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Abstract
In recent decades, Earth Observation (EO) systems have seen remarkable technological advancements, leading to a surge in
Earth-orbiting satellites capturing EO data. Cloud-based storage solutions have been adopted to manage the increasing data
volume. Although numerous EO data management and analysis platforms have emerged to accommodate this growth, many
suffer from limitations like closed-source software, leading to platform lock-in and restricted functionalities, restricting the
scientific community from conducting open and reproducible research. To tackle these issues, we present OpenEOcubes, a
lightweight EOdata cubes analysis service that embraces open-source tools, standardizedAPIs, and containerized deployment,
we demonstrate the service’s capabilities in two user scenarios: performing vegetation analysis in Amazonia, Brazil for one
year, and detecting changes in a forested area in Brandenburg, Germany based on five years of EO data.OpenEOcubes is an
easy-to-deploy service that empowers the scientific community to reproduce small and medium-sized EO scientific analysis
while aggregating over a potentially huge amount of data. It enables the extension of functionalities and validation of analysis
carried out on different EO data processing platforms.

Keywords Earth observation data cubes · Reproducible research · OpenEO · User-defined functions

Introduction

The past years have witnessed a significant increase in Earth
Observation (EO) data generation, driven by the deployment
of numerous satellites orbiting the planet. For instance, in
2019 alone, satellites such as Moderate Resolution Imaging
Spectroradiometer (MODIS), Landsat, and Sentinel pro-
duced a staggering 5 Petabytes of satellite images (Soille
et al. 2017).Governments and space agencies have responded
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by implementing open data regulations, making these large
EO datasets widely accessible to the public and scientific
community. This availability has facilitated environmen-
tal monitoring and improved our understanding of global
phenomena, encompassing aspects like urbanization, cli-
mate change, agricultural production, and risk assessment
(Stromann et al. 2019; Kansakar and Hossain 2016). Conse-
quently, EO data sets now align with the 5 V’s of Big Data,
which encompass Volume, Velocity, Variety, Veracity, and
Value. To obtain value, the challenge is to manage the first
four V’s, and for scientists this needs to be done in an inter-
operable, reusable, and reproducible way.

Efficient organization, access, and processing of these vast
EO data sets have challenged the scientific community (Giu-
liani et al. 2019). To address the issue of EO data search
and discovery, the SpatioTemporal Asset Catalog (STAC)
Specification 1 has emerged as a pivotal approach, offering
clear specifications that EO data providers can implement
to facilitate efficient discovery and search of massive EO
datasets. Furthermore, the adoption of data cubes, a multidi-
mensional array data structure, has gainedmomentumamong

1 https://stacspec.org/en
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Fig. 1 A typical raster data cube comprises four dimensions: x, y, bands, and time. Source (Pebesma and Bivand 2023)

scientific communities dealing with EO data. Data cubes
enable the handling, processing, and accessibility ofAnalysis
Ready Data (ARD) for a broader audience interested in satel-
lite imagery (Kopp et al. 2019). Several notable data cube
software implementations include Earth System Data Cube
(Mahecha et al. 2019), Open Data Cube (Lewis et al. 2017),
EuroDataCube 2, and gdalcubes (Appel and Pebesma 2019).
Moreover, cloud computing environments have emerged as
the solution for storing and managing datasets too large to
download and/or handle locally (Zhang et al. 2017).

Numerous platforms have emerged to facilitate the man-
agement and analysis of EO data, encompassing large
datasets. These platforms include Sentinel Hub (SH)3, Open
Data Cube, Google Earth Engine (GEE) (Gorelick et al.
2017), Microsoft Planetary Computer (MPC)4, and the fed-
erated openEO platform (Jacob et al. 2022). Among them,
GEE and SH have achieved broad popularity due to their
user-friendly interfaces and comprehensive EO data analysis
capabilities. However, these platforms exhibit certain limi-
tations. For instance, the presence of closed-source software
can impede research reproducibility, while the inability to
easily replicate the infrastructure and extend functionalities
restricts the existing platforms’ flexibility.

This study leverages the STAC specification, the openEO
API (Schrammet al. 2021), and gdalcubes as the fundamental
components for developing a lightweight RESTful web ser-
vice. This service provides Representational State Transfer
(REST)Application Programming Interface (API) endpoints
tailored for the analysis of EarthObservation (EO) data cubes
within cloud environments. The decision to embrace the ope-
nEO API is driven by its successful implementation and
widespread adoption across various EO cloud services. It fur-
nishes standardized REST-like API functionalities that can
be seamlessly incorporated into diverse programming lan-
guages.

The openEO standardized API serves as the underpin-
ning framework for our RESTful web service dedicated

2 https://eurodatacube.com/
3 https://www.sentinel-hub.com/
4 https://planetarycomputer.microsoft.com/

to EO data cube analysis, ensuring an open governance
model and delivering essential functionalities and processes
to the scientific community. Notably, the openEO API are
endorsed by several reference implementations, including
EURAC5, EODC6, VITO7, mundialis8, Copernicus Data
Space Ecosystem9 and the federated openEO Platform
(Jacob et al. 2022).

Conceptually, the openEO standardized API employs the
notion of a JSON Process Graph10, representing a symbolic
expression tree stored as a directed acyclic graph in JSON
format. This graph delineates processing tasks and opera-
tions, specifying input data, operations, and their parameters.
Consequently, users can construct processing workflows of
arbitrary complexity. When these graphs are transmitted to
an openEO-compliant RESTful web service, it executes the
specified computational steps and returns the desired output.

Appel and Pebesma (2019) defines image collections as
”a set of n images, where images contain m variables or
spectral bands. Band data from one image share a common
spatial footprint, acquisition date/time, and spatial reference
system but may have different pixel sizes”. In contrast to data
cubes, image collections may contain images that partially
overlap, may have gaps and have irregular observation times
(following the path of the satellite), and cover multiple coor-
dinate reference systems. Earth observation (EO) data cubes,
as illustrated in Fig. 1, refer to multidimensional arrays with
regularized spatial and temporal dimensions, designed to
simplify organization and management, enhance query per-
formance, and simplify the analysis of EO data (Kopp et al.
2019). The gdalcubes R package is chosen for the data cube
implementation due to its open-source nature and its offer-
ing of a broad range of data cube operations, enabling the
creation and analysis of on-demand data cubes from satellite
image collections. It utilizes the Geospatial Data Abstraction

5 https://openeo.eurac.edu
6 https://openeo.eodc.eu/openeo/1.1.0
7 https://openeo.vito.be/openeo/1.2
8 https://openeo.mundialis.de/api/v1.0
9 https://openeo.dataspace.copernicus.eu/openeo/1.2
10 https://api.openeo.org/v/0.4.2/processgraphs/
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Fig. 2 Overview of the OpenEOcubes system architecture

Library (GDAL) to read and warp (reproject, rescale, crop,
and resample) EO data, ensuring compatibility with various
EO data collections and Cloud Optimized GeoTIFFs (Appel
and Pebesma 2019).

The gdalcubes package is written in C++ and has an R
interface, making it accessible to scientists and data users
familiar with R. It allows for creating data cubes from image
collections, with a high flexibility in spatial and temporal
aggregation methods, and on-the-fly computation of band
indices. The 4-dimensional EO data cube model incorpo-
rates band/variable, spatial, and temporal dimensions. Users
can define the spatial resolution and target Coordinate Ref-
erence Systems during data cube creation. On-demand cube
creation, lazy evaluation, and chunk-wise in-memory pro-
cessing facilitate computational optimizations and reduced
consumption of computing resources, while parallelization
furthermore enhances processing speed.Moreover, users can
employ custom R functions for customized analysis on EO
data cubes.

This paper introduces an open-source and user-friendly
software/service, called OpenEOcubes, which was designed
for scientists and data users to deploy, explore, preprocess,
and analyze EO datasets that may be too large to down-
load. It empowers the R scientific community to execute
custom functions written in the R programming language,
thereby fostering research reproducibility. This service is
lightweight, operating system-independent, extensible, fol-
lows open governance principles and is interoperable by
adherence to the openEO standardized API.

The next section describes the design and implementation
of the software. “Application” describes two use case sce-
narios that were chosen to illustrate the performance of the
software. “Discussion” discusses the approach, and “Conclu-
sion” lists conclusions. A final section describes the software
availability and requirements.

Design and implementation

The RESTful web service is developed following a simple
underlying architecture (see Fig. 2), which adheres to the
openEO standardized API. As mentioned in Schramm et al.
(2021), the openEOAPI serves as a communication interface,
facilitating standardized access to EO data and processing
capabilities across diverse cloud service providers, each with
its unique low-level processing architecture. In the openEO
ecosystem, there are clients in R, Python, JavaScript, and a
Web editor, enabling straightforward interaction with REST
services that have implemented the openEO standardized
API.

The entire service implementation is carried out in the
R11 programming language, and gdalcubes R package as the
primary EO data cube implementation.

To facilitate smooth interactionwith the service, we utilize
the R plumber package (refer to Schloerke andAllen (2023)).
This package enables the creation of a RESTful API for an
R script, making it possible to share it with a broader audi-
ence through the web. Additionally, all EO data handling
processes are carefully designed to adhere to the openEO12

standardized API.
For efficient search, discovery, and access to EOdata, ope-

nEO uses the STAC specification. Utilizing the rstac (Simoes
et al. 2021) package as an interface to STAC APIs, our ser-
vice can make STACAPI calls for instance to the AWSEarth
Search STAC index13, which offers comprehensive coverage
of various data archives, including global Sentinel 2 level
2A, level 1C, and level 2A, and Landsat 8 L1 Collection

11 https://www.r-project.org/about.html
12 https://openeo.org/documentation/1.0/processes.html
13 https://earth-search.aws.element84.com/v0
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Algorithm 1 aggregate temporal period.

1 data as Cloud Optimized GeoTIFFs.14 Image collections,
retrieved based on user-defined parameters (bounding box,
time period, bands), are then processed using gdalcubes to
create EO data cubes.

Aligning gdalcubes data cube operations with openEO
processes15 is achieved by encapsulating one or more gdal-
cubes functions within a wrapper function that adheres to the
openEO standardized API. For example, the openEO pro-
cess to generate a temporal aggregation on a data cube using
calendar hierarchies like years, months, or weeks (aggre-
gate_temporal_period) uses the aggregate_time gdalcubes
function, as illustrated in algorithm code 1. Additionally,
The openEO process to load image collections and return
a data cube (load_collection) uses functionalities offered by
gdalcubes, such as enabling EO data resampling, temporal
aggregation, and coordinate reference system (CRS) defini-
tion.

The openEO standardized API has a concept of User-
Defined Functions (UDFs) which address the common
scenario where users require specialized operations or algo-
rithms that are not part of openEO’s predefined processes.
UDFs enable users to define arbitrary algorithms or portions
thereof using programming languages like Python and R.
These defined scripts can then be executed on the RESTful
web service, effectively expanding the openEO-compliant
services’ range of capabilities.

In the OpenEOcubes service, the run_udf function has
been implemented by encapsulating two gdalcubes func-
tions, namely, reduce_time and apply_pixel. The appropri-
ate function is applied after determining whether the UDF
serves as an apply-per-pixel function(A function that com-
putes new pixel values for every individual pixel in an image)
or a reducer function (A function that computes a single,

14 https://www.cogeo.org/
15 https://processes.openeo.org/

scalar outcome based on a set of input values such as a pixel
time series). It is important to note that the service exclusively
supports UDFs written in the R programming language. The
list of implemented openEO processes is given in Table 1.

We defined a Dockerfile as suggested by Nüst et al. (2020)
and packaged the RESTful web service into a Docker con-
tainer image16 and publicly hosted it on DockerHub. This
approach reduces the deployment process into a single step,
which can be as simple as

docker run -p 8000:8000 brianpondi/
openeocubes

By adhering to the openEO standardized API and inte-
grating the capabilities of gdalcubes, our service ensures
interoperability, efficiency, and data cube functionalities,
enabling EO data processing and analysis. Users typically
interact with OpenEOcubes using openEO client libraries
that convert the defined steps into a JavaScript Object Nota-
tion (JSON) Process Graph sent to the service.

Application

To demonstrate the functionality of the constructed REST-
ful web service, we deployed it to Amazon Web Services
(AWS)17 Elastic Compute Cloud (EC2) using Docker.
Docker18 encapsulates an application and its dependencies
into a ’container image’, a lightweight, standalone package
that ensures consistent operation across various computing
environments, a container image can be made available on
Dockerhub19 for public access. For our deployment, we used
the Docker command:

16 https://hub.docker.com/r/brianpondi/openeocubes
17 https://aws.amazon.com/
18 https://www.docker.com/
19 https://hub.docker.com/
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Table 1 Implemented openEO processes in the OpenEOcubes RESTful web service

openEO process Description

add, subtract, divide, multiply Mathematical operations to define Remote Sensing indices.

aggregate_temporal_period Computes a temporal aggregation based on calendar hierarchies such as years, months, or weeks.

array_element Get an element from an array.

filter_bands Filters data cubes to retain the specified bands.

filter_bbox Limits the data cube to the specified bounding box.

filter_temporal Restricts the data cube to the specified date range.

filter_spatial Constrains the spatial extent of the raster data cube to the specified geometries.

load_collection Loads image collection from the current service, returns a processable data cube.

load_stac Loads image collection from a STAC API, returns a processable data cube.

max Computes the largest value of an array of numbers.

min Computes the smallest value of an array of numbers.

median Computes the statistical median of an array of numbers.

mean Computes the arithmetic mean of an array of numbers.

merge_cubes Combine two ’compatible’ data cubes. Compatible implies that the data cubes to be combined
should have a common subset of equal dimensions.

ndvi Calculates the Normalized Difference Vegetation Index (NDVI).

rename_dimension Renames a dimension in the data cube while preserving all other properties.

rename_labels Renames the labels of the specified dimension in the data cube.

reduce_dimension Applies a reducer function to a dimension within a data cube.

resample_spatial Resamples the data cube’s spatial dimensions (x, y) to a specified resolution.

run_udf Runs a User Defined Function(UDF) written in R programming language.

save_result Converts and stores the processed data in the specified file format.

docker run -p 8000:8000 --env AWSHOST=
x.x.x.x brianpondi/openeocubes with x.x.x.
x replaced by the IPv4 address of the server. This command
retrieves the service container image from DockerHub, exe-
cutes it, and binds it to port 8000, simultaneously configuring
the AWS host environment variable to match the specified
IPv4 address. With this single command, one can download,
install, and deploy the service to an AWS EC2 instance, or
any other instance that supports docker. The operation took
3 minutes.

For the AWS EC2 machine, we opted for one located in
the us-west-2 region (Oregon).20 The reason for this choice is
that the EOdatasets available inAWSSTACsearch are stored
in the Oregon region. By opting for this region, we have
optimized the processing of Earth Observation data in close
proximity to their storage location, thus minimizing network
latency between the service and the data storage server. This
approach is not only efficient but also cost-effective.

The AWS EC2 machine used ran a Linux Operating
System and had 32Gigabytes (GB) of RandomAccessMem-
ory(RAM), 4 virtual Central Processing Units (vCPUs), and
a 192 GB Solid State Drive (SSD). To enable connectivity

20 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-
regions-availability-zones.html

with the service, port 8000 was opened for external access.
To change the default login username and password of the
service, one needs to modify the respective variables in the
‘openeocubes/R/SessionConfig-Class.R’ file before deploy-
ing it using the command: docker-compose up -d.

For accessing and utilizing the deployed service, the ope-
nEO R client version 1.3.0 was employed with R version
4.3.0. Figure 3, shows an example of the R code connecting
with the deployed service.

To validate the service’s capabilities, we have devised two
user scenarios:

1. Biodiversity Specialist (User A): User A is a 28-year-
old Doctoral candidate specializing in forest biodiversity.
Her goal is to conduct yearly NDVI (Normalized Differ-
ence Vegetation Index) analysis in specific areas within
the Amazonia region. By comparing the NDVI output
with tree species data, she aims to identify which tree
species aremost affected by deforestation and understand
the implications for the Amazonia ecosystem. Using the
service, User A can easily access the required EO (Earth
Observation) data, apply relevant algorithms, and gener-
ate the necessary comparisons to carry out her research
effectively.
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Fig. 3 R code snippet to
connect to the deployed service,
and get lists with available
collections and processes

2. Conservationist (User B): User B is a 32-year-old conser-
vationist based in Brandenburg, Germany. His objective
is to monitor the construction of the Tesla Gigafactory in
Berlin-Brandenburg to ensure that the company has not
clearedmore trees than theywere authorized to. User B is
well-versed in the R programming language and prefers
to utilize custom algorithms for change detection. With
the service, User B can access up-to-date EO data, utilize
his custom algorithms, and closely monitor the changes
in the designated area to ensure compliance with envi-
ronmental regulations.

These user scenarios demonstrate how the service can cater
to the needs of different users, providing them with the nec-
essary tools and data to conduct their respective research and
conservation efforts efficiently and effectively.

User scenario 1: creating a composite NDVI image
from satellite images spanning one year.

This case fulfills the user scenario example for the bio-
diversity specialist. We utilized the openEO R client and

Fig. 4 R code calculating NDVI
for a timeframe of a year
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delineated the area of interest in specific sections of Ama-
zonia, Brazil, bounded by (longitude, latitude): -7338335,
-1027138 and -7329987, -1018790, within EPSG 3857 CRS.
The underlying default spatial resolution was 30 meters,
and the time frame spanned 1 year, from 01.01.2022 to
31.12.2022. To meet these requirements, we employed the
load_collection function, as demonstrated in Fig. 4.

The filter_bands function was employed to select the
required bands, and subsequently, the ndvi function was used
to calculate the NDVI. The process involved a total of 168
image scenes (approximately 100 Gigabytes). Upon comple-
tion, the final output was downloaded (2.1 Megabytes) in the
GeoTIFF format andvisualized inFig. 5. The entire computa-
tion and download process was completed in approximately
25 seconds.

In Fig. 5, the NDVI visualization delineates regions of
dense vegetation as areas of dark green, indicative of higher
NDVIvalues,while yellowandorangehues represent regions
with lower to moderate NDVI readings. These latter tones
most likely indicate areas subjected to deforestation.

User scenario 2: a change detection approach
customized by the user for analyzing satellite image
time series

For the conservationist user scenario example, we utilized
the openEO R client to define the area of interest in Branden-
burg, Germany, bounded by (longitude, latitude): 416812.2,
5803577.5 and 422094.8, 5807036.1, within EPSG 32633
CRS.

The underlying default spatial resolution was 30 meters,
and the time frame covered 5 years, ranging from Jan 1, 2016
to Dec 31, 2020. These requirements were specified in the
load_collection function, as illustrated in Fig. 6.

To carry out unsupervised land cover change detection,
a user-defined R function was created and passed into the

Fig. 5 A one-year median NDVI for a segment of the Amazonia region
in Brazil

run_udf function as a string. This function employed the
computationally intensive bfastmonitor() function from the
Breaks For Additive Season and Trend (BFAST) R package
(Verbesselt et al. 2010, 2011). A total of 457 image scenes
(approximately 275 Gigabytes) were utilized for this task.
The final output was downloaded as aNetCDF file (196Kilo-
bytes) and is visualized in Fig. 7. The entire process took
approximately 4 minutes to complete.

The visual analysis presented in Fig. 7 indicates substantial
landchanges in thewesternsegment, correspondingwith thecon-
struction activities ofTesla’sGigafactoryBerlin-Brandenburg.
Additionally, it uncovers instances of deforestation in regions
not designated for such development. This observation calls
for obtaining ground truth data to determine the authentic-
ity of these deforestation signals and to rule out any false
positives. The timing of these changes is shown in color, and
depicted in the plot legend, which traces the evolution of the
landscape fromearly 2020 through to the end ofAugust 2020.

Discussion

The present rate and size of satellite imagery being collected
and the limits to network bandwidth and local storage avail-
able to research groups has made it inevitable for researchers
to use cloud resources to analyse image archives. Several
mature cloud platforms for this are currently available, but
typically lack several properties required by open science:
ability to scrutinize the source code of the platform, ability
to easily move from one platform to another, compare results
between platforms or combine computations on platforms
(platform lock-in), the ability to use own datasets without
making these public, or the ability to extend the softwarewith
new algorithms. The openEO API is a relatively new, open,
community-based standard that is not bound to one particu-
lar implementation of a back-end, that has several completely
open source back-end implementations and that lets users
compare these using a simple, modern and high-level interface.

We present a new open source openEO back-end imple-
mentation, called openEOcubes, which is written in R,
interfacing the ‘gdalcubes‘ package (Appel and Pebesma
2019). The functionality of this implementation is limited,
but allows for creation of a regular data cube from an image
collection, with flexibility in spatial and temporal aggrega-
tion methods, and ability to compute e.g. band indices or
execute arbitraty R functions (user-defined functions) to cre-
ate band indices or summarise pixel time series. It is also
resource efficient, using lazy evaluation and multi-threading.
Despite the limitations, it covers functionality that is in strong
demand, as data size reduction through spatial and temporal
resampling and/or aggregation is often the first step in analy-
sis of a large data archive, and ultimate flexibility in how this
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Fig. 6 R code running a UDF
for change detection using
BFAST R package

is done is often important. Cloud removal and the creation
of analysis-ready data (ARD) fall under this category.

The implementation we present is offered as an R pack-
age; it uses the R package ‘plumber‘ (Schloerke and Allen
2023) to expose R functions as RESTful API endpoints.
The R package, along with upstream R packages and sys-
tem libraries are all packaged in a docker container to make
deployment as simple as executing a single ‘docker run‘
command. This allows users to either operate this service
(i) from within R, if they are familiar with running R, (ii)
on a local computer using datasets inside the docker con-
tainer, (iii) on a local computer using local data or data

in the network, provided through a STAC interface (iv) on
an arbitrary cloud node provided that imagery archives are
accessible and interfaced through a STAC interface. The user
can interact with this service using the wide variety of ope-
nEO clients available (in Python, R, JavaScript, or through a
visual browser-based editor).

We have demonstrated two fully reproducible use cases,
both using a moderately large amount of Sentinel-2 data.
Deployed on a single AWS node in the data center that
serves the Sentinel-2 archive, the time-composite NDVI cre-
ation use case used 168 images (100 GB) and took 25
seconds, and the change detection use case based on the
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Fig. 7 Detected changes in a section of a forest in the state of Branden-
burg, Germany during the year 2020

BFAST algorithm used 457 images (275 GB) that took 4
minutes. Moreover, the utilization of Cloud-Optimized Geo-
TIFFs (COGs)21 Sentinel-2 data allowed us to selectively
read and transfer only the necessary portions of the file.

Although the implementation we present offers image
analysis functionality that is in high demand when applied
to large satellite image archives, it does lack a number of
features that are available in large-scale deployments of ope-
nEO like openEO Platform or the Copernicus Data Space
Ecosystem. In particular, it lacks the ability to scale up over
multiple compute nodes, only one user can access the service
at a time, it has no ability to evaluate user credits or predict
costs of computation, and it only runs synchronously.As such
it is mostly targeting users who have full control over their
own cloud resources. The capability to run processes locally
before deploying them to the cloud however makes it easier
to experiment with new algorithms. Executing them on low
spatial or temporal resolution data cubes makes it easy to
evaluate them before computations become lengthy and/or
costly.

Running arbitrary R code on the cloud platform gives
users the ultimate flexibility, but also poses challenges to the
level of interoperability a generic openEO API can provide:
a dependency of this code on further R packages used (such
as ‘bfast‘) becomes clear, and executing such user-defined
functions on other openEO REST services, e.g. written in
Python, becomes more complicated.

Conclusion

We present OpenEOcubes, a new open-source openEO ser-
vice written in R mainly using the R packages gdalcubes
and plumber. It is easily extensible, allows for running arbi-
trary user-defined R functions on pixel time series, and can

21 https://www.cogeo.org/

be deployed locally or in the cloud as an R package, or as
a docker image. This empowers users who have access to
cloud resources and allows them to easily extend it with cus-
tom R functionality. Integrating this with the current large,
multi-user and multi-node openEO deployments still poses
challenges related to user authentication and authorisation.

Availability and requirements

OpenEOcubes Software: The OpenEOcubes code is open-
source adoptingApache LicenseVersion 2.0 and available on
GitHub at the following URL: https://github.com/PondiB/
openeocubes. You can find the installation instructions on
the GitHub repository.

Docker Image: For easy installation on a local personal
computer or a cloud computing environment, aDocker image
is provided. You can access the Docker image on Dock-
erHub using the following link: https://hub.docker.com/r/
brianpondi/openeocubes. The installation process requires
a single docker command.

Operating System: Compatible with Windows, macOS,
or Linux operating systems.
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