
1

DSWE R Package User Help Document

Prepared by Dr. Yu Ding’s Research Group at

Georgia Institute of Technology

Last updated: February 22, 2024

Contact: yu.ding@isye.gatech.edu

mailto:yu.ding@isye.gatech.edu

2

Table of Contents

1 Differences between DSWE’s R package and Python package. .. 3

2 How do I install the package? .. 3

How to update the package to a new version? ... 3

3 How to use KNN to fit a multi-dimensional power curve? ... 4

How to select the best subset of variables in building a multi-dimensional power curve? 7
Suppose one has built a KNN power curve model using some data. When the new data comes in, how can one

update it periodically? ... 8

4 How to use temporal Gaussian process (tempGP) model to fit a multi-dimensional power curve? 9

How to update the training data in the tempGP model when new data is available? ... 11

5 How to use AMK to fit a multi-dimensional power curve?... 12

6 How to use the spline model to fit a multi-dimensional power curve? .. 13

7 How to use the Bayesian tree model to fit a multi-dimensional power curve? .. 14

8 How to use the XGBoost model to fit a multi-dimensional power curve? .. 15

9 How to use the support vector machine to fit a multi-dimensional power curve? 16

10 How do the power curve functions compare with each other? ... 17

11 How to select the subsets of data, before and after a decision point, so that they can be deemed

probabilistically comparable? .. 18

12 How to compare performance of two turbine or two data set in different time period? 20

How to use a different probability distribution than that computed from the data to compute the weighted

difference between the power curves? .. 21

13 A case study of estimating the effect associated with turbine upgrades. .. 22

14 How to use the Energy Decomposition approach and the deltaEnergy function? .. 27

15 (Optional) Installation using source code .. 30

3

1 Differences between DSWE’s R package and Python package.

The functions in the two DSWE packages closely mirror each other, but with the following

differences:

A. DSWE R package does not have the deep learning power curve function

(DNNPowerCurve).

B. DSWE Python package does not have the spline-based power curve function (SplinePCFit).

C. DSWE Python package’s BayesTreePowerCurve function uses BartPy, which is the Python

implementation of BART. BartPy was not implemented by the original authors of BART

and its results differ slightly from the BART function in R. So, the difference between the

R and Python versions of the Bayes Tree power curve is larger than those between other

power curve functions in the two packages.

D. For the time being, AMK in Python has to take the bandwidth parameters from the R

package, as the optimal bandwidth selection algorithm, i.e., the direct plug-in (DPI)

algorithm, is still being implemented. Once DPI is implemented, AMK in Python will be

stand alone.

E. DSWE Python package does not have the Energy Decomposition function (deltaEnergy).

2 How do I install the package?
The package is available through CRAN, the official package repository of R, as well as on GitHub.
This package is tested on and is compatible with R of version 3.5.0 or above. When using an
earlier R version, problems may arise.

The package should be installed using the standard install.packages()command in R or
RStudio:

install.packages(“DSWE”)

Note: The package contains C++ source codes, and thus can be installed using the pre-compiled
binaries available on CRAN or compiling the source code itself. When installing, R might ask if one
wants to install the binaries or compile from source. Please select the latter only if you have the
necessary tools to compile C++ code. For those who wish to compile from source, we provide the
details on how to get the necessary tools in an optional section at the end of this document.

How to update the package to a new version?
Use the following command in R or RStudio:

update.packages(“DSWE”)

https://cran.r-project.org/package=DSWE
https://github.com/TAMU-AML/DSWE-Package

4

3 How to use KNN to fit a multi-dimensional power curve?

Step1: Download the sample data set as shown.

Visit site using the following link - https://sites.google.com/view/yuding/book-dswe/dswe-

datasets. The page looks like as shown below and select the option 5.

Download the sample data set as shown below in green boxes. After downloading, save the file

in working directory.

https://sites.google.com/view/yuding/book-dswe/dswe-datasets
https://sites.google.com/view/yuding/book-dswe/dswe-datasets

5

Step 2: Set the path containing data set to a current working directory. Further load the

package and import the data set as shown.

Step 3: Prepare the arguments to fit a power curve as shown below.

Note: - The RMSE reported is based on generalized cross validation on training set. To obtain

a prediction on a test point, follow the next step.

Function used
Result retrieval using:

model followed by $

Result display in

console

6

Step 4: Prediction on a test point using the model generated from KnnPCFit and using the

function KnnPredict as shown below.

Test points

Result retrieval
Previously generated

using KnnPCFit

Prediction function

used

7

How to select the best subset of variables in building a multi-dimensional power curve?

Step 1: The data set mentioned in previous questions will be used to demonstrate the usability

of subset selections. The package is loaded and data is imported as shown.

Step 2: Prepare the arguments to fit the KNN power curve and retrieve the best subset as

shown.

Feature Column

supplied
KNN model fit with

subset selection
Retrieve best

subset column

8

Suppose one has built a KNN power curve model using some data. When the new data

comes in, how can one update it periodically?

Step 1: The data set mentioned in previous questions will be used to demonstrate model

update. The package is loaded and data is imported as shown.

Step 2: Prepare the arguments to update the previously obtained model using new data as

shown.

New data
Model Update

Function
Previous model

9

4 How to use temporal Gaussian process (tempGP) model to fit a

multi-dimensional power curve?

Note:

The temporal Gaussian Process, or tempGP, is a Gaussian process-based model, and hence the

inference (fitting) can be computationally expensive for large datasets. In order to overcome

this problem, we implemented an acceleration method using the method of Vecchia.

Vecchia has a few hyperparameters to tune. We have tuned those parameters to strike a

balance between prediction accuracy and computation time. We advise to use the default

parameter settings. The fast computation is expected to be within four minutes on a single core

of a modern computer, in contrast to hours of computation required by the original tempGP.

The accelerated version is set as the default option for the tempGP function.

We expect the fast computation results to be 1-5% worse than that of the original version of

tempGP. If accuracy is extremely important to the user at the cost of orders of magnitude of

increased computation time, then one can easily set the argument vecchia to FALSE and

limit_memory to None to use the original version of tempGP.

Example:

For this example, we use data1 in the DSWE package.

Step 1: Divide the training dataset into an input variable matrix and a response vector. One can

also create a vector of time indices for the training data points. If the time indices are not

created, the code assigns positive integers starting from 1 as the time indices. For example, if

there are 100 training data points, the code will assign the time indices from 1 to 100.

data = DSWE::data1
trainindex = 1:5000 #using the first 5000 data points to train the model
traindata = data[trainindex,]
xCol = c(2:6) #input variable columns
yCol = 7 #response column
tCol = 1 #column with the time indices
trainX = as.matrix(traindata[,xCol])
trainY = as.numeric(traindata[,yCol])
trainT = as.numeric(traindata[,tCol])

Step 2: Call the tempGP function using the training data. There are two ways to call tempGP,
with training time indices or without training time indices. As explained in Step #1, when

10

training time indices are not assigned, tempGP automatically assigns the time indices starting
from 1.

Two ways to call the tempGP function
1. Using user defined trainT
tempGPObject = tempGP(trainX, trainY, trainT)

2. Generating time indices internally as the sequence of integers starting from 1.
tempGPObject = tempGP(trainX, trainY)

Step 3: Use the predict method to get predictions from the learned model. Again, one can
either use just environmental input variables alone to predict the response, or also use the time
indices of the test data points. We first show the case for using just the environmental input
variables and provide details of using time indices in Section 3.1.

testdata = data[5001:10000,] # defining test data as the next 5000 data points after
train indices

Predict only the function f(x) and ignore temporal component g(t)
testX = as.matrix(testdata[,xCol,drop = F])
testY = as.numeric(testdata[,yCol])
predF = predict(tempGPObject, testX)
rmseF = sqrt(mean((testY - predF)^2)) #rmse
cat('RMSE using just f(x):',round(rmseF,3),'\n')

11

How to update the training data in the tempGP model when new data is available?

Using the time indices for test data points improves the prediction accuracy of the tempGP
model if the time indices of the test points are close to that of the training points, as the
temporal dependence in response vanishes after a short period of time. Thus, we have
provided another function updateData to keep updating the training data as the new data
becomes available.

Predict both f(x) and g(t) using a rolling window data update with the help of
updateData() method for tempGP objects.

predY = rep(0,nrow(testdata)) #vector to store the rolling predictions

Step 1: Do an i-step ahead prediction given the input variables. In this example, we use the
actual input variable values; if the input variable values are not available, replace with their
forecast.

#starting a loop for doing the rolling predctions
for (i in 1:nrow(testdata)){

 testX_i = as.matrix(testdata[i,xCol,drop = F]) #input variables for time point i;
replace with forecast when actual data not available.

 testT_i = testdata[i,tCol] #time index for i

 predY[i] = predict(tempGPObject, testX_i, testT_i) #predict both f(x) and g(t)

Step 2: Once the data for time point ‘ i ’ is available, update the tempGP model using the
updataData function.

 #After time point i, the data for time point i would be available. Update the data
and residuals in the tempGP object.

 tempGPObject = updateData(tempGPObject, newX = testX_i, newY = testY[i], newT =
testT_i)
}

rmseY = sqrt(mean((testY - predY)^2)) #rmse

cat('RMSE using rolling update and f(x) + g(t):',round(rmseY,3),'\n')

12

5 How to use AMK to fit a multi-dimensional power curve?

Step 1: The data set mentioned in previous question will be used to demonstrate the usability

of AMK. The package is loaded and data is imported as shown.

Step 2: Prepare the arguments to fit a power curve as shown.

Result display in

the console
Function used

13

6 How to use the spline model to fit a multi-dimensional power

curve?

Step 1: The data set mentioned in previous question will be used to demonstrate the usability

of SplinePCFit. The package is loaded and data is imported as shown.

Step 2: Prepare the arguments to fit a power curve as shown.

Result display in

the console

Function used

14

7 How to use the Bayesian tree model to fit a multi-dimensional

power curve?

Due to some issues related to CRAN package BayesTree, that has not been resolved

by its maintainer, the BayesTreePCFit function in DSWE, which depends on BayesTree,

has to be discontinued for now.

Step 1: The data set mentioned in previous question will be used to demonstrate the usability

of BayesTreePCFit. The package is loaded and data is imported as shown.

Step 2: Prepare the arguments to fit a power curve as shown.

 Function used

Result display in

the console

15

8 How to use the XGBoost model to fit a multi-dimensional power

curve?

Step 1: The data set mentioned in the previous question will be used to demonstrate the

usability of XgbPCFit, i.e., the XGBoost-based power curve model. The package is loaded and

data is imported as shown

Step 2: Prepare the arguments to fit a power curve as shown.

Result display in

the console

Function used

16

9 How to use the support vector machine to fit a multi-dimensional

power curve?

Step 1: The data set mentioned in previous question will be used to demonstrate the usability

of SvmPCFit. The package is loaded and data is imported as shown.

Step 2: Prepare the arguments to fit a power curve as shown.

Function used

Result display in

the console

17

10 How do the power curve functions compare with each other?

We tested the power curve functions implemented both in R and Python packages using

Dataset#5 (Inland and Offshore Wind Farm Dataset1) of the Data Science for Wind Energy book.

Please follow the instruction of Step 1 to Question 3 “How to use KNN to fit a multi-dimensional

power curve?” to download the datasets. There are six turbine datasets in Dataset#5, four from

onshore turbines and two from offshore turbines.

The following power curve functions are tested: tempGP, AMK, KNN, DNN, SSANONA, SVM,

XGBoost, and the binning method (the IEC standard procedure).

The following table presents the root mean square error (RMSE) based on a randomized five-

fold cross-validation. The power is normalized, with each turbine’s rated power as 100%. So

the values reported below are relative to the rated power. For instance, 0.1 means 10% of the

rated power.

In the table, the results of AMK, KNN, SSANOVA, and the binning method are taken directly

from Table 5.7 of the Data Science for Wind Energy book, the results of tempGP, TempGP(fast

computation), XGBoost and SVM are obtained using the respective R package functions, and

the results of DNN are obtained using its Python package function.

tempGP
tempGP (fast
computation)

AMK KNN DNN SSANOVA SVM XGBoost BIN

WT1 0.064 0.065 0.074 0.077 0.082 0.087 0.100 0.115 0.131

WT2 0.070 0.070 0.080 0.083 0.088 0.091 0.099 0.115 0.116

WT3 0.056 0.055 0.065 0.067 0.074 0.077 0.091 0.109 0.122

WT4 0.079 0.079 0.100 0.104 0.111 0.112 0.125 0.131 0.152

WT5 0.066 0.068 0.079 0.081 0.089 0.095 0.094 0.116 0.097

WT6 0.066 0.069 0.080 0.083 0.094 0.104 0.104 0.119 0.109

Average 0.067 0.068 0.080 0.082 0.090 0.094 0.102 0.118 0.121

Relative
to the

original
tempGP

- 1.01 1.19 1.23 1.34 1.41 1.53 1.75 1.81

https://sites.google.com/view/yuding/book-dswe/dswe-datasets
https://zenodo.org/record/5516552
https://sites.google.com/view/yuding/book-dswe
https://sites.google.com/view/yuding/book-dswe

18

11 How to select the subsets of data, before and after a decision point,

so that they can be deemed probabilistically comparable?

Step1: Download the sample data set.

Visit site using following link - https://sites.google.com/view/yuding/book-dswe/dswe-datasets

The page looks like as shown below and select Dataset #5.

Download the data set as shown below in green boxes. After downloading, save the file in

working directory.

https://sites.google.com/view/yuding/book-dswe/dswe-datasets

19

Step 3: The package is loaded and data is imported. Also, arguments are prepared and

matching function is employed as shown

Matched data retrieval

using model followed

by $

Data set 1

Function used
Data set 2

20

12 How to compare performance of two turbine or two data set in

different time period?

Step 1: The data set mentioned in previous question will be used to demonstrate the

performance quantification. The package is loaded and data is imported as shown.

Step 2: Prepare the arguments to use performance comparison function as shown.

 Result retrieval Argument

preparation

Data set

Function used

21

How to use a different probability distribution than that computed from the data to

compute the weighted difference between the power curves?

Step 1: Construct a desired testset and a probability distribution over that testset as shown

below as an example:

Step 2: Run ComparePCurve() function as described earlier with the testset generated in Step 1

as one of the inputs:

Step 3: Use the output from ComparePCurve() function to compute the weighted difference

and statistically significant weighted difference with the weights computed in Step 1 as follows:

22

13 A case study of estimating the effect associated with turbine

upgrades.

This case study applies the functions in the DSWE package to the Turbine Upgrade Dataset,

associated with the book, Data Science for Wind Energy, and available from the website below.

The case study is explained in Section 4.1 of the preprint https://arxiv.org/pdf/2005.08652.pdf.

Additional information about the dataset and turbine upgrades can be found in Section 1.2.3

and Chapter 7 of Data Science for Wind Energy. The dataset includes two cases of

upgrades⎯one is the pitch angle adjustment and the second is the vortex generator installation.

The steps below explain how the top rows of Table 3 of the preprint

https://arxiv.org/pdf/2005.08652.pdf are obtained as well as how the VG effect is estimated.

The above preprint is now published in the journal of Renewable Energy. The paper’s full

citation is

Ding, Kumar, Prakash, Kio, Liu, Liu, and Li, 2021, “A case study of space-time performance

comparison of wind turbines on a wind farm,” Renewable Energy, Vol. 171, pp. 735-746.

One can go to https://sites.google.com/view/yuding/publications (and then go to J77) to get

the reproducibility report and R code for reproducing the majority of the results in this paper.

Step1: Download the sample data set as shown.

Visit site using the following link - https://sites.google.com/view/yuding/book-dswe/dswe-

datasets. The page looks like as shown below and select Dataset #7.

Download the sample data set as shown below. After downloading, save the file in working

https://sites.google.com/view/yuding/book-dswe
https://arxiv.org/pdf/2005.08652.pdf
https://sites.google.com/view/yuding/book-dswe
https://arxiv.org/pdf/2005.08652.pdf
https://sites.google.com/view/yuding/publications
https://sites.google.com/view/yuding/book-dswe/dswe-datasets
https://sites.google.com/view/yuding/book-dswe/dswe-datasets

23

directory.

Step 2: Set the path containing data set to a current working directory. Further load the

package and import the data set as shown

For pitch angle pair:

Pitch angle adjustment VG upgrade

24

For VG upgrade:

Step 3: Use the performance comparison function on pitch angle adjustment and VG upgrade

as shown below. In case of pitch angle adjustment, user just needs to import the appropriate

data set and change the value of ‘input’ variable as shown below in the script

For Pitch Angle adjustment:

 Data set
Control model

User defined input (2-9)

25

Test model Result display

26

For VG upgrade:

Target for control and

test model

Result display in the

console

27

14 How to use the Energy Decomposition approach and the

deltaEnergy function?

The following example applies the functions to the Turbine Upgrade Dataset, which bears similarity to

the case study in:

Latiffianti, E, Ding, Y, Sheng, S, Williams, L, Morshedizadeh, M, Rodgers, M. Analysis of leading edge

protection application on wind turbine performance through energy and power decomposition

approaches. Wind Energy. 2022; 25(7): 1203- 1221. doi:10.1002/we.2722. Available online:

https://onlinelibrary.wiley.com/doi/full/10.1002/we.2722

This approach can be used for two purposes: 1) estimating the effect associated with turbine upgrades,

2) comparing the performance of two turbines on the same period of operations. Both will be

demonstrated in the following.

Step1: The data set mentioned in the previous question will be used to demonstrate the performance

quantification. Perform Step 1 from the previous question.

Download the sample data set as shown below. After downloading, save the file in the working

directory.

Step 2: Set the path containing data set to a current working directory. Further load the

package and import the data set as shown.

https://onlinelibrary.wiley.com/doi/full/10.1002/we.2722

28

Step 3: To apply performance comparison using energy decomposition, the data pair needs

synchronization and imputation. There are three functions available related to the energy

decomposition: syncSize, imptPower and deltaEnergy. The deltaEnergy automatically

includes syncSize and it also provides the option to carry imptPower. With the available functions,

there are two ways to obtain the energy decomposition: A) using deltaEnergy to perform

synchronization, imputation, and decomposition in one go, or B) using imptPower and then apply

deltaEnergy on the output. The following are the script for each Approach A and Approach B

separately.

Energy decomposition using approach A.

Note that the result from energy decomposition and power difference (ComparePCurve) are not

expected to be the same, but intuitively it should be close enough when data pairs are adequate in size.

In this particular example, each pair has 5,000 data points after synchronization. Ideally, 1-year worth of

data should be used. Please refer to Latiffianti et al, 2022 as mentioned above.

Energy decomposition using approach B.

Result display

29

Results from Approach A and Approach B may be slightly different due to randomization in the power

curve modeling (tempGP) and sometimes synchronization (syncSize) when the synchronization

method chosen is ‘random’.

Result display

30

15 (Optional) Installation using source code
The package contains some C++ code for fast computation, and thus requires compiling C++
code if one wishes to install the package using the source code. Following are the necessary
steps in order to get the required compilation tools and install the package from source:

Step 1: Install C++ tool chains, which is the Rtools for Windows and the GFortran for Mac. The
guidelines to install are:

For Windows:
Visit site using the following link: https://cran.r-project.org/bin/windows/Rtools/history.html.
The page directed looks like the below.

Choose the compatible Rtools version from the table below and follow the installation process. If one
uses R 4.0 or up, please select ‘Rtools40-x86_64’. If one uses R 3.5.x-3.6.x, please choose 'Rtools35.exe'.

If the following prompt message box appears with the option of ‘Add rtools to system path,’

please make sure that option is checked. If the option is not shown, then just proceed, and

Step 2 provides the information for manually adding rtools to system path.

https://cran.r-project.org/bin/windows/Rtools/history.html

31

For MacOS:

You would need C++ and Fortran compilers to build the package. Apple’s official C++ compilers

can be downloaded by installing the command line developer tools using the following steps:

● Open the Terminal app
● Type the command: xcode-select –install

An installation window will open up. Click install and the installation would be begin.

Apple’s command line tools do not have a Fortran compiler. It can be downloaded from the

official website of R using the link: https://mac.r-project.org/tools/

The

latest version is for MacOS Mojave but works for MacOS Catalina too. If an older version of

MacOS is in use, use the link in the circle to download for older versions.

Step 2: While installing Rtools, if the prompt message box did not appear with a message ‘Add
rtools to system path’, please follow the steps below to manually add Rtools to system path.

R version: 3.3 to 3.6

https://mac.r-project.org/tools/

32

● First locate Rtools bin location on your computer. The default location for Rtools35 is
“C:\\Rtools\\bin” and the default location for Rtools40 is “C:\\Rtools40\\usr\\bin”. Please
double check and make sure using the File Explorer on your computer.

● Next, use the following command in R, Rtool_bin_location = "C:\\Rtools\\bin"
if using Rtools35, or, Rtool_bin_location = "C:\\Rtools40\\usr\\bin" if using
Rtools40. If the Rtools bin is not located in directory, please enter the right location
identified in the above step.

● Last, execute the following command in R, Sys.setenv(PATH =
paste(Rtool_bin_location, Sys.getenv("PATH"), sep=";")) , to set up
Rtools in path temporarily.

Step 3: Use the standard install.packages() command as:
install.packages(“DSWE”) to install the package and use the install from source option
when asked.

Note: Some message boxes may pop up asking for user input.

● One pop-up message box asks “Do you want to install from sources the package which
needs compilation?” Upon prompted, please click on “Yes”.

● Another pop-up message box asks for updates. Upon prompted, type “1” and press enter,
as it is safe to overwrite the installed dependencies with the recent ones. The layout of
prompt may differ, depending on R versions in use. Always select the option to update the
package.

