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Pharmaceutical research has long used differential gene expression signatures to study external stimuli like pathogenic determinants or small molecule treatments. These signatures measure expression values for
multiple tags and are often compared using the concept of connectivity [1, 2]. Despite the scientific community's efforts [3, 4 ,5, 6, 7] to produce unbiased datasets for evaluating connectivity-based methods for drug
identification and repurposing, the limits of benchmarking data hinder their effectiveness.

To address this, we developed a simulation method to generate pairs of connected differential expression signatures, that is based on a three layers decomposition and relies on a statistical framework with
different levels of parametrization. We benchmarked seven connectivity scores methods from the literature [8] using our simulated signatures. We then evaluated the capacity of each method to retrieve the most
connected signatures for a specific query, using the area under the precision-recall curves (AUPRC) [9, 10]. Moreover, we introduced a novel application perspective by training a Siamese Neural Network with our
simulated data to predict the connectivity score.

Overall, our method is a significant advance in pharmaceutical research, providing a reliable way to simulate connected differential expression signatures. It will help develop and evaluate algorithms for comparing
signatures to find the most connected or reversed, leading to more effective drug repurposing. An open-source version of the package will be released at the end of 2023.

Motivation : limits of benchmarking data (labeled pairs based on therapeutic class, efficacity on a specific
pathology, …) for evaluating connectivity-based methods for drug identification and repurposing.

Goal : generate differential expression signatures that are associated with a predefined connectivity score.

Differential expression signatures are represented by log2 fold-change vectors (LFC). In order to model
the LFC distribution while linking the vectors with a known connectivity score (CS), we have implemented a
three layers decomposition based on the following features :

1. Modality ∈ 𝑈𝑃, 𝑁𝑅∗ , 𝐷𝑂𝑊𝑁 , represents the deregulation status of a gene

2. Sub-modality ∈ [1; 𝑁], represents a rank that maps to a quantile function that models the LFC
values for genes within that sub-modality. This mapping is specific to each modality.

3. Probability ∈ 0; 1 , is the probability that the distribution function will be equal to the final LFC
value.

SIMULATION ALGORITHM AND DATA PROPERTIES
Datasets

Replicated sets of 1000 secondary signatures (profiles DB) were generated from a simulated primary
signature (query), with each query-profile pair (L=1000) having a unique CS. To account for inference bias,
we simulated experimental replicates (n=3) per signature and subsequently a read-counts matrix and
employed DESeq2 [11] to re-estimate the final differential expression signature.

These re-inferred signatures are then used to estimate the CS using seven different methods, those
estimations are then compared to the theorical CS used during the simulation stage.

APPLICATION IN BENCHMARKING
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Transition matrix

Notations:
- c: connectivity score
- 𝜸: noise introduced by the non-deregulated* (NR) 
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PERSPECTIVES

Evaluation metric

The evaluation metric choose for this benchmarking was the AUPRC. The question we wanted to answer
in this specific benchmarking was “How well does the standard CS estimators could select the top N of most
connected signatures ?” .

Use of Siamese Neural Networks

The availability of training data for neural networks in the prediction of a phenotypic effect (such as
therapeutic effect) is limited and biased depending on the chosen estimation method. Simulated data
provides a promising solution for training deep neural networks before using real data for fine-tuning
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Integration of systems biology : co-expression networks / functional networks

The integration of systems biology information during the simulation process as well as in the
development of novel methods estimating the CS holds immense potential for advancing drug repurposing
research (introduce different connectivity scores by functional categories; convolutional graphs; … ).

Bars represent the mean value over the 20 replicates and error bars represent the confidence interval computed at 95% level.
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Note: sub-modality and probability transitions are not detailed here but three transitions options are implemented for each 
layer.

A. Multimodal distribution used to model the primary LFC
values.

B. Impact of Inference Bias on Primary LFC Distribution
C. Comparison of volcano plots: real data VS simulated

primary distribution (post-inference bias).

D. Dependency of estimated Pearson’s correlation on the
percentage of DEG, for simulated and real data with a
known connectivity of 1 (experimental replicates).
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- Our innovative simulation tool enables the exploration of diverse patterns, generating datasets that

encompass a wide range of properties and traits. These datasets serve as robust challenges for
methods estimating connectivity scores.

- Extreme Pearson's correlation and Cosine similarity-based estimators, showcase notable performance
in our benchmarking. Nevertheless, these results are influenced by the properties of the simulated data.

- Current results highlight the potential of simulated data on drug repurposing by overcoming limitations
of real-world data. However, it is crucial to integrate biological functions during the simulation process to
ensure the generation of more realistic and biologically relevant datasets.
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