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Abstract 

 

BACKGROUND: Ultrasound is one of the non-invasive techniques that are 

used in clinical diagnostics of carotid artery disease.  

OBJECTIVE: This paper presents software methodology that can be used in 

combination with this imaging technique to provide additional information 

about the state of patient-specific artery.  

METHODS: Overall three modules are combined within the proposed 

methodology. A clinical dataset is used within the deep learning module to 

extract the contours of the carotid artery. This data is then used within the 

second module to perform the three-dimensional reconstruction of the geometry 

of the carotid bifurcation and ultimately this geometry is used within the third 

module, where the hemodynamic analysis is performed. The obtained 

distributions of hemodynamic quantities enable a more detailed analysis of the 

blood flow and state of the arterial wall and could be useful to predict further 

progress of present abnormalities in the carotid bifurcation.  

RESULTS: The performance of the deep learning module was demonstrated 

through the high values of relevant common classification metric parameters. 

Also, the accuracy of the proposed methodology was shown through the 

validation of results for the reconstructed parameters against the clinically 

measured values.  

CONCLUSIONS: The presented methodology could be used in combination 

with standard clinical ultrasound examination to quickly provide additional 

quantitative and qualitative information about the state of the patient’s carotid 



3 

 

bifurcation and thus ensure a treatment that is more adapted to the specific 

patient.  

 

Keywords: convolutional neural networks, 3D reconstruction, blood flow, 

patient-specific geometry, validation against clinical data 
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1 Introduction 

 

Carotid artery disease is one of the primary causes of ischemic cerebrovascular 

events. This disease is manifested by the creation of atherosclerotic plaques 

inside the wall of the arteries. The formation of plaques causes changes in the 

geometry of the blood vessels and disturbance of blood flow and this further 

results in the reduction of blood supplies to the brain, and ultimately increases 

the risk for stroke. During clinical diagnostics, three relevant parameters of this 

disease are analyzed: the percentage of stenosis, the occurrence of symptoms 

and the recency of the symptoms [1]. A patient (either with or without 

symptoms) is considered at high risk and in need for surgical intervention 

(carotid endarterectomy or stent implantation) if there is a diagnosed stenosis 

larger than 70%. An asymptomatic patient with a stenosis less than 70% is 

subjected to a medical treatment alone [2]. A symptomatic patient with recent 

events and with a diagnosed stenosis greater than 50% is treated as high risk too. 

However, these criteria are too general and can lead to many unnecessary 

surgeries and inappropriately treated patients. Thus, the necessity surges to carry 

out diagnostics that are more patient-specific. There are several non-invasive 

imaging techniques that have been used in clinical diagnostics to detect plaques 

and determine the degree of stenosis, including high resolution ultrasound (US), 

magnetic resonance imaging (MRI) and computed tomography (CT). The main 

benefits of the US technique are that it is noninvasive and low cost, and it is 

therefore commonly applied in clinical diagnostics of CAD. Using US, two-

dimensional (2D) images that represent a cross-section of the analyzed artery are 

created and analyzed by medical staff. But, there is space for improvement. One 

of the ways is to create new tools that can be used together with this imaging 

technique to provide additional quantitative and qualitative information about 

the state of the patient’s carotid artery. 
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The quality of US images of the carotid arteries (CA) is generally lower and the 

commonly present noise reduces the visibility of the analyzed structures. This 

makes it difficult to use standard imaging features during image analysis. Also, 

due to the mentioned drawbacks of US images, it can be highly demanding and 

sometimes unreliable to detect and analyze the plaque within patient’s CA 

during clinical examination, even for medical experts. Imaging analysis of the 

plaque [3] has proven to be useful in helping medical experts determine the 

plaque size, position and even plaque composition, further enabling more 

accurate identification of patients that have higher risk of plaque rupture and 

more serious complications. Several computer techniques were applied for the 

analysis of US images and they can be divided in two categories: traditional and 

deep learning approaches. Traditional US computer-aided design (CAD) 

systems focus on the features of the US images during their classification and 

their main components are feature selection and extraction [4]. Some of the most 

common features that are extracted from US images are texture features - Laws 

Texture Energy (LTE) [5], wavelet features [6] and morphology features [7,8]. 

The classification is performed mostly using Bayesian Classifier, Support 

Vector Machine, Decision Tree, Artificial Neural Network, AdaBoost, etc.  

The deep learning techniques have gained popularity in recent years and have 

shown great potential for the automatic image segmentation and extraction of 

relevant medical data. This approach has been applied for analysis of medical 

images in many diverse modalities, including images of lung, brain and breast 

[9,10] and it can also be applied for the segmentation of blood vessels [11,12], 

and specifically the segmentation of US images of CA [13]. The advantages of 

deep learning approach over other techniques are that it uses the available 

information in a more optimal way and has better prediction rate. In traditional 

US CAD systems the generic imaging features are extracted and analyzed, while 

the deep learning techniques use complex processing layers that are more 
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adapted to the specific data that is being analyzed. Like it was already 

mentioned, US images can contain significant noise that reduces the quality of 

the image and artifacts that can potentially obscure important segments of the 

vessel. Due to this fact, the deep learning approach can be a very good and 

reliable alternative to segment this type of images. Convolutional neural 

networks (CNNs) can be used to extract new discriminative features from the 

US images, by using a combination of both global and local imaging 

information. The prediction rate of several machine learning and deep learning 

approaches was compared in literature [14] and the efficiency of these 

approaches in identification of plaque components and classification of 

symptomatic/asymptomatic patients was analyzed. Automated system for 

characterization and classification of plaque within internal carotid artery was 

presented in [15], where the plaque was classified into binary classes 

(symptomatic and asymptomatic types) using the classic CNN.  A 

semiautomatic segmentation method was presented in [16] and uses Dynamic 

CNN and U-Net models to extract media-adventitia and lumen-intima 

boundaries from three-dimensional (3D) US images, in order to provide 

quantified data about carotid plaques. Deep-learning based US imaging was 

combined with flow measurement techniques in [17] to quantitatively analyze 

dynamics of blood flow and this approach was applied to analyze flow in murine 

carotid arteries. Attention-channel-based UNet deep learning (DL) model was 

used in [18] to identify plaque in US images of carotid arteries. U-Net and 

DenseNet networks were combined in [13] to perform an automated 

segmentation of atherosclerotic plaques in US images of carotid arteries. 

A more detailed visualization of the state of the arteries is limited by the 2D 

cross-sections obtained during US examination. It would therefore be useful to 

perform 3D reconstruction of the both the lumen and wall of the specific vessel, 

in order to provide more data to the clinical experts. Such 3D patient-specific 
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model can also be used as input for the numerical simulation that can offer even 

more quantitative information about the state of blood flow. Numerical 

simulations using methods of computational fluid dynamics (CFD) have already 

been successfully applied to model blood flow through arteries [19]. Using these 

techniques it is possible to quantitatively analyze the process of creation of 

atherosclerotic plaque and predict regions where further progression of the 

disease would be possible. The effect of blood flow on the plaque progression 

was analyzed in literature [20,21] for coronary arteries, but also for CA. It was 

concluded that the plaque progression occurs in regions with low wall shear 

stress (WSS). Similarly, it was concluded by Sakellarios et al. [22,23] that high 

concentration of low-density lipoprotein (LDL) can be associated with creation 

of atherosclerotic plaques.  

In this study, three mentioned segments are combined into one system that can 

provide clinical experts with relevant information and upgrade data obtained 

from US examination. First deep learning module is used to detect the structures 

of interest from US images. This data is then processed to extract contours of the 

vessel lumen and wall and these contours are later on used to within the 3D 

reconstruction module to generate the geometry of the carotid bifurcation. Finite 

element simulations are performed using the reconstructed arterial geometries to 

perform hemodynamic analysis. This complex numerical analysis includes 

blood flow but also the transport and distribution of molecules relevant for the 

development of atherosclerotic plaque (LDL, macrophages and cytokines) 

within the arterial wall. By examining the distribution of these quantities of 

interest, it is possible to observe parts of the carotid bifurcation with low WSS 

and high LDL concentration and therefore predict possible risks for further 

progression of the plaque for the specific patient. 

 



8 

 

2 Materials and methods 

 

The scheme of the entire methodology employed within this study is shown in 

Fig. 1 and details of the methodology will be given in this Section. First, the US 

examination protocol and the dataset containing US images (shown in Fig. 1a) 

are described in Section 2.1. These images are annotated and preprocessed as 

explained in Section 2.2 and shown in Fig. 1b. These pairs of original and 

annotated images are used for the training of the CNNs. Then, a new (and 

previously unused) set of US images (shown in Fig. 1c) is used to extract the 

segments of the CA by using the trained models, as shown in Fig. 1d. Image 

segmentation methodology is explained in more detail in Section 2.3. Then, the 

information obtained in the deep learning module is further directed to the 

reconstruction module, where the relevant shapes of the CA are created, like 

shown in Fig. 1e. These shapes are further used to generate the finite element 

mesh of the reconstructed geometry, shown in Fig. 1f. The reconstruction 

process is explained in Section 2.4. Finally, the finite element mesh is used 

within the CFD module for the blood flow simulations that are discussed in 

Section 2.5. 

 

2.1 Dataset acquisition and description  

 

The US examination was performed within the Clinical Centre of Serbia. This 

center is a major hospital in the cardiology field that operates in the everyday 

clinical practice. Examination of the CAs is performed in a supine position of 

the patient, the neck is in a slight extension, and the head is turned opposite to 

the examined side of the neck. It begins with an examination in transversal 
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projection. The transducer is placed anteromedially or laterally from the 

sternocleidomastoid muscle, in the direction of the CA from the supraclavicular 

fossa, to the corner of the mandible. The origin of the CCA on the left side is 

deeper and more difficult to visualize. The carotid bulb is identified as a slight 

extension of CCA at the bifurcation level. After bifurcation, the internal (ICA) 

and external (ECA) carotid arteries are examined. After scanning in transversal 

projection, the same areas of the CCA, ICA and ECA are also examined by a 

longitudinal scan. The examination is performed in B and Color Doppler mode. 

The measurement of systolic and diastolic flow rates of the CA is also 

performed. The area of the residual lumen and the area of the original lumen 

were measured and these numbers were used to determine the degree of carotid 

stenosis. Also, the length of the plaque on longitudinal images was measured 

manually. 

Using this approach, a dataset of US images has been collected. Overall 108 

patients were involved in this study. For each patient an average of 8.7 images 

was collected, including both longitudinal and trasnversal images. The overall 

number of images that were included in this study is 939.  

This study was performed in line with the principles of the Declaration of 

Helsinki of 1964 and its later amendments. Approval was granted by the Ethics 

Committee of University of Belgrade, Faculty of Medicine (Date 

27.12.2017./No 29/XII-26). All data protection and safety standards were 

respected during the collection and processing of the medical data and all 

images were anonymized. Informed consent was obtained from all individual 

participants included in the study. 

Within the presented approach, the original images were first preprocessed and 

then these images were annotated by the expert clinicians. Each image was 

labeled manually by medical doctors with more than 10 years of clinical 
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experience and this ensured the reliability of the annotated segmentation masks. 

The quality of the annotation was guaranteed by applying a multi-human 

annotation strategy, i.e. each image was labeled by two doctors independently. If 

the mean Intersection over Union (mIoU) was less than 0.95 for a particular 

image, this image was placed back into the unlabeled set and annotated again. If 

the second annotation for this image was still inconsistent, it was considered as a 

confused image and excluded from the clinical dataset. This ensured that all 

labeled images were checked by two annotators. Finally, one of two masks was 

chosen after the agreement between two annotators. The original and annotated 

images were further used during the development of the US deep learning 

module. The main task of this module is to detect and extract the regions of 

interest.  

 

2.2 Image preprocessing 

 

In order to use the US images from the described dataset for the deep learning 

algorithms, it is necessary to pre-process the images first, because the 

appearance of the images can vary depending on a patient’s age, or the doctor's 

method of recording. Within the preprocessing phase, first the region of the 

image containing the analyzed the arterial tree is automatically isolated. The 

isolation consists of choosing a static window with fixed dimensions of 512x512 

pixels for both transversal and longitudinal images. It should be noted that 

special attention was dedicated to the selection of the appropriate window 

coordinates to ensure that the considered arterial tree remains within the selected 

region. After preprocessing, all images are labeled and overall four datasets with 

labeled regions are created – the first one for the lumen and the second one for 

the wall, for both longitudinal and transversal datasets. Fig. 1a shows the 
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examples of original US images for both transversal and longitudinal images, 

while Fig. 1b shows labeled images for the lumen and wall regions.  It should 

also be noted that since both B mode and Color Doppler mode images were 

available within the patient record, it was necessary to develop separate models 

for classification of both types of images. 

 

2.3 Image segmentation methodology 

 

Nowadays, there are many different CNN architectures which can be used for 

image segmentation task. In this study, three most common architectures in 

healthcare were considered for the automatic segmentation of the CA lumen and 

wall: FCN-8s with VGG16 as a backbone classifier [24,25], SegNet [26], and U-

Net [27] deep CNNs. Also, within this study, modified versions of U-Net and 

SegNet networks were used to analyze the influence of depth on the recognition 

of the regions of interest.  Note that different networks use different number of 

parameters for training. The SegNet model has around 29M of parameters for 

training, U-Net modified models use around 60M parameters, which is twice 

more than SegNet, and more than 130M parameters are used by FCN. However, 

the U-Net was our first choice because model accuracy is more important than 

model training time in this particular task. The text below gives a brief 

description of each network used within this study. More details are available in 

the original papers from cited literature.  

Long et al. [24] proposed an approach for the segmentation of images using the 

deep learning architecture, more precisely using a fully convolutional network 

(FCN). In this study a modified version of CNN architectures (including VGG16 

and GoogLeNet) was applied for the image classification task. The main 

modifications consisted in replacing the fully connected layers with the fully 
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convolutional layers, in order to overcome the problem of input and output that 

didn’t have fixed size. Due to these modifications, the output of the model is a 

spatial segmentation map instead of standard classification score. FCN combines 

semantic information and appearance information by using skip connections, 

and this ensures that the feature maps from the final layers of the model are up-

sampled and fused with feature maps of earlier layers. This way, the model 

produces accurate and more detailed segmentations. However, even though the 

FCN model is very popular and effective, it is not adequate to perform real-time 

inference since it is not fast enough, and this represents its main disadvantage. 

Some improvements came with the U-Net architecture. 

The segmentation of medical images has been successfully performed using the 

U-Net CNN. This deep learning approach is based on encoder-decoder model. 

Encoder phase is in charge of extracting the features of interest and it comprises 

of the gradual decrease of the spatial resolution of the image and of the increase 

of the number of channels. This is done using several convolutional and max-

pooling layers. The decoder phase on the other hand, symmetrically performs 

upconvolution and convolution operations. The main goal of this phase is to 

double the spatial dimensions of the features, and at the same time reduce the 

number of channels. This is actually the opposite of the operation within the 

encoder block, where the image resolution is reduced and the depth increased. 

Again, the skip connections are used within this model, to improve the quality of 

the decoder features and achieve more precise segmentation masks. These 

connections concatenate the features from both the encoder and decoder. This 

way, the shallow fine appearance information from the encoder and combined 

with the deep coarse semantic features from the decoder to obtain segmentation 

masks of the higher quality.  

In this study we also used a slightly modified version of standard U-Net 

architecture. This modified architecture was presented in more detail in [28]. 
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The main modifications are that two more blocks were added in both encoder 

and decoder, and after each convolutional layer within the model, the batch 

normalization is used. Also, after each batch normalization layer, ReLU 

activation procedure is applied.  

SegNet architecture is also commonly used for segmentation tasks. This model 

consists of an encoder-decoder combination. After the decoder phase, a pixel-

wise classification layer is used for segmentation. Encoder part consists of 

thirteen convolutional layers, where batch normalization and ReLU activation 

are applied. Max-pooling with a 2×2 window and stride 2 (to ensure non-

overlapping window) are performed afterwards and finally a sub-sampling by a 

factor of 2 is applied at the end to the resulting output. This described 

architecture of the encoder is actually identical to the thirteen convolutional 

layers that are present also in the VGG16 network designed for object 

classification. However, in many cases the encoder part is changed and instead 

of these mentioned layers, a pre-trained classification network (e.g. VGG or 

ResNet) is used, before going on to the decoder phase. In SegNet architecture, 

one encoder layer corresponds to one decoder layer. So, the decoder part also 

consists of thirteen layers. The decoder network is in charge of up-sampling the 

input feature map. It performs this operation by using the memorized max-

pooling indices from the corresponding encoder feature maps. This eliminates 

the need for learning to upsample. Since this approach produces a sparse feature 

map, the final decoder output has to be further processed by a multi-class 

softmax classifier that evaluates class probabilities for each pixel independently. 

In comparison to other architectures, SegNet architecture significantly reduces 

the number of parameters of the model. 
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2.4 Three-dimensional reconstruction 

 

During the 3D reconstruction phase, the characteristics of the patient’s CA are 

incorporated into the generalized model of the carotid bifurcation presented in 

literature [30,31]. The following parameters of the generalized model were 

adopted in the presented methodology: 

- The ICA and ECA branches are positioned at an angle of 25° with 

respect to the CCA. 

- The lumen and wall of the ECA are assumed to have circular cross 

section; the diameter of the lumen is equal to 0.59*dCCA (where dCCA 

denotes the diameter of the CCA branch), and the diameter of the wall 

is 25% larger than the diameter of the lumen.  

- The ECA branch has the length equal to 0.5*lICA (where lICA denotes 

the length of the ICA branch). 

- The CCA branch has the length equal to 1.2*dCCA. 

In the clinical dataset that was used within this study there are overall 3 US 

images containing transversal cuts of the carotid bifurcation – one within the 

CCA, one within the ICA and one close to the bifurcation. These 3 images are 

used for the reconstruction, together with the longitudinal cut of the ICA. These 

images represent the inputs for the trained CNN within the deep learning module 

(see Fig. 1c) and the segmented lumen and wall areas are obtained as the output 

of the deep learning module. These extracted segments are shown in Fig. 1d and 

these same segments are augmented and shown separately in Fig. 2 for better 

clarity. The segmented data is further used to extract the boundary lines (the red 

lines on transversal cuts and the blue lines on the longitudinal cut in Figs. 1d and 

2). The centerline of the ICA branch is extracted using these boundary lines 

from the longitudinal US cut (centerline is shown in red in Figs. 1d and 2). 
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During the extraction of centerline, the diameters of cross-sections of ICA 

branch are also calculated (and illustrated in yellow in Figs. 1d and 2). The 

boundary lines for the lumen and wall of the transversal cuts are converted to 

non-uniform B-spline curves and used to define the cross-sections of the 

branches. The transversal cut from CCA is used to extract the contour that is 

further used to define all cross-sections along the entire length of this branch. 

The transversal cut taken close to the bifurcation is used to define the cross-

sections of the ICA close to the bifurcation and the transversal cut of the ICA 

branch is used to define the cross-sections of this branch close to the stenosis 

(since this cut was taken at that position during US examination). The rest of the 

cross-sections of the ICA are assumed to have a circular cross-section. The 

reconstructed cross-sections and centerlines of the branches are shown in Fig. 

1e. The final phases within 3D reconstruction are the generation of the NURBS 

surfaces and subsequently the generation of 3D finite element mesh. These steps 

are performed using the procedure described in [32] and the obtained 3D mesh 

for one particular patient is shown in Fig. 1f. 

 

2.5 Blood flow simulations 

 

During the FP7 project ARTreat, our team developed a continuum based 

mathematical model for prediction of plaque growth [19] and implemented it in 

finite element (FE) software which models blood flow, LDL transport, 

macrophages, cytokines and plaque development [33-35]. The simulations using 

this software are incorporated in this study to depict the distribution of relevant 

quantities and analyze regions of low WSS and high LDL, since there was a 

defined correlation between these regions and the probability of further plaque 

growth. All the equations within the numerical model are presented in 
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Supplementary material S1. These equations are solved numerically using the 

finite element method (FEM). The reconstructed patient-specific geometry of 

the carotid bifurcation was represented as finite element mesh, consisting of 

around 200.000 nodes and around 100.000 finite elements. All the equations of 

the numerical model were converted in their incremental-iterative form and they 

are solved in iterations and all quantities of interest are calculated in all nodes of 

the mesh. 

The blood was considered as an incompressible Newtonian fluid, with density 

and viscosity equal to 1,05 g/cm3 and 0,035 cm2/s, respectively. There are 

studies in literature that suggest different nonlinear models should be used to 

define the viscosity of the blood in CFD simulations [36,37]. But since in this 

study the blood flow is analyzed in a rather large artery (carotid artery) it was 

considered that the effect potentially introduced with a nonlinear viscosity could 

be neglected, as suggested in literature [38,39]. The numerical model considers 

the arterial wall to be rigid and nondeformable. Again, similar reasoning is also 

valid for this assumption – it was reported in [39] that this assumption can be 

acceptable for large arteries. 

 

3 Results 

 

GIGABYTE NVIDIA GeForce graphics card GTX 1080 Ti 11GB, GDDR5X, 

352bit was used for the development and testing of the entire proposed 

metholodogy. For the deep learning module, Python V3.6.7 was used and Keras 

framework was used for the implementation of the related code, while 

Tensorflow framework was used as the backend. The 3D reconstruction module 

was developed in C++, and the CFD simulations were performed using software 
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developed in FORTRAN. The training phase for one fold lasted about 2 hours. 

In this Section first the performance of deep learning module will be analyzed 

and then the results of the validation of the reconstructed arteries against clinical 

data will be presented. Finally, the results obtained for a particular patient will 

be presented. For this particular patient the segmentation within the deep 

learning module took about 2 seconds per image (in the present study, we had 3 

images for transversal and 1 for longitudinal cuts), the reconstruction of the 3D 

mesh took 2.87 seconds and the CFD simulations took 3.36 minutes. This 

demonstrates the capabilities of the presented methodology to provide clinicians 

with useful information in short time interval. 

 

3.1 Results of the deep learning module 

 

As it was already mentioned, all implemented methods are based on TensorFlow 

2, an end-to-end open-source platform for machine learning. The effectiveness 

of the tested models was evaluated using 5-fold cross-validation strategy. In 

order to increase the number of images in the training set, all available samples 

were processed using standard data augmentation techniques (translation, 

mirroring, shifting, zooming and flipping).  

The loss function that represents a combination of binary cross-entropy and soft 

dice coefficient [29] was used during the training of the model and it is defined 

as: 

( ) ( )predtruepredtrue yycoeffdiceyypycrossentrobinaryLoss ,_1,_ −+=

   (1) 

where predy  represents the flattened predicted probabilities of the image and 

truey  represents the flattened ground truths of the image.  
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Five different models were tested: original and modified (deeper) version of the 

U-Net architecture, original SegNet and SegNet with pretrained VGG weights, 

as well as FCN-8s with VGG-16 backbone. The models are trained by the Adam 

optimizer with 0.9 Nesterov momentum from scratch, with batch size 8. The 

value of the learning rate is initialized to 1e-4. The optimal number of epochs 

should be defined for the model, to ensure that the overfitting of the model is 

minimized and the generalization capacity of the model is maximized. The 

moment when the model starts overfitting is determined based on the values of 

loss and accuracy of both training and validation sets. In our case, EarlyStopping 

strategy was used to monitor model training phase, and approximately 50 epochs 

are needed to achieve the best performance. 

The resulting loss curves during the training and validation phases, for one fold, 

are shown in Fig. 3a, while Dice coefficient curves are shown in Fig. 3b. The 

solid and dashed lines represent the training and validation phase, respectively. 

These graphics are obtained when the models are trained over the dataset that 

consists of lumen images obtained from B-mode transversal cut. Similar 

graphics are obtained for other datasets (longitudinal cut, lumen and wall). 

It could be seen in Fig. 3b that the highest Dice coefficient value was achieved 

by models FCN-8s with VGG-16 backbone and Deeper version of U-Net. It 

should also be noted that for the dataset used in this study better results were 

obtained using the deeper version of the U-Net model in comparison to the 

original U-Net model. 

The Deeper U-Net version was selected as a trade-off model which achieved the 

highest Dice coefficient value on validation and test datasets compared to other 

models, although it uses twice as many parameters compared to SegNet whose 

Dice coefficient is also relatively high. We justify this decision by the fact that 

we need more precise segmentation for more reliable 3D models. On the other 
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hand, the Deeper U-Net uses almost two times less parameters during training in 

comparison to FCN-8s VGG-16 with batch normalization model and this gives 

an advantage to the first over the second model. SegNet with pretrained VGG 

weights was not considered due to poor results in both training and validation 

phases.   

As mentioned above, the 5-fold cross validation strategy was used to analyze the 

performance of mentioned models and to compare them with each other. The 

average quantitative results of different methods on transversal US images for 

the binary classification task of the lumen of CA are shown in Table 1. The 

Deeper U-Net achieved the highest Dice coefficient value among all models 

tested, justifying our choice of this model as the one that is used further within 

the methodology. 

Binary classification task for image segmentation was again used to evaluate the 

performance of the chosen CNN and the developed deep learning module. If we 

consider the segmented lumen (or wall) region as positive and background as 

negative and define terms true positive (TP), true negative (TN), false positive 

(FP) and false negative (FN), we can define the following three classification 

metrics that are commonly used in literature for the quantitative evaluation of 

the performance of deep learning models - precision (P), recall (R), and Dice 

coefficient (DC): 

FPTP

TP
P

+
=        (2) 

FNTP

TP
R

+
=        (3) 

FNFPTP

TP
DC

++
=

2

2
      (4) 
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As it was previously mentioned, overall 5 different models were developed, for 

5 different types of US images - transversal B mode US images and Color 

Doppler US images were used for segmentation of both lumen and wall and the 

longitudinal US images. The average of the performance metrics reported by 5-

fold cross-validation for all considered models is shown in Table 2. High 

average values of Dice coefficient for each of the developed models confirm 

their segmentation ability. 

Note that the model for longitudinal images performed slightly worse, because 

the boundaries for lumen and wall are sometimes not clear. Significant noise, 

reverberation, shadowing and sometimes artifacts are incorporated in these 

images and sometimes it is difficult even for medical experts to recognize the 

exact location of these boundaries (as illustrated in  Fig. 4). Other models 

applied for the transversal US images showed high performance in recognizing 

the regions of interest. This problem with recognition of boundaries in 

longitudinal images caused smaller accuracy of this model, but has however no 

influence on the reconstruction module, since the extracted lines are then further 

processed to extract relevant diameters. 

 

3.2 Validation of the proposed methodology 

 

The clinicians measured two parameters during US examination – the length of 

the region of the artery containing plaque and the percentage of stenosis. The 

area of the residual lumen on the ICA transversal cut and the area of the original 

lumen were measured by the clinical device during US examination and the 

percentual ratio of these two numbers represents the percentage of stenosis. This 

percentage was provided together with the US images within the clinical dataset. 

The plaque length is determined from the ICA longitudinal image, as the length 
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of the ICA where the stenosis is present. These two parameters were calculated 

during the 3D reconstruction as well, in order to validate the segmentation and 

reconstruction modules of the proposed methodology. As it was already 

mentioned, the diameters of the ICA are calculated from the segmented 

longitudinal images within the reconstruction module. The diameters are 

measured approximately on every 0.2 mm. The ratio between diameters of wall 

and lumen is analyzed along the centerline of the ICA branch and the plaque 

start and end locations are determined based on this ratio. Namely, it is 

considered that the plaque is located on the segment of the ICA where the 

gradient of mentioned ratio has a significant change of value (more than 20%). 

This process is shown in Fig. 5. The original US image with overlayed 

segmented lines is shown Fig. 5a. The segmented lines for lumen are colored in 

blue, while segmented lines for wall are colored in red. The centerline that was 

extracted from this data within the reconstruction module is shown as the dashed 

yellow line. The plaque that was marked by the clinical experts is shown with 

green line. The graphs of change of lumen and wall diameters, as well as the 

change of wall/lumen ratio are shown in Fig. 5b. The yellow arrows illustrate 

the positions of plaque start and end that are detected using the previously 

described procedure. 

Overall 20 patients from the testing dataset are considered for the validation of 

the methodology and Fig. 6 shows the obtained results. The percentage of 

stenosis obtained after reconstruction shows good correlation with clinical 

measurements and the parameter of linear regression is equal to R2=0.7828 

(shown in Fig. 6a) and the Bland-Altman plot (shown in Fig. 6b) confirms the 

good agreement between the two values. The mean difference was 3.1404 

(SD=4.3229), with limits of agreement variyng from -5.3324 to 11.6133, with 

95% confidence intervals of -8.85 to -1.8148 for the lower limit and 8.0957 to 

15.1309 for the upper limit. Better correlation is obtained for the plaque length, 
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where the parameter of linear regression is equal to R2=0.8851, like it is shown 

in Fig. 6c. The Bland-Altman plot for this parameter is shown in Fig. 6d. The 

mean difference for this parameter was 0.4629 (SD=2.1754), with limits of 

agreement varying from -3.8009 to 4.7267, with 95% confidence intervals of -

5.5711 to -2.0308 for the lower limit and 2.9566 to 6.4969 for the upper limit. 

The obtained good correlation of the results demonstrates the capabilities of the 

proposed methodology. 

 

3.3 Example of patient-specific 3D reconstruction and blood flow simulation  

 

The results of the segmentation within the deep learning module for a specific 

patient are shown in Fig. 7. The original US images are shown in the first row, 

the predicted images for the lumen are shown in the second row, while the 

predicted images for the wall regions are shown in the third row. The segmented 

data is overlayed to the original US images in the fourth row, to enable better 

visualization of the extracted data. The results of the blood flow simulation for 

the same patient are shown in Fig. 8. Fig. 8a shows the reconstructed geometry, 

and the remaining images in this figure show the distribution of velocity, 

pressure and WSS. The results of the plaque progression simulation are shown 

in Fig. 9. The distribution of relevant quantities within the arterial wall is shown 

for several slices of the 3D model – macrophages distribution is shown in Fig. 

9a, cytokines distribution is shown in Fig. 9b and distribution of oxidized LDL 

is shown in Fig. 9c. These slices were manually angulated normal to the 

branches and chosen in all segments of the carotid bifurcation. As it can be 

observed from Figs. 8b and 9c, the regions of the CA with low values of WSS 

and high values of LDL mostly coincide and are located close to the already 
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stenotic segment of the ICA, indicating that this is the region where plaque will 

further progress. 

 

4 Discussion 

 

The segmentation and classification of medical images has been extensively 

studied in literature. Per example, several algorithms for the classification of 

plaque types from computed tomography angiography (CTA) images are 

discussed in [40]. The authors applied diverse classification techniques 

including decision tree, linear discriminant analysis, quadratic discriminant 

analysis, support vector machine, k-nearest neighbor, and probabilistic neural 

network (PNN), but they did not consider deep learning techniques such as 

CNNs. Deep CNNs were applied in [11] to perform automatic segmentation of 

intraluminal thrombosis of abdominal aortic aneurysm from CTA images and 

good prediction results were reported. CNNs were also used in [12] to segment 

coronary arteries from CTA images and the authors reported that the presented 

model achieved the Dice coefficient of 0.8942. Densely connected convolutional 

neural networks (DenseNets) were used in [41] to estimate the thickness of the 

carotid intima-media region and detect plaque. The authors reported a 

correlation coefficient of 0.81 and the accuracy for plaque detection of 0.9645 in 

CCA. Saba et al. [15] applied classical CNN to separate plaque segments from 

US images and performed the classification of symptomatic or asymptomatic 

plaque. They reported the accuracy of 0.8617 and 0.897 using two considered 

techniques. Dynamic CNN and U-Net models were used in [16] to segment 

regions of interest of the carotid artery from 3D US images. The segmentation 

results were compared with manual segmentations performed by a clinical 

expert and the average Dice coefficients were 0.9646 and 0.9284 for the two 
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considered regions. Park et al. [17] presented an integrated approach that 

performs automatic wall segmentation from longitudinal US images and 

estimates tissue motion and applies specific flow measurement techniques to 

analyze blood flow within murine carotid arteries. The authors used U-net based 

neural networks and reported mean Dice coefficient of over 0.94 for the 

synthetic test images and over 0.90 for the in vivo test images.  Jain et al. [18] 

analyzed several architectures, including UNet and several modifications, to 

identify carotid plaques in ICA and CCA longitudinal US images. The obtained 

values of Dice coefficient were between 0.8494 and 0.9002. Automatic 

segmentation of atherosclerotic plaques within carotid arteries from US images 

was performed in [13], using several deep learning networks - the traditional U-

Net network, the ResUNet network and the newly proposed combined U-Net 

and DenseNet network. The authors reported that the combined Dense-UNet 

network had the best performance. In this study the automatic segmentation of 

US images was performed. Several deep learning architectures were tested, 

including SegNet and UNet architectures. Also, a modified deeper UNet model 

was used, where the number of blocks in both the encoder and decoder phases 

was increased by two. This Deeper UNet model was the one that resulted to 

have the best performance metrics and was therefore used within the proposed 

methodology to extract lumen and wall regions. The values of Dice coefficient 

for the models presented in this study ranged from 0.84 for longitudinal US 

images to 0.98 for the transversal US images. These results are comparable to 

the previously discussed results from literature. However, what differentiates the 

present study from other similar studies in literature [13, 16, 41] is that the 

segmentation was not the final goal and instead the results were further 

employed to perform both 3D model generation and numerical simulations of 

blood flow and distribution of molecules relevant for the development of 

atherosclerotic plaque. 
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The 3D visualization of the CA would be rather straight-forward if a series of 

cross-sectional B-mode US images were available. The B-mode US images 

were used by Rosenfield et al. [42] to perform 3D reconstruction of the carotid 

bifurcation. 2D transversal US images were also used more recently by Yeom et 

al. [43] to perform 3D reconstruction. In this study a similar approach is used, 

but the number of US images was limited due to the procedure applied during 

clinical examination and the lack of transversal cuts has been overcome using 

the parameters from the generalized CA model.  

Blood flow through CAs has been studied in literature, using both in-vivo data 

and numerical simulations. Markl et al. [44] analyzed in vivo distribution of 

WSS in the carotid bifurcation using time resolved phase-contrast MRI with 3-

directional velocity encoding. Morales et al. [45] performed an analysis of 

morphological and hemodynamic patterns of stenosed CA after diverse clinical 

treatments using duplex US. Zhang et al. [46] analyzed blood flow in stenosed 

CA of one patient using digital subtraction angiography (DSA). Color Doppler 

ultrasonography was applied in a study [47] that involved patients with head and 

neck cancers. The main goal was to analyze the vascular changes and 

subsequent blood flow abnormalities that appear after external radiotherapy. The 

benefits of Doppler ultrasound technique for the examination of intracranial 

vascular stenosis were analyzed in [48]. In this study, patients with a history of 

stroke underwent standard examination techniques together with the transcranial 

colour Doppler ultrasound and it was concluded that US technique can be 

succesfully applied for the diagnosis of arterial stenosis. Blood flow through 

anatomically realistic carotid artery bifurcation was modelled in [49], both with 

rigid and deformable walls. The MRI scan was used in [40] to reconstruct the 

geometry of the patient’s CA using commercial image analysis software. This 

model was used for CFD simulations and the obtained results were compared 

with values measured from phase-contrast MRI examination. In another study 
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[51] the authors used semi-automatic threshold-based segmentation to 

reconstruct the geometries of the patient-specific CAs from CT scan images.  

They also performed US examinations to quantify the blood flow parameters 

used for the boundary conditions defined within CFD simulations. The main 

goal was to analyze hemodynamic parameters after two diverse clinical 

treatments of stenosed arteries. Hemodynamic analysis of an ascending human 

aorta with and without aneurysm was performed using FEM in [52]. The authors 

performed blood flow simulations of a cardiac cycle and compared the values of 

WSS for both considered cases. He et al. [53] also performed FEM simulations 

of blood flow to examine the influence of the location of stenosis on the 

distribution of blood velocity, pressure and WSS. In this study the FEM 

simulations are extended from the standard blood flow simulations performed in 

[52, 53] and many other papers in literature, into a more complex hemodynamic 

analysis. The applied complex model provided a way to analyze not only the 

distribution of blood flow parameters, but also other relevant parameters within 

arterial wall, such as LDL, macrophages and cytokines. 

The main contributions and advantages of the proposed methodology are as 

follows: 

- The deep learning techniques are applied for the segmentation of the 

US images, where a completely automatic detection of relevant regions 

of the carotid bifurcation (lumen and wall) was performed. The 

experiments demonstrated that a deep learning approach can provide 

very accurate image segmentation results in real-time, which is a very 

important segment in computer-aided diagnosis.  

- The performance of the deep learning technique was demonstrated 

through the high values of relevant common classification metric 

parameters (Precision, Recall and Dice coefficient). Also, the accuracy 
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of the proposed methodology was shown through the validation of 

results for the reconstructed parameters (stenosis and plaque length) 

against the clinically measured values. 

- The segmented data extracted from US images is used to reconstruct 

the vessel geometry in 3D. A 3D geometry of the considered vessel that 

can be obtained using the approach proposed in this paper is more 

relevant and appropriate in comparison to the 2D images obtained 

during US examination. One of the reasons is that 3D geometry enables 

better visualization of the state of the CA, but a more important reason 

is related to hemodynamics. The clinical examinations that rely on the 

2D Doppler US analyze the blood velocity and WSS either in the axial 

direction or as an average of the entire lumen cross-section. But, the 

blood flow parameters, including velocity and WSS have complex 

directions in 3D. Thus it is preferable to perform analysis of these 

parameters using their actual magnitude and direction. 

- The reconstructed geometry is used to perform hemodynamic 

simulations. This complex analysis includes blood flow but also the 

transport and distribution of molecules relevant for the development of 

atherosclerotic plaque (LDL, macrophages and cytokines) within the 

arterial wall and provides a way to investigate several quantitative 

hemodynamic parameters of the stenosed CA.  

 

4.1 Limitations of the present study  

 

The main limitation of this methodology is the database that consisted of US 

images from 108 patients. Also, the dataset consisted of images from only one 

clinical center. In order to ensure higher representativeness of the US images, 
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the dataset should be enlarged in future studies by including data from other 

clinical centers. Another problem that may arise from including more clinical 

centers could be the fact that different US devices produce images of slightly 

different features. When more versatile data from diverse US devices were 

included, , it would enable to test the scalability of the proposed methodology. 

Another future improvement will be to train the deep learning module to 

segment also the plaque components (fibrous, lipid and calcified plaque) from 

the US images.  

There are also some possible ways to additionally improve the performance of 

the deep learning module. Hongchun et al. [54] proposed an approach to 

improve the segmentation problems that unclear image boundaries can cause. 

The boundary-enhanced guided packet rotation dual attention decoder network 

was proposed to increase segmentation accuracy while reducing the number of 

model parameters. Yongtao et al. [55] also proposed some modifications of the 

U-Net architecture that would ensure better feature expression and improve 

segmentation performance of the model by 0.75%. These proposed 

improvements and some others should be considered in the future improvements 

of the methodology presented in this study.Another limitation is the rather small 

number of US transversal images that are used during reconstruction. This again 

was mainly due to the data that the used clinical dataset contained. However, if 

observed differently, this can also be seen as a benefit of the proposed 

methodology. This model is capable of performing reconstruction using 

assumptions from the generalized model when there is a lack of US images 

obtained during examination. If there are more US transversal images available, 

they can be easily included in the reconstruction to obtain a more personalized 

model of the patient’s CA. This enables the clinicians to determine the important 

segments that differ from the generalized model and include them in the 

modeling phase, thus lowering the time and cost of the US examination.  
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In the presented methodology the shapes of CCA and ECA are completely 

generic instead of being specific for the particular patient. With introducing new 

clinical datasets with more US images for the specific patient, this limitation 

will be overcome and these branches will also be segmentedin the future 

improvements, which will ensure an even more realistic 3D model. 

 

5 Conclusion 

 

The methodology presented in this study enables the segmentation and 3D 

reconstruction of patient-specific CA without any assistance or manual 

intervention of the clinical staff. The presented methodology could be used in 

combination with standard clinical ultrasound examination to quickly provide 

additional quantitative and qualitative information about the state of the patient’s 

CA (including information that cannot be easily measured, such as the WSS or 

distribution of molecules of interest within arterial wall) and thus ensure a 

treatment that is more adapted to the specific patient. 
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Table 1. Performance of different methods on transversal US images for the 

lumen segmentation task. 

Model Precision Recall Dice coefficient 

SegNet 0.62 0.97 0.75 

FCN-8s VGG 0.91 0.79 0.83 

Original U-Net 0.69 0.87 0.73 

Deeper U-Net 0.92 0.93 0.92 
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Table 2 – Results of the performance of the deep learning module 

Model Precision  Recall Dice coefficient  

Lumen – B mode 0.92 0.93 0.92 

Lumen – Color 

Doppler 

0.97 0.98 0.98 

Wall  – B mode 0.96 0.95 0.96 

Wall – Color Doppler 0.96 0.98 0.98 

Longitudinal  0.87 0.82 0.84 
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Figure captions 
 

Fig. 1 The proposed methodology for the analysis of state of carotid arteries 

using US imaging 

Fig. 2 Segmented lumen and wall areas for a particular patient and marked lines 

used during the 3D reconstruction 

Fig. 3 Obtained results of the considered models during the training and 

validation phases; a - resulting loss curves; b - Dice coefficient curves 

Fig. 4 Example of an original and segmented image with borders for a case with 

noise included within US image at one end of the considered vessel  

Fig. 5 Illustration of the process of plaque determination; a - original US image 

with overlayed segmented lines for lumen (blue) and wall (red), extracted 

centerline (yellow) and clinically marked plaque length (green); b - graphs 

showing the change of vessel diameters along the centerline 

Fig. 6 Validation of the results of the deep learning and reconstruction module; a 

and b – linear regression and Bland-Altman plots for the validation of 

percentage of stenosis; c and d – linear regression and Bland-Altman plots for 

the validation of plaque length 

Fig. 7 Segmentation results for a specific patient. The original US images are 

shown in the first row; predicted lumen regions are shown in the second row; 

predicted wall regions are shown in the third row; the segmented data on top of 

original US images is shown in the fourth row 

Fig. 8 Results of numerical simulation for a specific patient – fluid flow; a – 

generated mesh with arterial wall; b – velocity streamlines; c – pressure 

distribution; d – WSS distribution 
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Fig. 9 Results of numerical simulation for a specific patient - distribution of 

quantities in the arterial wall; a – Macrophages concentration; b – Cytokines 

concentration; c - Oxidized LDL distribution 
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Fig. 1 The proposed methodology for the analysis of state of carotid arteries 

using US imaging 
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Fig. 2 Segmented lumen and wall areas for a particular patient and marked lines 

used during the 3D reconstruction 
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Fig. 3 Obtained results of the considered models during the training and 

validation phases; a - resulting loss curves; b - Dice coefficient curves 
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Fig. 4 Example of an original and segmented image with borders for a case with 

noise included within US image at one end of the considered vessel  
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Fig. 5 Illustration of the process of plaque determination; a - original US image 

with overlayed segmented lines for lumen (blue) and wall (red), extracted 

centerline (yellow) and clinically marked plaque length (green); b - graphs 

showing the change of vessel diameters along the centerline 
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Fig. 6 Validation of the results of the deep learning and reconstruction module; a 

and b – linear regression and Bland-Altman plots for the validation of 

percentage of stenosis; c and d – linear regression and Bland-Altman plots for 

the validation of plaque length 
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Fig. 7 Segmentation results for a specific patient. The original US images are 

shown in the first row; predicted lumen regions are shown in the second row; 

predicted wall regions are shown in the third row; the segmented data on top of 

original US images is shown in the fourth row 
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Fig. 8 Results of numerical simulation for a specific patient – fluid flow; a – 

generated mesh with arterial wall; b – velocity streamlines; c – pressure 

distribution; d – WSS distribution 
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Fig. 9 Results of numerical simulation for a specific patient - distribution of 

quantities in the arterial wall; a – Macrophages concentration; b – Cytokines 

concentration; c - Oxidized LDL distribution 
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Supplementary material S1 – Numerical model for the blood 

flow with plaque progression 

 

The blood flow is simulated using the 3D Navier-Stokes equations, together 

with the continuity equation, that are given by: 

( ) 02 =++− llll puuu       (S1) 

0= lu
       (S2) 

In Eqs. (S1) and (S2) blood velocity is denoted by lu , pressure is denoted by 

lp , and the dynamic viscosity of the blood and density of the blood are denoted 

by   and  , respectively. 

The mass transfer within the blood lumen is modeled using the following 

convection-diffusion equation:   

( ) 0=+− llll uccD
     (S3) 

where the solute concentration in the blood lumen is denoted by cl, and Dl 

represents the solute diffusivity within the blood lumen. 

The mass transfer in the arterial wall and the transmural flow are modelled 

together using the following convection-diffusion-reaction equation: 

( )w w w w w wD c kc u r c −  + =
     (S4) 

where the solute concentration in the arterial wall is denoted by cw, Dw represents 

the solute diffusivity within the arterial wall, K and rw represent the solute lag 

coefficient and consumption rate constant, respectively. 
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Kedem-Katchalsky equations are used to model LDL transport within the blood 

lumen: 

( ) −= dpv pLJ
      (S5) 

( ) cJcPJ vfs −+= 1
     (S6) 

where Δc and Δp represent the solute concentration difference and the pressure 

drop across the endothelium, respectively. In Eq. (S6) there are also several 

coefficients: Lp is the hydraulic conductivity of the endothelium, Δπ is the 

oncotic pressure difference across the endothelium, σd  is the osmotic reflection 

coefficient, σf  is the solvent reflection coefficient, P is the solute endothelial 

permeability, and c is the mean endothelial concentration. 

The modelling of the inflammatory process is also included in the numerical 

model. In order to do this, concentrations of two additional molecules, besides 

LDL, are considered - concentrations of macrophages and cytokines in the 

intima, denoted by M and S respectively. Three additional reaction-diffusion 

partial differential equations are included in the model: 

Mckcdc wwwt −= 12       (S7) 

( )
S

S
MckMdMvdivM wwt

−
+−=+

1
11    (S8) 

( )thr
wwwt ccMckSSdS −++−=  13     (S9) 

where d1,d2, and d3 represent the corresponding diffusion coefficients;  and  

are degradation and LDL oxidized detection coefficients; and vw is the 

inflammatory velocity of plaque growth. The velocity of plaque growth within 

the wall domain must also satisfy Darcy’s law and continuity equation that are 

given by: 
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( ) 0w wv p− =
      (S10) 

0wv =
       (S11) 

In Eq. (S10), the pressure in the arterial wall is denoted by pw.  

In order to solve the above listed equations numerically, specific stabilizing 

techniques have to be applied, since the low diffusion coefficient causes a 

dominance of the convective terms in the equations of blood flow with mass 

transport, as it was discussed in literature [1,2]. The equations are solved using 

the finite element method by transforming all the equations into incremental-

iterative form of finite element equations of balance. The diffusion equations are 

also included in the system and transformed into an incremental form. 

Additionally, the streamline upwind/Petrov-Galerkin stabilizing technique 

(SUPG) [3] is used to obtain a stable numerical solution.  
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