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» HPC software: Large data/flops required !
» Hard problems imply complicated algorithms: flexible coding
» HPC and flexible codes don't go along very well ...

@ Typical developer's need
» New idea to tackle an unresolved problem !
» Mathematical equations < physical quantities
» Easy access/combination of key quantities
* matrix elements
% linear algebra routines
* complicated data storage
Efficient enough to be tested on "real” systems
% Easy: implementation for small model systems
% Hard: applications on larger systems
» Easy to "enter in the community”
% Diffusing the code to maximize impact/bug reports
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How the Quantum Package was thought

@ Typical available codes: "Old but efficient”
» Rather ancient but efficient languages (C, Fortran 77/90)
» Not necessarily open-source ...
» Outsider’s point of view: a nightmare !
@ How we designed the QP: (short version)
» Highly optimized fundamental building blocks
» Modular structure: Just pick what you aim for !
» Do not need to understand " all the code”
> Plugin system: easy to create your own code

@ Documentation material
» Github webpage (https://quantumpackage.github.io/qp2/)
» Read-the-Doc documentation
» Tutorials (available on Youtube)
» Try in your browser interface !
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A few examples of applications with the QP

@ Used/developed in
» Europe: France, Poland
» North America: U.S.A, Canada
o Ground state and excited states with SCI
» State-of-the art calculations
» Benchmark done by Loos et. al.
» Typical system size: Benzene

Multi-reference range-separated DFT (Julien Toulouse, E. G.)
Positron-binding calculations (E. G.)

Transcorrelated/QMC calculations (Ammar, Scemama, E. G.)
Complex Gaussian basis (Ammar)

Application to core-excitations/ionizations (Ferté et. al.)
Multi-reference adiabatic connection (Pernal et. al., Poland)
SCI for QMC (Benali et. al., U.S.A)

Extension to solid-state of SCI (Caffarel et. al., U.S.A.)
High-level Coupled Cluster calculations (Piecuch et. al., U.S.A.)
Pair-natural orbitals functionals (Hollet, Canada)



Visit our website !
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Quantum Package TUTORIALS  DOCUMENTATION  TRY IN THE BROWSER  SOURCE CODE

Quantum

Package

A programming environmentforwave function methods

Quantum Package is an open-source programming environment for quantum
chemistry specially designed for v

ave function methods. Its main goal is the

I of iven selected interaction (sCI)
methods and multi-reference second-order perturbation theory (PT2).

The determinant-driven framework allows the programmer to include any arbitrary
set of determinants in the reference space, hence providing greater methodological
freedoms. The sCI method implemented in Quantum Package is based on the CIPST
(Configuration Interaction using a Perturbative Selection made Iteratively) algorithm



