
The Quantum Package:
developer friendly electronic structure

Emmanuel Giner

Laboratoire de Chimie Théorique, CNRS

Tuesday, 20 February 2024



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:

▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need

▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems

☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !

▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need

▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems

☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding

▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need

▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems

☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need

▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems

☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need

▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems

☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need
▸ New idea to tackle an unresolved problem !

▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems

☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need
▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities

▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems

☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need
▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems

☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need
▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements

☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems

☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need
▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines

☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems

☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need
▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems

☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need
▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems

☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need
▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems
☀ Easy: implementation for small model systems

☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need
▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems
☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need
▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems
☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”

☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need
▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems
☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”
☀ Diffusing the code to maximize impact/bug reports

☀ Mutual benefits of collaboration



Context for developers in QC: the code dilemma

The paradox of Quantum chemistry codes:
▸ HPC software: Large data/flops required !
▸ Hard problems imply complicated algorithms: flexible coding
▸ HPC and flexible codes don’t go along very well ...

Typical developer’s need
▸ New idea to tackle an unresolved problem !
▸ Mathematical equations ← physical quantities
▸ Easy access/combination of key quantities

☀ matrix elements
☀ linear algebra routines
☀ complicated data storage

▸ Efficient enough to be tested on ”real” systems
☀ Easy: implementation for small model systems
☀ Hard: applications on larger systems

▸ Easy to ”enter in the community”
☀ Diffusing the code to maximize impact/bug reports
☀ Mutual benefits of collaboration



How the Quantum Package was thought

Typical available codes: ”Old but efficient”
▸ Rather ancient but efficient languages (C, Fortran 77/90)
▸ Not necessarily open-source ...
▸ Outsider’s point of view: a nightmare !

How we designed the QP: (short version)
▸ Highly optimized fundamental building blocks
▸ Modular structure: Just pick what you aim for !
▸ Do not need to understand ”all the code”
▸ Plugin system: easy to create your own code

Documentation material
▸ Github webpage (https://quantumpackage.github.io/qp2/)
▸ Read-the-Doc documentation
▸ Tutorials (available on Youtube)
▸ Try in your browser interface !



How the Quantum Package was thought

Modular language

▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure

▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !

☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)

▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure

▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !

☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies

▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure

▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !

☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want

▸ Don’t need to know how they are built

Modular structure

▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !

☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure

▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !

☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure

▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !

☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure
▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !

☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure
▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)

☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !

☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure
▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation

☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !

☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure
▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines

☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !

☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure
▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)

☀ Highly efficient selected CI code
parallel efficiency ≈ 100% up to 6×103 CPU

☀ Highly optimized Coupled Cluster code
▸ Plugin system: developer’s playground !

☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure
▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU

☀ Highly optimized Coupled Cluster code
▸ Plugin system: developer’s playground !

☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure
▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !

☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure
▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !

☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure
▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !
☀ External codes/routines

☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure
▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !
☀ External codes/routines
☀ Easy to install and connect with the core

☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure
▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !
☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation

☀ Can create yours easily ,



How the Quantum Package was thought

Modular language
▸ Modified Fortran 90 language (Scemama)
▸ Handles all complex dependencies
▸ Just use the quantities you want
▸ Don’t need to know how they are built

Modular structure
▸ ”Core QC objects”:

☀ One- and two-e integrals (efficient storage)
☀ Slater determinants manipulation
☀ Hartree-Fock routines
☀ DFT quantities (grid, functionals)
☀ Highly efficient selected CI code

parallel efficiency ≈ 100% up to 6×103 CPU
☀ Highly optimized Coupled Cluster code

▸ Plugin system: developer’s playground !
☀ External codes/routines
☀ Easy to install and connect with the core
☀ CASSCF, DFT, Transcorrelation
☀ Can create yours easily ,



A few examples of applications with the QP

Used/developed in
▸ Europe: France, Poland
▸ North America: U.S.A, Canada

Ground state and excited states with SCI
▸ State-of-the art calculations
▸ Benchmark done by Loos et. al.
▸ Typical system size: Benzene

Multi-reference range-separated DFT (Julien Toulouse, E. G.)

Positron-binding calculations (E. G.)

Transcorrelated/QMC calculations (Ammar, Scemama, E. G.)

Complex Gaussian basis (Ammar)

Application to core-excitations/ionizations (Ferté et. al.)

Multi-reference adiabatic connection (Pernal et. al., Poland)

SCI for QMC (Benali et. al., U.S.A)

Extension to solid-state of SCI (Caffarel et. al., U.S.A.)

High-level Coupled Cluster calculations (Piecuch et. al., U.S.A.)

Pair-natural orbitals functionals (Hollet, Canada)



Visit our website !


