

• **Regional conservative : parallel hybrid**

- − 2670 kg of batteries (408 Wh/kg, pack)
- Up to 2 x 1 MW electric assistance 540 V DC
- − MTOW : +30% vs "baseline aircraft"
- − **9.6% fuel reduction over a 200 nm typical mission**
- But **6% increase on design mission** (600 nm)
- Battery specific energy is the main driver
- Limited benefit expected from electric system improvement

• **Regional radical :**

- **Turboelectric not promising move to electric + range extender**
- − 8 x 300 KW electric motors One 2345 kW generator 800 V DC
- − 6115 kg of batteries (360 Wh/kg)
- **60% block energy reduction over 200 nm** (fully electric)
- − **36% fuel burn reduction over 600 nm** (with extender)
- Efficiency gain from electric chain + configuration-specific optimization
- Not too sensitive to battery specific energy

Configuration studies: regional aircraft

• **Complementary observations from literature survey** (end 2022)

- − Mostly parallel hybrid + some turboelectric
- − Still strong divergences between studies regarding the potential benefit of HEP
- − Convergence of assumptions on batteries on "reasonable" values (≤ 500 Wh/kg pack)
- − **Difficult to infer from this survey an clear benefit of HEP**
- − At least, **battery energy density at the upper bound** of the assumptions range + **reduced mission range** seem to be required for parallel hybrid
	- **Consistent with IMOTHEP findings**

Conclusions for regional aircraft

- **Turboelectric:** improvement of propulsive efficiency brought by distributed electric propulsion is not sufficient to compensate mass increase
- **Parallel hybrid:** best suited for short range (typically 200 nm)
	- fuel burn reduction limited to 10 or 15% on 200 nm with assumptions on batteries' specific energy at the upper end of current expectations for the next decade
- − **Hybrid "plug-in"** (thermal range extender) : **most promising configuration**

− **Main enablers:**

- Batteries (in particular specific energy)
- **EXALL EXALLET EXALLET EXALLET FIGGIOR III SET A** Limited sensitivity to election etc.)
- Critical point : cabling feasibility (mostly volume and installation constraints)

Configuration studies : SMR aircraft

• **SMR conservative : turboelectric DEP tube & wings**

- − 24 electric fans, 820 kW each
- 2 turbogenerators : 2 x 11 MW
- − 3000 V DC voltage
- − MTOW : +10% vs "baseline aircraft"

• **SMR Radical: turboelectric + DEP + BLI + BWB**

- − 8 electric fan, 2400 kW each
- − 2 turbogenerators : 2 x 11 MW
- − 3000 V DC voltage

For both configurations: **No benefit from hybridization**

- − Refined analysis negated initial benefit (6 to 11%) from conceptual studies
	- *DEP increases propulsion efficiency but does not compensate increased weight and losse*s
- − **Strong influence of turboshaft SFC**
- − Limited expectation from electric systems performances improvements (under consolidation)
- − Huge technological step due to high power / high voltage electric power chain

Configuration studies: SMR aircraft

- **Complementary observations from literature survey**
	- − **CENTRELINE** (H2020): partially turboelectric + BLI tail fan Modest 3.2% fuel burn reduction compared to reference 2035
	- − **NOVAIR** (CS2):parallel hybrid assistance to turbofan with downsizing
		- 7% FB reduction (3% block energy reduction, bat: 500 Wh/kg pack) *Conceptual study*
	- − **NASA SUZAN**: turboelectric + DEP + BLI tail fan \triangleright Fuel burn reduction < 7% (w.r.t. 2035 reference conventional aircraft)
	- − **UTRC** (Lens & al.): configuration screening of parallel hybrid (conceptual) \triangleright All configurations close to each other with max fuel burn reduction of \sim 5%
	- *General remark:* refined analysis tends to decrease benefits compared to conceptual Low-Fi design

Conclusions for SMR aircraft

• **Perspective of benefit looks rather modest for all configurations**

- Modest benefit at conceptual level not likely to be confirmed by refined HiFi studies
- **Promising configuration still to be identified for investigated TLARS**
- **Or TLARs and aircraft operations to be revisited**
- − Not clear from IMOTHEP studies whether improved performance of electric systems could change the conclusion (under consolidation but sensitivity is low)
- − Potential benefit from superconductivity to be investigated by the end of the project

• **Huge technological challenges associated to high voltage (~ 3 kV)**

- \triangleright Major disruption with aviation current electrical system (< 540 V)
	- **Partial discharges, space charges skin effects, etc.**
	- Design and integration issues: heating, arcing, cable size and bending radius, etc.
	- **Step increase in electric machine power**

Toward a roadmap for hybrid electric propulsion

• **From IMOTHEP results, primary focus on regional aircraft**

 \triangleright For SMR, more exploratory research needed on TLARs + fleet scenarios + configurations

• **Configurations : plug-in and parallel hybrid**

- − Share a number of similar technologies
- − **Primary focus on "scope 1 technologies":** up to 1 kV and 1 MW
	- **≻ Caveats:**
		- Higher power (3 MW) to be targeted for generators
		- Feasibility of 800 V distribution may be an issue for integration

Note*: fuel cell based systems, not studied, but possibly important part of the roadmap* **C**

Toward a roadmap for hybrid electric propulsion

• **Batteries : key enabler**

- − Primary KPI: specific energy (Wh/kg) cell chemistry but also integration (cell-to-pack)
- − Also key: safety (ASSB), chemistry/cell design suitable for aviation and certification

• **Electric motors: mature and demonstrate IMOTHEP techno and design level**

- − IMOTHEP configurations not much sensitive to motor specific power
- − Key requirements : cooling (key role of efficiency), reliability and life time

• **Electric generators: need to push the technology toward aggressive design**

- − Potential benefit from improved performance compared to IMOTHEP techno level
- − Key requirements : high DC voltage, cooling (key role of efficiency), reliability

• **Power electronics: design component packages suitable for flight conditions**

- − Components suitable for 800 V power distribution announced by 2025/2026
- **EWIS: mature, develop & certify cables, contactors, protection & breakers for 800V**
	- + Research needs on fault arc detection
	- \triangle Integration of cables remains in key issue

• **Thermal management: key role of components' efficiency and max operating T**

Conclusions

• **Final conclusions and roadmap from IMOTHEP available in June 2024**

- \triangleright Final refinements and consolidation going-on on radical configurations
- \triangleright Roadmap to be completed

• **Trends for the potential and applicability of HEP have been identified**

- − For SMR :
	- potential of HEP not confirmed at this stage for considered TLARs
	- the huge technology step pushes hybrid SMR to a longer term
- − For regional aircraft, technological solutions have been identified
	- Most convincing configuration is full electric + range extender
	- No revolutionary development seems required by 2035 for the targeted applications
		- *Yet wiring remains an issue*

THANK YOU !

Contact points for any question:

• Project Coordinator

- **•** Philippe NOVELLI (ONERA)
- **G** Email: philippe.novelli@onera.fr
- Office: +33 1 80 38 69 14

IMOTHEP team at work

Team workshop, Eurocontrol, Sept. 2022

S_{PMO}

- Peggy FAVIER (L-UP)
- Email : peggy.favier@l-up.com
- Office: +33 4 78 41 44 47
- \bullet Mobile: +33 6 75 64 10 78

[www.imothep-project.eu](http://www.imothep.eu/)

Team workshop, ONERA, Oct. 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875006

