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1 Differences between DSWE's R package and Python package.

The functions in the two DSWE packages closely mirror each other, but with the following
differences:

A.

DSWE R package does not have the deep learning power curve function
(DNNPowerCurve).

DSWE Python package does not have the spline-based power curve function (SplinePCFit).
DSWE Python package’s BayesTreePowerCurve function uses BartPy, which is the Python
implementation of BART. BartPy was not implemented by the original authors of BART
and its results differ slightly from the BART function in R. So, the difference between the
R and Python versions of the Bayes Tree power curve is larger than those between other
power curve functions in the two packages.

For the time being, AMK in Python has to take the bandwidth parameters from the R
package, as the optimal bandwidth selection algorithm, i.e., the direct plug-in (DPI)
algorithm, is still being implemented. Once DPI is implemented, AMK in Python will be
stand alone.

DSWE Python package does not have the Energy Decomposition function (deltaEnergy).

2 How do |l install the package?

The package is available through CRAN, the official package repository of R, as well as on GitHub.
This package is tested on and is compatible with R of version 3.5.0 or above. When using an
earlier R version, problems may arise.

The package should be installed using the standard install.packages()commandinR or
RStudio:

install.packages (“DSWE>)

Note: The package contains C++ source codes, and thus can be installed using the pre-compiled
binaries available on CRAN or compiling the source code itself. When installing, R might ask if one
wants to install the binaries or compile from source. Please select the latter only if you have the
necessary tools to compile C++ code. For those who wish to compile from source, we provide the
details on how to get the necessary tools in an optional section at the end of this document.

How to update the package to a new version?
Use the following command in R or RStudio:

update.packages (“DSWE”)


https://cran.r-project.org/package=DSWE
https://github.com/TAMU-AML/DSWE-Package

3 How to use KNN to fit a multi-dimensional power curve?

Stepl: Download the sample data set as shown.

Visit site using the following link - https.//sites.qoogle.com/view/yuding/book-dswe/dswe-

datasets. The page looks like as shown below and select the option 5.

- C

Datasets

1. Wind Time Series Dataset

2. Wind Spatial Dataset

3. Wind Spatio-Temporal Dataset1

4 Wind Spatio-Temporal Dataset?

& aml.engr.tamu.edu/book-dswe/dswe-datasets/

5. Inland and Offshore Wind Farm Dataset1 I

Download the sample data set as shown below in green boxes. After downloading, save the file

6. Inland and Offshore Wind Farm Dataset:

12

7. Turbine Upgrade Dataset

8. Wake Effect Dataset

9. Turbine Bending Moment Dataset

10. simulated Bending Moment Dataset

in working directory.

4 Download

-
L
Inland_Offshore_Wind_Farm_Dataset1.zip
Name Date Modified File Size
I ﬁL Inland Wind Farm Dataset1(WT1).csv 2018-05-01 2.95MB
@' Inland Wind Farm Dataseti(WT2).csv  2018-05-01 298 MB
ﬁ" Inland Wind Farm Dataset1(WT3lcsv  2018-05-01 341 M8
@ Inland Wind Farm Dataset1(WT4).csv 2018-05-01 3.07 MB
@' Offshore Wind Farm Dataset1(WT5).csv  2018-05-01 1.43 MB

Computer Code

Datasets

Errata

4

D@

1of1
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https://sites.google.com/view/yuding/book-dswe/dswe-datasets
https://sites.google.com/view/yuding/book-dswe/dswe-datasets

Step 2: Set the path containing data set to a current working directory. Further load the
package and import the data set as shown.

=

#setting the work directory which contains data set
setwd('F:/")

#loading the package
Tibrary(DSWE)

#import the data set
data = read.csv('F:/InTand Wind Farm Datasetl(WTl).csv')

2 W o ] O L B D

Step 3: Prepare the arguments to fit a power curve as shown below.

Tibrary (DSWE)

6

7

8 #import the data set

9 data = read.csv('Inland wind Farm Datasetl(WTl).csv')

11 # Arguments preparation
12 xCol = c(2, 3, 4, 5)
13 yCol = 7

14

15 #model fitting

16 model = KnnPCFit(data = data, xCol = xCol, yCol = yCol)
17 |

18

19 #Result value retrieva
20 modelSbestK

21 modelSRMSE e
17:1 (Top Level) = R Script 2
Console  Terminal Jobs |

> #Result value retrieval
> model$bestK

[1] 10

> mode1$RMSE

[1] 7.736925

_\

Result display in Result retrieval using:

Function used

console model followed by $

Note: - The RMSE reported is based on generalized cross validation on training set. To obtain
a prediction on a test point, follow the next step.



Step 4: Prediction on a test point using the model generated from KnnPCFit and using the
function KnnPredict as shown below.

# Import data set
data = read.csv('C:/Files/InTand Wind Farm Datasetl(wTl).csv')

xcol c(2, 3, 4, 5)
yCol 7

1
2
3
4 # Argument preparation
5
6
7
8

# Model fitting
9 modell = KnnPCFit(data = data, xCol = xCol, yCol = yCol)

11 # Model fitting for prediction
12 model2 = KnnPredict(modell, data[2:10, 1)

14 # Result value rgtrieval

15 _print(model2)
1
(Top Level) 2 R Scrip

Terminal Jobs = [

# Result value retrieval
print(model2)

[1] 46.861212 28.435152 .626667
[8] 19.486667 21.126061

>

9.574545 .225455 14.147273 15.

ITest points I

I Result retrieval I Prediction function Previously generated
used using KnnPCFit




How to select the best subset of variables in building a multi-dimensional power curve?

Step 1: The data set mentioned in previous questions will be used to demonstrate the usability
of subset selections. The package is loaded and data is imported as shown.

#setting the work directory which contains data set
setwd('F:/")

1

2

3

4 #loading the package
5 Tlibrary(DSWE)
6
7
8
9

#import the data set
data = read.csv('F:/Inland Wind Farm Datasetl(WTl).csv')

Step 2: Prepare the arguments to fit the KNN power curve and retrieve the best subset as
shown.

#setting the work directory which contains data set
setwd("F: /")

#loading the package
Tibrary (DSWE)

#import the data set
data = read.csv('Inland wind Farm Datasetl(wWTl).csv')

WO wu b uwiNpE

11 # Arguments preparation
12 xCol = c(2, 3, 4, 5)
13 ycCol = 7

15 #model fifting
16 model = KnnPCFit(data = data, xCol = xCol, yCol

yCol, subsetSelection = T)
19 #Resuft value retrieval
20 modef$xCol

(TAp Level) = R Script =

Jobs = ]

Feature Column T
Retrieve best KNN model fit with

supplied ;
subset column subset selection




Suppose one has built a KNN power curve model using some data. When the new data
comes in, how can one update it periodically?

Step 1: The data set mentioned in previous questions will be used to demonstrate model
update. The package is loaded and data is imported as shown.

D W Co ~] G L1 B N

Console Terminal

F/

> #update model
> modelupdate

>

#setting the work directory which contains data set
setwd('F:/")

#loading the package
Tibrary(DSWE)

#import the data set
data = read.csv('F:/InTand Wind Farm Datasetl(WTl).csv')

: Prepare the arguments to update the previously obtained model using new data as

setwa F:/ U

#loading the package
Tibrary (DSWE)

#import the data set
data = read.csv('Inland wind Farm Datasetl(WTl).csv')

# Arguments preparation
xcol c(2, 3, 4, 5)
yCol 7

#model fitting
model = KnnPCFit(data = data, xCol = xCol, yCol = ycCol)

#new data
newdata = data[300:600, ]

#update model
modelupdate = KnnUpdate(knnMdl = model, newData = newdata)

{x

(Top Level) 2 R Script 2

=

KnnuUpdate (knnMd1l = model, | newbata = newdata)

Model Update Previous model

Function




4 How to use temporal Gaussian process (tempGP) model to fit a
multi-dimensional power curve?

Note:

The temporal Gaussian Process, or tempGP, is a Gaussian process-based model, and hence the
inference (fitting) can be computationally expensive for large datasets. In order to overcome
this problem, we implemented an acceleration method using the method of Vecchia.

Vecchia has a few hyperparameters to tune. We have tuned those parameters to strike a
balance between prediction accuracy and computation time. We advise to use the default
parameter settings. The fast computation is expected to be within four minutes on a single core
of a modern computer, in contrast to hours of computation required by the original tempGP.
The accelerated version is set as the default option for the tempGP function.

We expect the fast computation results to be 1-5% worse than that of the original version of
tempGP. If accuracy is extremely important to the user at the cost of orders of magnitude of
increased computation time, then one can easily set the argument vecchia to FALSE and
limit_memory to None to use the original version of tempGP.

Example:
For this example, we use datal in the DSWE package.

Step 1: Divide the training dataset into an input variable matrix and a response vector. One can
also create a vector of time indices for the training data points. If the time indices are not
created, the code assigns positive integers starting from 1 as the time indices. For example, if
there are 100 training data points, the code will assign the time indices from 1 to 100.

data = DSWE::datal

trainindex = 1:5000 #using the first 5000 data points to train the model
traindata = data[trainindex, ]

xCol = ¢(2:6) #input variable columns

yCol = 7 #response column

tCol = 1 #column with the time indices

trainX = as.matrix(traindata[,xCol])

trainY = as.numeric(traindata[,yCol])

trainT = as.numeric(traindata[,tCol])

Step 2: Call the tempGP function using the training data. There are two ways to call tempGP,
with training time indices or without training time indices. As explained in Step #1, when



training time indices are not assigned, tempGP automatically assigns the time indices starting
from 1.

## Two ways to call the tempGP function
# 1. Using user defined trainT
tempGPObject = tempGP(trainX, trainY, trainT)

# 2. Generating time indices internally as the sequence of integers starting from 1.
tempGPObject = tempGP(trainX, trainy)

Step 3: Use the predict method to get predictions from the learned model. Again, one can
either use just environmental input variables alone to predict the response, or also use the time
indices of the test data points. We first show the case for using just the environmental input
variables and provide details of using time indices in Section 3.1.

testdata = data[5001:10000,] # defining test data as the next 5000 data points after
train indices

## Predict only the function f(x) and ignore temporal component g(t)
testX = as.matrix(testdata[,xCol,drop = F])

testY = as.numeric(testdata[,yCol])

predF = predict(tempGPObject, testX)

rmseF = sqrt(mean((testY - predF)”2)) #rmse

cat('RMSE using just f(x):',round(rmseF,3),'\n")

10



How to update the training data in the tempGP model when new data is available?

Using the time indices for test data points improves the prediction accuracy of the tempGP
model if the time indices of the test points are close to that of the training points, as the
temporal dependence in response vanishes after a short period of time. Thus, we have
provided another function updateData to keep updating the training data as the new data
becomes available.

## Predict both f(x) and g(t) using a rolling window data update with the help of
updateData() method for tempGP objects.

predY = rep(@,nrow(testdata)) #vector to store the rolling predictions

Step 1: Do an j-step ahead prediction given the input variables. In this example, we use the
actual input variable values; if the input variable values are not available, replace with their
forecast.

#starting a loop for doing the rolling predctions
for (i in 1:nrow(testdata)){

testX i = as.matrix(testdata[i,xCol,drop = F]) #input variables for time point i;
replace with forecast when actual data not available.

testT_i = testdata[i,tCol] #time index for i

predY[i] = predict(tempGPObject, testX i, testT_i) #predict both f(x) and g(t)

Step 2: Once the data for time point ‘i’ is available, update the tempGP model using the
updataData function.

#After time point i, the data for time point i would be available. Update the data
and residuals in the tempGP object.

tempGPObject = updateData(tempGPObject, newX = testX_i, newY = testY[i], newT =
testT_i)
}

rmseY = sqrt(mean((testY - predY)”2)) #rmse

cat('RMSE using rolling update and f(x) + g(t):',round(rmseY,3),'\n")

11




5 How to use AMK to fit a multi-dimensional power curve?

Step 1: The data set mentioned in previous question will be used to demonstrate the usability
of AMK. The package is loaded and data is imported as shown.

#setting the work directory which contains data set
setwd('F:/")

#loading the package
Tibrary(DSWE)

#import the data set
data = read.csv('F:/InTand Wind Farm Datasetl(WT1l).csv')

D W Co ~1 G ol B N

a

Step 2: Prepare the arguments to fit a power curve as shown.

#loading the package -

5

6 Tibrary (DSWE)

7

8 #import the data set

=] data = read.csv("Inland wind Farm Datasetl(WTl).csv')
10

11 # Arguments preparation

12 trainXx = datal[, c(2, 3, 4)]

13 trainy = datal[, 7]

14 testX = datal[30:50, c(2, 3, 4)]
15 cirCov = 2

17 #model fitting
18 model = AMK(trainX = trainX, trainyY = trainyY, testX = testX, cirCov = circCov)

21 #Result value ragrieval

22 print(model)

23
»
19:1 (Top Level) = R Script =
Console Terminal Jobs |
F./

> #Result value retrieval
> print(model)
[1] 43.75839 47.05013 42.76889 39.88256 34.08 4 31.54263 37.97694 41.69231
[9] 38.80486 46.18037 44.88440 49.20261 56.27825.50.38758 48.07383 53.07551
[17] 55.41698 61.68535 33.73371 38.47867 35.89820
>

Result display in Function used
the console

12



6 How to use the spline model to fit a multi-dimensional power
curve?

Step 1: The data set mentioned in previous question will be used to demonstrate the usability
of SplinePCFit. The package is loaded and data is imported as shown.

#setting the work directory which contains data set
setwd('F:/")

#loading the package
Tibrary(DSWE)

#import the data set
data = read.csv('F:/Inland wind Farm Datasetl(WTl).csv')

D W 0o ~ O w1 w2

a

Step 2: Prepare the arguments to fit a power curve as shown.

1 # 1oiaing Tibrary
Tibrary (DSWE)

2
3
4 # import the data set

5 data = read.csv('Inland wind Farm Datasetl(WTl).csv')
6

7

8

# Arguments preparation

data = data
9 xcol = c(2, 3, 4)
10 ycol =7
11 testX = data[30:50, ]
12

13 # model fitting
14 model = SplinePCFit(data = data, xCol = xCol, yCol = yCol, testX = testX)

16 # Result retrieval
17 print(model)

18:1 (Top Level) &

Console  Terminal Jobs

c:/Files/
> # Result retrieval
> print(model)

[1] 37.59174 41.61286 36.88821 33.39156 24.65419 22
[11] 37.75112 43.87695 50.80703 44.55413 42.34244 47.6
[21] 34.95442

> |

6355 27.54371 31.79511 30.85075 39.72490
3 53.02681 62.49079 32.56616 38.26896

Result display in Function used
the console

13



7 How to use the Bayesian tree model to fit a multi-dimensional
power curve?

Due to some issues related to CRAN package BayesTree, that has not been resolved
by its maintainer, the BayesTreePCFit function in DSWE, which depends on BayesTree,
has to be discontinued for now.

Step 1: The data set mentioned in previous question will be used to demonstrate the usability

of BayesTreePCFit. The package is loaded and data is imported as shown.

#setting the work directory which contains data set
setwd('F:/")

#loading the package
Tibrary(DSWE)

#import the data set
data = read.csv('F:/InTand wWind Farm Datasetl(WTl).csv')

2W 00 ~1 w1 w2

a

Step 2: Prepare the arguments to fit a power curve as shown.

# loading library
Tibrary (DSWE)

# import the data set
data = read.csv('Inland wind Farm Datasetl(WTl).csv')

# Arguments preparation

trainX = datal[, c(2, 3, 4)]
trainy = datal[, 7]

10 testX = data[30:50, c(2, 3, 4)]
11 ntree = 50

WOV HA WM

12

13 # model fitting

14 model = BayesTreePCFgt(trainX = trainX, trainyY = trainy, testX = testX, hTree = ntree)
15

16 # Result retrieval
17 print(model)

18:1 (Top Level) = R Script 2
Console  Terminal Jobs -]
c:/Files/

> # Result retrieval
> print(model)

[1] 38.44786 40.42227 36.09804 33.53336 22.90946 23.26
[11] 38.44786 42.14432 53.71039 45.09118 42.14432 48.2617
[21] 34.79524
> |

7 27.63178 32.23961 28.92553 38.44786
60.49887 67.63969 29.05692 40.07448

Result display in
the console | Function used |

14



8 How to use the XGBoost model to fit a multi-dimensional power
curve?

Step 1: The data set mentioned in the previous question will be used to demonstrate the
usability of XgbPCFit, i.e., the XGBoost-based power curve model. The package is loaded and
data is imported as shown

#setting the work directory which contains data set
setwd('F:/")

#loading the package
Tibrary(DSWE)

#import the data set
data = read.csv('F:/Inland Wind Farm Datasetl(wTl).csv')

2 W 0o~ O M

a

Step 2: Prepare the arguments to fit a power curve as shown.

4 # loading library

5 Tlibrary(DSWE)

6

7 # import the dataset

8 data=read.csv('Inland wind Farm Datasetl(WTl).csv')
9
10 # arguments preparing

11 trainx = as.matrix(datal , c(2, 3, 4)]1)
12 trainy = as.matrix(datal , 7])
13 test¥ = as.matrix(datal[30:50, c(2, 3, 4)1)

15 # model fitting
16 model = xXgbPCFit(trainx = trainx, trainy = trainy, testX = testX)

18 # result retrieva

19 printimodel)
20
18:3 (Top Level) =

Console  Background lobs
R R41.3 . C/Users/19797/0nelrive/Desktop/Datasets/
= print{model)
[1] 29.37282 31.71445 27.46764 26.04504 2
[6] 18.84400 20.83572 24.76675 22.52099 31.
[11] 29.37282 34.80626 39.61592 34.75877 31.
[16] 28.83776 41.55432 50.92761 23.20047 26.49713
[21] 23.20947

Function used

Result display in
the console

15



9 How to use the support vector machine to fit a multi-dimensional
power curve?

Step 1: The data set mentioned in previous question will be used to demonstrate the usability
of SymPCFit. The package is loaded and data is imported as shown.

#setting the work directory which contains data set
setwd('F:/")

#loading the package
Tibrary(DSWE)

#import the data set
data = read.csv('F:/Inland Wind Farm Datasetl(WT1).csv')

WO Co ~ D v W M

Step 2: Prepare the arguments to fit a power curve as shown.

# loading library
Tibrary (DSwWE)

# import the data set
data = read.csv('Inland wind Farm Datasetl(wTl).csv')

WoONGOW b w

# arguments preparing

10 +trainx = datal, c(2, 3, 4)]

11 trainy = datal[, 7]

12 testxX = datal[30:50, c(C2, 3, 4)]

13

14 # model fitting

15 model = svmPCFit(trainX = trainX, trainy = trainyY, testX = testX)
16

17 # result retrieva
18 print(model)
19

18:12 (Top Level) = R Scrij
Console Terminal Jobs —
C:/Files/

> # result retrieval
> print(model)
30

31 33 34 35 36 37 38

39.68693 43.32704 38.39222 35.12603 26. 49 23.98868 30.69213 35.08113 32.13036

39 40 41 42 44 45 46 47

41.47650 39.31682 45.59180 53.14763 46.6702 - 51.48125 55.21317 63.31669
48 49 50

27.62785 34.00319 30.17626

Function used

Result display in
the console

16



10 How do the power curve functions compare with each other?

We tested the power curve functions implemented both in R and Python packages using
Dataset#5 (Inland and Offshore Wind Farm Dataset1) of the Data Science for Wind Energy book.
Please follow the instruction of Step 1 to Question 3 “How to use KNN to fit a multi-dimensional
power curve?” to download the datasets. There are six turbine datasets in Dataset#5, four from
onshore turbines and two from offshore turbines.

The following power curve functions are tested: tempGP, AMK, KNN, DNN, SSANONA, SVM,
XGBoost, and the binning method (the IEC standard procedure).

The following table presents the root mean square error (RMSE) based on a randomized five-
fold cross-validation. The power is normalized, with each turbine’s rated power as 100%. So
the values reported below are relative to the rated power. For instance, 0.1 means 10% of the
rated power.

In the table, the results of AMK, KNN, SSANOVA, and the binning method are taken directly
from Table 5.7 of the Data Science for Wind Energy book, the results of tempGP, TempGP(fast
computation), XGBoost and SVM are obtained using the respective R package functions, and
the results of DNN are obtained using its Python package function.

tempGp | [emMPGP(fast 1\ KNN DNN SSANOVA SVM XGBoost BIN
computation)
WT1 0.064 0.065 0074 | 0077 0.082 0.087 0.100 0.115 0.131
WT2 0.070 0.070 0080 | 0.083 0.088 0.091 0.099 0.115 0.116
WT3 0.056 0.055 0065 | 0.067 0.074 0.077 0.091 0.109 0.122
WT4 0.079 0.079 0100 | 0.104 0.111 0.112 0.125 0.131 0.152
WTS 0.066 0.068 0079 | 0.081 0.089 0.095 0.094 0.116 0.097
WT6 0.066 0.069 0080 | 0.083 0.094 0.104 0.104 0.119 0.109
Average 0.067 0.068 0080 | 0.082 0.090 0.094 0.102 0.118 0.121
Relative
to the 1.01 1.19 1.23 1.34 1.41 1.53 1.75 1.81
original
tempGP

17



https://sites.google.com/view/yuding/book-dswe/dswe-datasets
https://zenodo.org/record/5516552
https://sites.google.com/view/yuding/book-dswe
https://sites.google.com/view/yuding/book-dswe

11 How to select the subsets of data, before and after a decision point,
so that they can be deemed probabilistically comparable?

Stepl: Download the sample data set.

Visit site using following link - https://sites.qoogle.com/view/yuding/book-dswe/dswe-datasets
The page looks like as shown below and select Dataset #5.

- C & amlengrtamu.edu/book-dswe/dswe-datasets/ * N D o ]
Datasets Computer Code -
1. Wind Time Series Dataset e

Errata
2. Wind Spatial Dataset

< ews
3. Wind Spatio-Temporal Dataset —

4. Wind Spatio-Temporal Dataset?

5. Inland and Offshore Wind Farm Dataset1

6. Inland and Offshore Wind Farm Dataset2

7. Turbine Upgrade Dataset
8. Wake Effect Dataset

9. Turbine Bending Moment Dataset

10. Simulated Bending Moment Dataset

Download the data set as shown below in green boxes. After downloading, save the file in
working directory.

4 Download 10f1 @

Inland_Offshore_Wind_Farm_Dataset1.zip

Name Date Modified File Size

ﬁ':“ Inland Wind Farm Dataset1(WT1).csv 2018-05-01 2.95 MB

Inland Wind Farm Dataset!(WT3).csv

@ Inland Wind Farm Dataset!(WT4).csv ~ 2018-05-01

@ Offshore Wind Farm Dataset1(WT5).csv - 2018-05-01

18
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Step 3: The package is loaded and data is imported. Also, arguments are prepared and

matching function is employed as shown

FRELLINYG LNE WUk UIrecLory wriicr Corctdins udid >€EL
setwd('F: /")

<
3
4
5 #loading the package
6 library(DSWE)
7
8
9

#import the data set

datal = read.csv('Inland wind Farm Datasetl(wTl).csv’
atasetl(WT2).csv')

10 data2 = read.csv('InTland wWind Farm

12 # Arguments preparation
13 data = Tlist(datal, data2)
14 xCol = c(2, 3, 4)

15 xCol.circ = 3

17 #model fitting
18 model = CovMatch(data = data, xCol = xCo

20 #matched data refrieval
21 model$matchedbata

(T@gp Level) =

F:/

Matched data retrieval
using model followed

by $

Function used I
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, XCol.circ

= xCol.cirg)

Sequence.No. Y D air.density I S_b
17.96 1.140224 0.09045226 \0.26651195
2 8.19 1.140522 0.08302808 .28616745
3 7.20 1.140771 0.09861111 . 33932122
4 6.81 1.141186 0.10132159 0)\37581495

I Data set 2

R Script 2

=0

I Dataset 1




12 How to compare performance of two turbine or two data set in
different time period?

Step 1: The data set mentioned in previous question will be used to demonstrate the

performance quantification. The package is loaded and data is imported as shown.

L
3
4
5
6
7
8
9

10

e - 7

#SETTING TNE WOrK OTrECTOry WNTCh COMTAIns gatd SEtT
setwd('F:/")

#loading the package
Tibrary(DSWE)

#import the data set
datal = read.csv('Inland Wind Farm Datasetl(WT1l).csv')
data2 = read.csv('Inland Wind Farm Datasetl(WT2).csv')

: Prepare the arguments to use performance comparison function as shown.

#loading the package
Tibrary (DSWE)

#import the data set
datal = read.csv('Inland wind Farm Datasetl(WTl).csv')
data2 = read.csv('InTand wWind Farm DatasetlWwT2).csv')

# Arguments preparation
data = 1list(datal, data2)
xCol = c(2, 3, 4)
xcol.circ = 3
yCol = 7

testCol = c(2, 4)

#model fitting
model = ComparePCurye(data

#Result retrieval
model$weightedDiff
model$scaledDiff

Result

[P

data, xCol = xCol, xCol.circ = %Col.cinc, yCol = yCol, testCol = tes

>
R Script 2

=0

retrieval Argument

. preparation
Function used
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How to use a different probability distribution than that computed from the data to
compute the weighted difference between the power curves?

Step 1: Construct a desired testset and a probability distribution over that testset as shown
below as an example:

## Construct a custom testset and custom weights.

ws_min = 5 #minimum value of wind speed for constructing the testset.

ws_max = 15 #maximum value of wind speed for constructing the testset.

ws_test = seq(ws_min, ws_max, length.out = 5@) #generate 50 grid points for wind speed.
rho_min 1.1 #minimum value of air density for constructing the testset.

rho_max = 1.3 #maximum value of air density for constructing the testset.

rho_test = seq(rho_min, rho_max, length.out = 5@) #generate 50 grid points for air density.

#Combine ws_test and rho_test to create a 50 by 50 mesh grid.
testset = expand.grid(ws_test, rho_test)

#For example, We use a Weibull distribution for windspeed with shape = 2.25 and scale = 6.5.
#and uniform distribution for air density. Please change as desired.

#Multiplying the weights by 1 to denote a uniform distribution for air density.

weights = dweibull(testset[,1], shape = 2.25, scale = 6.5)*1

weights = weights/sum(weights) #normalizing weights to ensure that they sum to 1.

Step 2: Run ComparePCurve() function as described earlier with the testset generated in Step 1
as one of the inputs:

#Loading the package and reading the data
library(DSWE)

datal = read.csv('Inland Wind Farm Dataset1(WT1).csv')
data2 = read.csv('Inland Wind Farm Datasetl(WT2).csv')
hatalist = list(datal,data2)

#Calling ComparePCurve() function
output = ComparePCurve(data = datalist, xCol = c(2,3,4), xCol.circ = 3,
yClol = 7, testCol = c(2,4), testSet = testset)

Step 3: Use the output from ComparePCurve() function to compute the weighted difference
and statistically significant weighted difference with the weights computed in Step 1 as follows:

# Computing weighted difference with mul as the base for percentage calculation

muDiff = output$muDiff

base = outputimul

weightedDiff = ComputeWeightedDifference(muDiff = muDiff, weights = weights, base = base)

# Computing statistically significant weighted difference

confBand = output$band

weightedStatDiff = ComputeWeightedDifference(muDiff = muDiff, weights = weights, base = base,
statDiff = TRUE, confBand = confBand)
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13 A case study of estimating the effect associated with turbine
upgrades.

This case study applies the functions in the DSWE package to the Turbine Upgrade Dataset,
associated with the book, Data Science for Wind Energy, and available from the website below.
The case study is explained in Section 4.1 of the preprint https://arxiv.org/pdf/2005.08652.pdf.
Additional information about the dataset and turbine upgrades can be found in Section 1.2.3
and Chapter 7 of Data Science for Wind Energy. The dataset includes two cases of
upgrades—one is the pitch angle adjustment and the second is the vortex generator installation.
The steps below explain how the top rows of Table 3 of the preprint
https://arxiv.org/pdf/2005.08652.pdf are obtained as well as how the VG effect is estimated.

The above preprint is now published in the journal of Renewable Energy. The paper’s full
citation is

Ding, Kumar, Prakash, Kio, Liu, Liu, and Li, 2021, “A case study of space-time performance
comparison of wind turbines on a wind farm,” Renewable Energy, Vol. 171, pp. 735-746.

One can go to https://sites.qgoogle.com/view/yuding/publications (and then go to J77) to get
the reproducibility report and R code for reproducing the majority of the results in this paper.

Stepl: Download the sample data set as shown.

Visit site using the following link - https.//sites.qoogle.com/view/yuding/book-dswe/dswe-
datasets. The page looks like as shown below and select Dataset #7.

- C @ amlengr.tamu.edu/book-dswe/dswe-datasets/ ¥ o o :

Datasets Computer Code

Download the sample data set as shown below. After downloading, save the file in working
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directory.

\_L Download
Turbine_Upgrade_Dataset.zip
Name Date Modified File Size
@ Turbine Upgrade Dataset(Pitch Angle Pi  2018-05-24 323 MB
@ Turbine Upgrade Dataset(Pitch Angle P 2020-06-05 532 MB
@ Turbine Upgrade Dataset(VG Pair).csv ~ 2018-05-24 5.12 MB
Pitch angle adjustment VG upgrade

Step 2: Set the path containing data set to a current working directory. Further load the
package and import the data set as shown

For pitch angle pair:

# setting the working directory which contains data set
setwd('F:/")

—

# loading Tibrary
11brary(DSWE)

# mport the data set
data = read.csv('Turbine Upgrade Dataset(Pitch Angle Pair, Table7.3).csv')

W O ) O o Bl o
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For VG upgrade:

S e X7

# setting the working directory which contains data set
setwd('F:/")

oA ' | e

# loading T1brary
11brary(DSWE)

# import the data set
data = read.csv('Turbine Upgrade Dataset(VG Pair).csv')

Step 3: Use the performance comparison function on pitch angle adjustment and VG upgrade
as shown below. In case of pitch angle adjustment, user just needs to import the appropriate
data set and change the value of ‘input’ variable as shown below in the script

For Pitch Angle adjustment:

# import the data set
data = read.csv('Turbine upgrade Dataset(Pitch Angle Pair, Table7.3).csv')

#creating a result data frame
input = # enter a value between 2 - 9 (integer)

2 = datal[dataSupgrade.status==1, ]
c(2,3,4,5,6,7,8,9

ime = c(1.25, 1.87, 2.49, 3.11, 3.74, 4.36, 4.98, 5.60)
=c(3, 4, 5,6, 7)

dataList = Tist(datal, data2)

control model

ontrol = ComparePCurve(data = dataList, xCol = xCol, xCol.circ = xCol.&irc, testcol = c(3, 4), thrs = 0.2, ycol = 18)

I Data set I

I Control model I | User defined input (2-9)
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22 # test model

23 ycol = c(10, 11, 12, 13, 14, 15, 16, 17)

24 rprime = rprime[r == input]

25 ycol = ycol[r == input]

26 r = r[r == input]

27 test = ComparePcCurve(data = datalist, xCol = xCol, xCol.circ = xCol.circ, testCol = c(3, 4), thrs = 0.2, yCol = yCol)
28 result_table[2, 2] = testSweightedDiff - controlSweightedDiff

29 result_table[3, 2] = round(result_table[2, 2] / rprime, 2)

30 result_table[l, 2] = paste(rprime, '%', sep = '")
31 result_table[2, 2] = paste(result_table[2, 2], '%', sep = '")
32
33 # display result
34 print(result_table)
35
35:1 (Top Level) +
onsole  Terminal Jobs
fFiles/
# display result
print(result_tabhle)
r 2%
r' 1.25%

our gstimate 1.12%
our estimate/rprime 0.9
|

I Result display I I Test model I
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For VG upgrade:

1 # import the data set

datalList = list(datal, data2)
xcol = c(4, 5, 6, 7)

9 xcol.circ =5

10

11 # control model

12 control = ComparePCurve(data = dataList, xCol = xCol, xCol.circ = xCol.circ, testCol = c(4, 5), thrs = 0.2, yCol = 12)
13

14 # test model

15 test = ComparePCurve(data = datalList, xCol = xCol, xCol.circ = xCol.circ, testCol = c(4, 5), thrs = 0.2, ycol = 11)

16

17 # vG effect

18 VG_Effect = paste(testSweightedDiff - controlSweightedDiff, '%', sep = '')
19

20 # result retrieval

21 print(vG_Effect)

221 (Top Level) 3

2 data = read.csv('Turbine Upgrade Dataset(VG Pair).csv')
3

4 # argument preparation

5 datal = data[dataSupgrade.status == 0, ]

6 data? = data[dataSupgrade.status == 1, ]

7

8

Console ~ Terminal Jobs

c:/Files/

> # result retrieval
> print(VG_Effect)
[1] "1.32%"

> |

Result display in the

Target for control and
console

test model
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14 How to use the Energy Decomposition approach and the
deltaEnergy function?

The following example applies the functions to the Turbine Upgrade Dataset, which bears similarity to
the case study in:

Latiffianti, E, Ding, Y, Sheng, S, Williams, L, Morshedizadeh, M, Rodgers, M. Analysis of leading edge
protection application on wind turbine performance through energy and power decomposition
approaches. Wind Energy. 2022; 25( 7): 1203- 1221. doi:10.1002/we.2722. Available online:
https://onlinelibrary.wiley.com/doi/full/10.1002/we.2722

This approach can be used for two purposes: 1) estimating the effect associated with turbine upgrades,
2) comparing the performance of two turbines on the same period of operations. Both will be
demonstrated in the following.

Stepl: The data set mentioned in the previous question will be used to demonstrate the performance
guantification. Perform Step 1 from the previous question.

Download the sample data set as shown below. After downloading, save the file in the working
directory.

4 Download

3

Turbine_Upgrade_Dataset.zip

Name Date Modified File Size
Ea  Turbine Upgrade Dataset(Pitch Angle i 2018-05-24 323 MB
Ea  Turbine Upgrade Dataset(Pitch Angle P 2020-06-05 532 MB
[ Ed  Turbine Upgrade Dataset(VG Pair.csv  2018-05-24 5.12 MB ]

Step 2: Set the path containing data set to a current working directory. Further load the
package and import the data set as shown.

# setting the working directory that contains data sets
setwd('~F:/")

#loading library
Tibrary(DSWE)

#import the data pets
datal = read.csv('Turbine Upgrade Dataset(VG Pair).csv')
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Step 3: To apply performance comparison using energy decomposition, the data pair needs
synchronization and imputation. There are three functions available related to the energy
decomposition: syncSize, imptPower and deltaEnergy. The deltaEnergy automatically
includes syncSize and it also provides the option to carry imptPower. With the available functions,
there are two ways to obtain the energy decomposition: A) using deltaEnergy to perform
synchronization, imputation, and decomposition in one go, or B) using imptPower and then apply
deltaEnergy on the output. The following are the script for each Approach A and Approach B
separately.

Energy decomposition using approach A.

# Step 3 Approach A
Before = datal[datal$upgrade.status==0,]
After = datal[datal$upgrade.status==1,]

set.seed(50)

upgrade.effect = deltaenergy(data=1ist(Before,After), powercol = 11, xcol = c(4:7), timecol=2,
sync.method = "random", vcol=4, vrange = c(5,12,25))

set.seed(70)

control.effect = deltaeEnergy(data=1ist(Before,After), powercol = 12, xcol = c(4:7), timecol=2,
sync.method = "random", vcol=4,vrange = c(5,12,25))

control.effect$deltak.turb

# VG effects (energy difference)

deltak.turb = round(upgrade.effect$deltaE.turb - control.effect$deltaE.turb,?2)
cat(paste('delta E from VG effects is ',deltak.turb,'%',sep=""),'\n")

> # VG effects (energy difference)
> deltak.turb = round(upgrade.effect$deltake.turb - control.effect$deltak.turb,?2)

> cat(paste('delta E from VG effects is ',deltaE.turb,'%',sep=""),'\n")

delta E from vG effects is 1.46%
\ Result display

Note that the result from energy decomposition and power difference (ComparePCurve) are not
expected to be the same, but intuitively it should be close enough when data pairs are adequate in size.
In this particular example, each pair has 5,000 data points after synchronization. Ideally, 1-year worth of
data should be used. Please refer to Latiffianti et al, 2022 as mentioned above.

Energy decomposition using approach B.

# Using approach B

#Synchronization

set.seed(10)

sync.test = syncSize(data=Tist(Before,After), powercol=11, xcol=c(4:7), method="random',timecol = 2)
set,.seed(10)

sync.control = syncSize(data=list(Before,After), powercol=12, xcol=c(4:7), method='random',timecol = 2)
# Imputation

imput.test imptPower(data=sync.test, powercol=2, vcol ), vrange c(5,12,25), rated.power 1)
imput.control = imptPower(data=sync.control, powercol=2?, vcol = 3, vrange = c(5,12,25), rated.power = 1)
# Energy decomposition

set.seed(10)

deltaE.test deltaEnergy(data imput.test, powercoll?, timecol=1, vcol , xcol c(3:6),imput LSE)
deltak.control = deltatEnergy(data = imput.control, powercol=2, timecol=1, vcol = 3, xcol = c(3:6),imput= )

#Print result
deltak round(deltaE.test$deltaE.turb - deltakE.control$deltakE.turb,2)
cat(paste(deltag, '%' ,sep=""),"'\n")
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#Print result

deltaE = round(deltak.test$deltaE.turb - deltak.control$deltaEk.turb, 2)
cat(paste(deltag, '%"',sep=""))

2%
| Result display

=V VYV

Results from Approach A and Approach B may be slightly different due to randomization in the power
curve modeling (tempGP) and sometimes synchronization (syncSize) when the synchronization
method chosen is ‘random’.
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15 (Optional) Installation using source code

The package contains some C++ code for fast computation, and thus requires compiling C++
code if one wishes to install the package using the source code. Following are the necessary
steps in order to get the required compilation tools and install the package from source:

Step 1: Install C++ tool chains, which is the Rtools for Windows and the GFortran for Mac. The
guidelines to install are:

For Windows:

Visit site using the following link: https://cran.r-project.org/bin/windows/Rtools/history.htmi.
The page directed looks like the below.

<« C' @& cranr-project.org/bin/windows/Rtools/history. htm! Y N & = o §

Building R for Windows

This document is a collection of resources for building packages for R under Microsoft Windows, or for building R itself (version 1.9.0 or later). The original collection was put together by Prof.
Brian Ripley and Duncan Murdoch; it is currently maintained by Jeroen Ooms.

The authoritative source of information for tools to work with the current release of R is the "R Administration and Installation” manual. In particular, please read the "Windows Toolset"
appendix.

Rtools Downloads

Some of the tools are incompatible with obsolete versions of R. We maintain one actively updated version of the tools, and other "frozen" snapshots of them. We recommend that users use the
latest release of Rtools with the latest release of R.

The current version of this file is recorded here: VERSION.txt.

Choose the compatible Rtools version from the table below and follow the installation process. If one
uses R 4.0 or up, please select ‘Rtools40-x86_64’. If one uses R 3.5.x-3.6.x, please choose 'Rtools35.exe’.

Rtools Downloads

Some of the tools are incompatible with obsolete versions of R. We maintain one actively updated version of the tools, and other "frozen" snapshots of them. We recommend that vsers use the
latest release of Rtools with the latest release of R.

The current version of this file is recorded here: VERSION.txt.

[Download R compatibility [Frozen?
IWindows 64-bit: tools40-x86_64.exe (recommended: includes both 1386 and x64 N
compilers) R 4.0 and up No |
(Windows 32-bit: rtools40-1686.exe (1386 compilers only)

Rtools33.exe R33xt03.6x Yes [l

[Reools34exe R33xt036x [Yes
[Riools33.exe R32x1033x [Yes
[Reools32exe R3.1xt032x [Yes
[Recols3 Lexe R30xt031x [Yes
[Reools30.exe R>2151to0R3.0x [Yes

If the following prompt message box appears with the option of ‘Add rtools to system path,’
please make sure that option is checked. If the option is not shown, then just proceed, and
Step 2 provides the information for manually adding rtools to system path.
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m% Setup - Rtools —

Select Additional Tasks
Which additional tasks should be performed?

Select the additional tasks you would like Setup to perform while installing Rtools, then
dick Next.

Add rtools to system PATH
/ Save version information to registry

For MacOS:

You would need C++ and Fortran compilers to build the package. Apple’s official C++ compilers
can be downloaded by installing the command line developer tools using the following steps:

® Open the Terminal app
e Type the command: xcode-select —install
An installation window will open up. Click install and the installation would be begin.

Apple’s command line tools do not have a Fortran compiler. It can be downloaded from the
official website of R using the link: https://mac.r-project.orq/tools/

+ GNU Fortran compiler

Unfortunately Xcode doesn't contain a Fortran compiler, therefore you will have to install one. We recommend
The official GNU Fortran binaries from F.X.Coudert. CRAN High-Sierra builds currently use GNU Gortran 8.2 from
that page (note that even though compiled for Mojave it is compatible with High Sierra).

gfortran-8.2-Mojave.dmg (ca. 87MB, GNU Fortran 8.2 from F.X.Coudert)

SHAZ56 hash: 81d379231ba5671a5ef1b7832531f53bebalc651701a61d87e1d877c4f06d369

/ This is a copy of GNU Fortran 8.2 build froi@_https://github.com/fxcoudert/gfortran-for-macOS/releases

Make sure you add /usr/local/gfortran/bin to your PATH in order to use this compiler. This can be done,
e.g. by
export PATH=$PATH:/usr/local/gfortran/bin

latest version is for MacOS Mojave but works for MacOS Catalina too. If an older version of
MacOS is in use, use the link in the circle to download for older versions.

Step 2: While installing Rtools, if the prompt message box did not appear with a message ‘Add
rtools to system path’, please follow the steps below to manually add Rtools to system path.
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First locate Rtools bin location on your computer. The default location for Rtools35 is
“C:\\Rtools\\bin” and the default location for Rtools40 is “C:\\Rtools40\\usr\\bin”. Please
double check and make sure using the File Explorer on your computer.

Next, use the following command in R, Rtool_bin_location = "C:\\Rtools\\bin'
if using Rtools35, or, Rtool_bin_location = "C:\\Rtools4@\\usr\\bin" if using
Rtools40. If the Rtools bin is not located in directory, please enter the right location
identified in the above step.

e Llast, execute the following command in R, Sys.setenv(PATH =
paste(Rtool_bin_location, Sys.getenv("PATH"), sep='
Rtools in path temporarily.

3")) , tosetup

Step 3: Use the standard install.packages() command as:
install.packages (“DSWE”) to install the package and use the install from source option
when asked.

Note: Some message boxes may pop up asking for user input.

/

One pop-up message box asks “Do you want to install from sources the package which
needs compilation?” Upon prompted, please click on “Yes”.

Another pop-up message box asks for updates. Upon prompted, type “1” and press enter,
as it is safe to overwrite the installed dependencies with the recent ones. The layout of
prompt may differ, depending on R versions in use. Always select the option to update the
package.

Console  Terminal Jobs

> remotes::install_github("TAMU-AML/DSWE-Package™)
Downloading GitHub repo TAMU-AML/DSWE-Package@master
These packages have more recent versions available.
It is recommended to update all of them.

which would you Tike to update?

Al

: CRAN packages only

None

: RcppArmad... (0.9.870.2.0 -> 0.9.880.1.0) [CRAN]

B oW R

Enter one or more numbers, or an empty line to skip updates:

V
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