
Analysis and Evaluation of End-to-End PTP
Synchronization for Ethernet-based Fronthaul

Igor Freire∗, Ilan Sousa∗, Igor Almeida†, Chenguang Lu†, Miguel Berg† and Aldebaro Klautau∗
∗Signal Processing Laboratory, Federal University of Pará, Brazil

{igorfreire, ilan, aldebaro}@ufpa.br
†Ericsson Research, Kista, Sweden

{igor.almeida, chenguang.lu, miguel.berg}@ericsson.com

Abstract—Provisioning of cost-effective Ethernet-based fron-
thaul by reusing the LAN infrastructure available in most
commercial buildings is challenging predominantly in terms of
the required bandwidth and synchronization. In contrast to a
synchronous fronthaul, a PTP-based Ethernet network must
cope with estimation noise introduced by packet delay variation
(PDV) for synchronization recovery. The SYNC packet used for
PTP on such networks is expected to suffer from significant
PDV due to the fronthaul traffic and other background traffic.
Further challenge is when the involved network switches do not
support PTP and therefore synchronization can only be done by
end-devices. Focusing on this scenario, this paper analyzes the
problems that may affect the time-offset estimation accuracy and
presents schemes to mitigate these problems. The performance
is evaluated through a self-developed FPGA-based testbed and
the results suggest that the end-to-end PTP approach can fulfill
the less strict time alignment requirements of 3GPP standards if
PDV is handled properly.

Index Terms—PTP, IEEE 1588, Fronthaul, CPRI, Ethernet.

I. INTRODUCTION

Cloud radio access networks (C-RAN) provide key solu-
tions for efficient allocation and management of baseband
processing resources [1], which are essential to forthcoming
ultra-dense [2] deployments. However, its emergence poses
demands for increased flexibility in the fronthaul, either in
terms of the infrastructure required for new installations or
in terms of baseband traffic routing. Thus, Ethernet has been
investigated by standardization task forces such as IEEE
1904.3, IEEE 802.1CM and IEEE1914.1, aiming at further
evolving the current fronthaul protocols such as CPRI [3] and
OBSAI [4] to support Ethernet.

An obstacle to the replacement of synchronous fronthaul
networks is the fact that they inherently enable the delivery
of synchronization through line timing paths formed at the
physical layer of cascaded nodes, while conventional Ethernet
deliberately uses free-running clocks and only provide syn-
chronization through ad hoc solutions such as the Synchronous
Ethernet (SyncE) and the Precision Time Protocol (PTP).
Since fronthaul networks are relatively more recent, a current
problem is to ensure the accuracy required by 3GPP [5] is
achievable through such solutions.

Particularly for PTP, PDV represents the main limitation
to accuracy. For example, [6] concludes that the fronthaul
requirements for jitter can’t be satisfied unless schemes such as
frame preemption, traffic scheduling or de-jitter buffering are

used to alleviate the PDV. Such strategies effectively reduce
the PDV in the network, but generally require equipment
upgrades. In this work, we live with the PDVs caused by
network and investigate the PTP estimation process, such as
packet selection and filtering [7], [8], to mitigate the PDV
effects and improve the synchronization accuracy.

Packet selection has been thoroughly investigated in several
use cases for more than a decade. In general, wise use of
the technique must take the PTP traffic statistics into account,
either through off-line observation or dynamically [9]. Most of
the literature considers the selection of packets experiencing
minimum or maximum [10] delays, but depending on the
network load and the background traffic pattern, other metrics
such as sample-mean [7] and sample-mode are applicable.
Delay profiles that do not match a filter available in the system
can benefit from the sample-mode strategy, as shown in [11].

Filtering algorithms, in turn, are applied on the estimations
whose variations are slow relative to the PTP periods, with
the assumption that instantaneous variations in the estimations
are due to noise. Many filtering schemes have been proposed,
in some cases applied to the time offset estimations and in
others to the frequency offset. For example, [8] evaluates
exponential-smoothing, linear programming and Kalman fil-
tering strategies. Similarly, [12] evaluates Kalman filtering
applied to frequency offset estimations.

This work concentrates on practical difficulties related to
packet selection and filtering that arise in legacy Ethernet-
based fronthaul networks with PTP solely implemented at
the endpoints (BBU and RRU). The scenario is illustrative of
fronthaul operation over third party networks without synchro-
nization time service, which is being considered for the ITU-T
G.8275.2 profile, known as Partial Timing Support. This work
presents a combination of solutions that contribute to the the
accuracy achieved in this scenario and evaluates them using
an FPGA-based hardware and its corresponding software.

This paper is organized as follows: Section II describes
the PTP estimations and their corresponding impairments;
Section III presents practical difficulties experienced in an
endpoint-based PTP scheme; Section IV presents the solu-
tions adopted for the challenges in the previous section; and
Section V presents the results obtained through the testbed.
Finally, Section VI summarizes the conclusions.



II. SYSTEM MODEL

The PTP system considered in this work employs both
the peer-delay mechanism for delay estimations and one-way
transmissions of the so-called SYNC packet by the clock
master toward slaves for time and frequency offset corrections.
Furthermore, the peer-delay mechanism is assumed to be
adopted in a non-standard manner, where peers can communi-
cate over hops, with the implicit assumption that intermediate
switches do not filter the corresponding packets.

The slave’s clock is assumed to present both a time offset
x(t) = Ts(t)− t, where Ts(t) corresponds to its local time at
true time t, and a frequency offset y(t) relative to the master.
The master is assumed as an ideal reference clock, whose local
time TM (t) is identical to the true time t. Thus, whenever
the slave initiates a peer-delay request and the PTP master
acts as a responder, the true (or master) times (t′1, · · · , t′4)
corresponding to the timestamps (t1, · · · , t4) are defined as:

t′1 = t1 − x(t1),

t′2 = t2,

t′3 = t3,

t′4 = t4 − x(t4),

(1)

where t1 = Ts(t
′
1) marks the departure of the PDELAY REQ;

t2 its arrival at the link peer (delay responder); t3 the departure
of the PDELAY RESP ; and t4 = Ts(t

′
4) marks the arrival

of the response back to the delay requestor. Note that t2 and
t3 are taken at the master, while t1 and t4 are taken at the
slave, therefore are corrupted by the time offset.

The slave-to-master delay dsm and the master-to-slave delay
dms are given by:{

dsm = t′2 − t′1 = t2 − t1 + x(t1)

dms = t′4 − t′3 = t4 − t3 − x(t4).
(2)

At this point, in order for the slave to estimate the link delay,
two important conditions must be satisfied. The first is that the
slave’s time-offsets x(t1) and x(t4) are approximately equal,
which is practically true over the short period. The second is
that the forward and backward transit times are equal, which
allows the equal one-way delay to be solved from the system
of equations by using the timestamps (t1, · · · , t4) collected
after the j-th peer-delay mechanism cycle:

τ̂j =
dms + dsm

2
=

(t4,j − t1,j)− (t3,j − t2,j)
2

. (3)

However, this is only approximately satisfied with certain
probability.

Once delay estimations are available, a separate mechanism
(other than the peer-delay) allows the time-offsets to be
computed based on the departure t1 (from master) and arrival
t2 (at the slave) timestamps of the k-th SYNC packets1:

x̂k = t2,k −
(
t1,k + d̂k + γk

)
, (4)

1Note t1 and t2 in (4) are timestamps from a mechanism different to the
peer-delay mechanism of (3). Note also j and k are indexes of the iterations
of two separate processes, which can be configured with different periods.

where the master time by the time its SYNC message arrives
at the slave is obtained by adding the current link delay
estimation d̂k to t1. Importantly, d̂k is a filtered version of the
estimations obtained in (3), which can come from a sliding
window of L estimations τ̂j . Note also that index k in d̂k
indicates that it is the output of the delay filter when the k-
th SYNC is received. Hence, for example, if the peer-delay
mechanism rate (injecting new delay estimations into the delay
filter) is four times lower than the SYNC rate, d̂k will be
the same for every four consecutive time-offset estimations.
Finally, note normally there is a correction γk accounting for
the residence times within switches, but without PTP support
in the network it can be neglected.

Based on the sequence of time error estimations, it is
possible to estimate the instantaneous clock frequency offset
as the discrete-time derivative of the time error function:

ŷk =
x̂k − x̂k−1

TM (t′2,k)− TM (t′2,k−1)
, (5)

where the denominator is the interval from one offset es-
timation to the other, measured in the reference’s (master)
timescale2. From (4), and according to [13], TM (t′2,k) is the
corrected master event timestamp, which is a projection of the
master time when timestamp t2,k is taken at the slave (i.e. at
true time t′2,k), defined as t1,k + d̂k + γk.

Therefore, using (4), the estimation can be re-stated as:

ŷk =
∆TS −∆TM

∆TM
, where (6){

∆TS = t2,k − t2,k−1,
∆TM =

(
t1,k + d̂k + γk

)
−
(
t1,k−1 + d̂k−1 + γk−1

)
.

These offsets are, then, filtered by a moving-average filter
and used to update the increment value for the RTC that is
applicable to provide its syntonization (frequency correction).

Naturally, the problem is that PDV is always present, so that
the estimations in (3) are erroneous and, consequently, (4) and
(6) too. In this context, one pre-requisite for establishing strate-
gies to accurately detect the time-offsets is to understand the
statistics of the delays. The one-way delays dk are realizations
of a biased random variable that can be modeled3 as:

dk = dprop + dtrans + dprocess +Dk
queuing (7)

where dprop is the propagation delay, dtrans is the transmission
delay, dprocess is the processing delay and Dk

queuing is the k-th
realization of the random queuing delay.

Assuming fixed network topologies, equipments and routing
paths, transmission and propagation delay can be assumed
constant. In contrast, processing delay can be modeled as a
Gaussian [14] random variable, but with negligible variance
relative to queuing, so it is assumed constant for simplicity
in the ensuing derivation. Finally, queuing delay is a random

2Again, the t2 in (5) is the timestamp marking SYNC reception at slave
used in (4), but not the same t2 from (1).

3Note the same model is valid for the one-way transit time of SYNCs or
peer-delay packets. Thus, both dk and dj are used in the text.



variable, with mean µq , variance σ2
q , and distribution that can

be modeled as Erlang for cross-traffic patterns and mirrored
Erlang for in-line traffic [9], [11], due to a sum of independent
exponentially distributed queuing delays in each hop.

The essence of such considerations is that the delay esti-
mations to be used in offset computations must be decided
and learned by the slave. The first question is what delay
the system is looking for, the minimum delay, the average,
the maximum or any other? The answer must consider the
probability that SYNCs transmitted to slaves are subject to a
delay close enough to the choice. Then, a corresponding packet
selection strategy must be used, as clarified in the sequel.

By using the model in (7), consider the actual time-offset
xk that should be computed by the estimation x̂k from (4):

xk = t2,k −
(
t1,k + dprop + dtrans + dprocess +Dk

queuing

)
, (8)

This reveals that the delay choice determines the pattern in
the time offset estimation error, which can be stated as:

εx = x̂k − xk
=
(
dprop + dtrans + dprocess +Dk

queuing

)
− d̂k. (9)

For example, a moving minimum delay estimation can be
chosen, in which case the delay filter output is determined
by d̂j = min {τ̂j , · · · , τ̂j−L+1}. Such a filter tends to select
the delays of (7) whose realizations of Dj

queuing are minimum.
Then, further assuming the minimum queuing delay is zero,
after sufficient observation a moving-minimum delay estima-
tion should approach d̂j = dprop + dtrans + dprocess, yielding:

εx = Dk
queuing − εd,min, (10)

where εd,min is the error associated to the estimation d̂k of the
minimum delay in the system.

Finally, the rationale of packet selection can be stated.
When a non-overlapping window of time-offset estimations is
accumulated, each individual estimation is subject to a distinct
error. Then, the objective is to select only the single estimation
in the window that is interpreted as the least erroneous. For
each window, a single time-offset is estimated and every two
non-overlapping windows one frequency offset is estimated.

In general, the selection strategies aim to minimize the
time-offset fluctuations by selecting in such a way that the
only noise left is the one between the delay estimation and
the target delay. For example, a peculiar characteristic of the
delay estimation choice of the minimum is that it leaves
a non-negative queuing delay parcel Dk

queuing in the error
of (10). Then, the time offset selection that minimizes the
error (estimation noise) is the minimum estimation within the
window. If the minimum queuing delay is effectively zero and
the window is sufficiently long to contain such a realization,
the error in the selected time-offset approaches εx = −εd,min.

By a similar argument, it can be shown that the fluctuations
associated with the windowed time-offset estimations when
the mean delay is chosen are given by:

εx = nkq − εd,mean, (11)

where nkq is the k-th realization of the zero-mean random
queuing fluctuation, i.e. Dk

queuing − µq , and εd,mean is the error
associated with the mean delay estimation adopted in time-
offset computations, given by:

εd,mean = d̂k − (dprop + dtrans + dprocess + µq) . (12)

In this case, since nkq is by definition zero-mean, the optimal
selection from the window is the mean of all windowed time-
offsets, which ideally should leave εx = −εd,mean.

III. PROBLEM ANALYSIS

The transport of CPRI or radio data over Ethernet has to
satisfy several requirements specified for radio transmissions.
Specifically regarding time alignment error (TAE), several
different requirements are defined by 3GPP for different appli-
cations. The tightest requirement is for MIMO or Tx diversity
transmissions, in which TAE must not exceed 65 ns [15] peak-
to-peak (or ±32.55 ns, the shortest LTE period). The latter is
a problem for joint transmissions through distinct RRUs (i.e.
different IEEE 1588 slaves), which is the case of coordinated
multi-point (CoMP) and eventually of MIMO.

This paper focus on the practical limitations of the al-
gorithms used on top of a standard PTP implementation to
achieve these strict RAN requirements, considering PTP is
not supported in the network. More specifically, the difficulties
presented in this section are inherent to the tradeoffs governing
choices for packet selection and filtering algorithms.

A. Packet Selection

The first problem with packet selection is that, while the
selection window is being filled, the true time-offset of the
RTC continues to accumulate. For example, for a window of
16 samples and a SYNC rate of 128 packets-per-second, if
the instantaneous RTC increment leaves a residual frequency
offset of +120 ppb, during the acquisition of the 16 samples
the time-offset increases by 15 ns. Then, even if εd,min = 0 or
εd,mean = 0 can be guaranteed in (10) or (11), respectively, the
offset accumulated within the window is likely to be missed
when the “best” estimation is effectively selected.

The second problem is the fact that nothing guarantees one
of the packets within the selection window will be subject to
the chosen delay. Generally, the two major features to enhance
the probability of this event refer to the packet selection
strategy and the selection window length. The former can
be reasonably chosen statically or dynamically (see [9]) by
considering the queuing delay distribution in the particular
network. Contrarily, the window length choice is involved
with tradeoffs. In essence, a longer window introduces a
slower response to instantaneous offset estimations, enhances
the first problem (of missing the time-offset accumulated over
the window) and leads to more abrupt step corrections. In
contrast, a shorter selection window diminishes the probability
of acquiring a SYNC subject to the chosen delay and having
a perfect cancellation of delays in (9).



16.66 µs 16.66 µs

Radio Frame Radio Frame
P
T
P

P
T
P

Fig. 1. Examples of PTP message locations within the inter-departure interval
of the radio frames for 64 CPRI BFs at line rate option #1.

B. Estimation Filtering

As detailed in Section II, in addition to packet selection, the
system considered in this work employs two separate filters,
one for the RTC increment value and another for the delay
estimations. One problem is that any change in the increment
value or in the chosen delay alters the error patterns in time
offset estimations. For example, in the case of (10), the error
εd,min would change if the chosen delay d̂k was changed or
the time offset increase rate would change with an alteration
in the RTC increment. The problem is that packet selection
requires time offset estimations accumulated in a window to
be compared, which implies for fairness the estimation errors
of each individual time-offset in the window must be subject
to the same conditions. Thus any change in the error patterns
while the window is being filled is undesirable.

C. Concurrent Fronthaul Traffic

PDV is mostly a consequence of queuing delays in store-
and-forward switches. Therefore, the strongest limitation to the
accuracy of PTP being deployed in the fronthaul is the own
concurrent radio traffic. For example, if a PTP packet arrives at
the switch right after (piggybacking) an radio frame, the PTP
message has to wait until the entire radio frame transverses
the switch. Furthermore, even if a preemption scheme is
adopted, when a PTP packet arrives while an radio frame is
already being transmitted, queuing is non-preemptive [7] and,
therefore, larger queuing delays are still exhibited.

The problem is also partly from the fact that the Ethernet
transmission bit rate is higher than the fronthaul IQ sample bit
rate. For example, consider the case in Fig. 1, where 64 CPRI
basic frames (BFs) of line rate option #1 (128 bits per BF)
carrying 2x2 LTE 5 MHz are encapsulated in each Ethernet
frame. Considering the sampling frequency for this bandwidth
is 7.68 Mhz, and 2 samples are carried per AxC in each BF, 64
BFs are accumulated over 128 sampling periods. As a result,
the amount of data for a single Ethernet frame is accumulated
in approximately 16.66 µs. In contrast, it takes approximately
8.4 µs to transmit the frame of 1050 bytes (including the
Ethernet header) with a 1000BASE-T transceiver. Thus, a long
“idle” interval is left for the PTP packets to be located, and
this interval is only reduced by paying the price of shorter
frames and the corresponding higher overhead.

D. Over-correction

Finally, one problem with PTP implementations in general
is that of over-corrections. Due to PDV noise introduced by
the concurrent fronthaul radio traffic, offset estimations may
exceed the actual values, which can lead to divergence.

TABLE I
SUMMARY OF DIFFICULTIES IN THE CONSIDERED PTP IMPLEMENTATION.

Problem Short Description
i Missed time offset due to long selection window
ii Probability of SYNC delays matching the chosen delay
iii Abrupt time-offset corrections with packet selection
iv Selection unfairness due to delay and RTC increment changes
v Overcorrection of RTC time offset
vi PDV due to fronthaul radio traffic

IV. PROPOSED SOLUTION

Table I summarizes the practical difficulties detailed in the
previous section. This section presents approaches to improve
the time synchronization by addressing each of these problems.

Problems i and ii are contradicting, ii requires a long
window and i is caused by a long window. Also Problem iii is
enhanced for longer windows. Thus, one proposition is to start
the system with a relatively short packet selection window. The
rationale is that, during initialization, the error between the
SYNC delay and the chosen delay is not the worst problem,
but rather the frequency offset. Once the RTC increment value
approaches a reasonable value (which occurs more easily, due
to its coarse granularity), Problem i becomes less critical, so
the selection window can be enlarged on-the-fly.

With respect to Problem iv, in the beginning of each
window, the current minimum, mean or maximum filtered
delay is sampled and used within the entire window. This
guarantees that at least within the window the estimation error
patterns are consistent in terms of delay. This is helpful during
the startup phase, but nonetheless high error is expected,
because the delay estimation may not be sufficiently trained.
Once the system achieves a more stable state, in which time-
offset estimations are relatively lower, the proposed strategy
is to lock the delay estimations and the RTC increment for as
long as the “locked” state is preserved. This provides a more
stable solution than sampling the delay at the beginning of
each window, because the two elements that alter time-offset
error patterns do not change even between different windows.

The system infers the “locked” state based on the trend in
time-offset estimations. In each selection window, a difference
is computed between the time offset computed using the
selection and the time offset previously registered in the RTC
hardware (updated after the previous selection). The result is,
then, divided by the window length Lw and the quotient is
regarded as the time-offset “step” δi, computed as:

δi =
x̂i − x̂i−1

Lw
, (13)

where i is the packet selection window index. This “step”
could be applied while each subsequent sample is acquired to
fill window i + 1. In the end, Lw corrections of δi complete
the correction up to x̂i, then a new value δk+1 is computed.

However, before applying the so-called step-by-step time-
offset corrections, the system first verifies the magnitude of
each δi. If the magnitude is under a threshold (e.g. fractional
nanoseconds) for a number of iterations, the internal “locked”



Cat 5e CableVC707 VC707

Virtex-7

Virtex-7

Gigabit Ethernet Switch
TP-LINK TL-SG1008D

Fig. 2. Testbed setup.

state is entered because the system infers the frequency
correction has been finely adjusted. In this case, the step-by-
step corrections are enabled to solve Problem iii. Otherwise,
the system continues to apply abrupt time-offset corrections
only after every window becomes full.

Problem v is addressed by attenuating the “steps” δi by a
coefficient α < 1. Once an estimation is obtained from packet
selection, Lw corrections of αδi are applied, totalizing αδiLw

instead of the full estimated difference x̂i − x̂i−1 in (13).
This approach is similar to [16] and essentially takes longer
convergence time as the cost for avoiding over-corrections.

Finally, controlled packet departure is used to address
Problem vi. The goal is to control the departure of SYNCs
relative to the radio packets such that they all experience an
almost constant delay. More specifically, a hardware-assisted
mechanism was developed to force SYNC departures only
right before a radio frame, a simplification of [14] that works
for the ensuing evaluated scenario.

V. RESULTS

A testbed was developed using the Xilinx VC707 board
and its 7 Series FPGA. A PTP-capable Ethernet MAC with
hardware timestamping is instantiated in the FPGA fabric
together with an associated RTC fed by a free-running clock of
125 MHz. The RTC counts nanoseconds using Q32.20 fixed-
point numbers (20 sub-nanosecond bits) and uses a Q6.20
increment value that provides fine resolution (120 ppb for
125 MHz). The driver periodically updates the RTC time
offset registers that are summed with the syntonized (adjusted
in terms of increment value) RTC to produce the so-called
synchronized RTC (time aligned). Then, the latter is used to
derive an 8 kHz clock, whose jitter is evaluated in this section.

Tests individually timed to 5 minutes were carried in the
1-hop setup illustrated in Fig. 2, where one FPGA represents
the BBU (PTP master) and the other represents the RRU (PTP
slave). A low-cost non PTP-capable switch (TP-LINK TP-
SG1008D) is used in the network and fronthaul traffic with 256
bytes of radio data per frame carrying 2x2 LTE 5 MHz goes
along the same path as synchronization packets, characterizing
in-line background traffic. Measurements were collected in the
Keysight Infiniium MSO 9104A oscilloscope at 10 GSample/s.
Table II summarizes the adopted default PTP parameters.

Fig. 3 presents the one-way delay profile in the network. It
resembles a mirrored-Erlang distribution, as anticipated for in-
line background traffic and specially given the link utilization
of roughly 50%. Importantly, note the mean delay is 7.278 µs,
but the probability distribution is more heavily concentrated
near the mode of 7.644 µs. In this case, among minimum,
maximum and mean selection strategies, mean is expected to

TABLE II
DEFAULT PTP PARAMETERS ADOPTED IN THE TESTS.

Parameter Value
Peer-delay Rate 8 packets-per-second
SYNC Rate 128 packets-per-second
RTC Increment Filter Length 128
Delay Filter Length 256
Selection Strategy Sample-mean
Selection Window Length 16 (initialization) and 64 (locked)
Attenuation Factor 0.5
Controlled SYNC Departure Always right before a radio frame

MeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMean

0.0000

0.0005

0.0010

0.0015

6000 6500 7000 7500 8000

Delay Estimation (ns)

D
e
n
s
it
y

0.0000

0.0004

0.0008

0.0012

0.0016

Density

Fig. 3. One-way delay profile considering concurrent in-line fronthaul stream
carrying 16 CPRI BFs of 128 bits per frame.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

Attenuation Factor

Ji
tt
er

(n
s)

Jitter

Jitter−Manual Delay

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

S
ta
ti
c
T
im

e
O
ff
se
t
(µ

s)

Static Time Offset

Fig. 4. Jitter and static time offsets for varying attenuation factors.

yield the best performance, but the constant error εd in (11)
will introduce a static timing error in the resulting clock.

A first investigation is with respect to the results in Fig. 4
for varying attenuation factors. Two axis are shown: one for
the so-called static time offset, here defined as the constant
phase error measured between the center of the jittered clock
in the slave and the rising edge (trigger source) of the master
clock; and another for the peak-to-peak jitter, here defined as
the variation in the slave’s rising edge over the measurement
period. The latter, in particular, is presented for two cases:
when the estimated mean delay is used for the time-offset
computations and when a delay is manually inserted through a
debug interface such that the static time offset is zeroed. Note
the attenuation factor influences both static error and jitter.
Also, note that attenuation cannot be too strong. Instead, values
close to unit yield better performance. Yet more importantly,
note the mean delay estimation leads to inferior performance
than the manually inserted delay values close to the mode.

A second investigation concerns the selection window
length and its increase when the system enters the “locked”
state, which is shown in Fig. 5. In accordance to what



75
60

75
90

215

65 60

162

250

371

85 85

164

494
 8 16 32

0

100

200

300

400

500

x1 x2 x4 x8 x16 x1 x2 x4 x8 x16 x1 x2 x4 x8 x16
Window Length Increase Factor in the Locked State

J
it
te

r 
(n

s
)

Increase

Factor

x16

x8

x4

x2

x1

Initial Window Length

Fig. 5. Combination of selection window lengths and increase factors.

Fig. 6. Time alignment using the optimal parameters over 1 hop.

was discussed regarding Problems i and ii, short selection
windows of 8 or 16 combined with a doubling in window size
yielded reasonable compromises between the two conflicting
problems. The individual results confirm the importance of
starting with a shorter selection window and the gain provided
by window enlargement after entering the stable state.

Finally, Fig. 6 presents the infinite persistence plot of the
master and slave clock signals using the optimal configuration
from the above experiments, which were given in Table II,
and a delay that reduces the static error to zero. A jitter
of approximately ±70 ns is observed. Nonetheless, assuming
a PLL with sufficiently narrow loop bandwidth can further
attenuate the jitter, an average TAE below the most strict 3GPP
requirement of 65 ns can be attained.

VI. CONCLUSIONS AND FUTURE WORKS

Synchronization is a well-developed area with a large body
of algorithms and architectures. In the context of fronthaul
transmission, the contribution of this work was to highlight
practical difficulties and potential solutions of selection and
filtering techniques applied on endpoint-based PTP systems.
The error pattern introduced by the delay estimation error
was modeled and it was shown that once the most probable
delay in the network is effectively searched by the selec-
tion strategy, a time error under 3GPP specification can be
achieved. Furthermore, it was analyzed and demonstrated that

jitter can be constrained by a combination of strategies, such
as adopting on-the-fly increase in the packet selection window
lengths, attenuating time-offset estimations prior to correction
and, primarily, by locking the delay and RTC estimations once
the system converges to a stable state.

Future extensions of this work shall investigate the per-
formance over more practical network topologies, including
cross-traffic scenarios that were not considered in this work;
model-based filtering approaches such as Kalman filtering;
improved delay search strategies; further jitter attenuation
through extra PLL layers; and effects due to improved sub-
nanoseconds resolution in the RTC increment.

ACKNOWLEDGMENT

This work was supported in part by the Innovation Center,
Ericsson Telecomunicações S.A., Brazil, the Capes Founda-
tion, Brazil, and by the European Union through the 5G-
Crosshaul project (H2020-ICT-2014/671598).

REFERENCES

[1] C.-L. I, J. Huang, R. Duan et al., “Recent progress on C-RAN central-
ization and cloudification,” Access, IEEE, vol. 2, pp. 1030–1039, 2014.

[2] J. G. Andrews, S. Buzzi, W. Choi et al., “What will 5g be?” Arxiv
preprint, pp. 1–17, 2014.

[3] “Common Public Radio Interface (CPRI) specification v6.1,”
http://www.cpri.info, Jul. 2014.

[4] “Open base station architecture initiative (OBSAI) specification v2.0,”
http://www.obsai.com, Apr. 2006.

[5] D. Bladsjo, M. Hogan, and S. Ruffini, “Synchronization aspects in LTE
small cells,” Communications Magazine, IEEE, vol. 51, no. 9, pp. 70–77,
Sep. 2013.

[6] T. Wan and P. Ashwood, “A performance study of CPRI over ethernet,”
IEEE 1904.3 Task Force, 2015.

[7] I. Hadzic and D. Morgan, “On packet selection criteria for clock
recovery,” in Precision Clock Synchronization for Measurement, Control
and Communication, 2009. ISPCS 2009. International Symposium on,
Oct. 2009, pp. 1–6.

[8] A. Bletsas, “Evaluation of Kalman filtering for network time keeping,”
Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions
on, vol. 52, no. 9, pp. 1452–1460, Sep. 2005.

[9] I. Hadžić and D. Morgan, “Adaptive packet selection for clock recov-
ery,” in Precision Clock Synchronization for Measurement Control and
Communication (ISPCS), 2010 International IEEE Symposium on, Sep.
2010, pp. 42–47.

[10] D. T. Bui, A. Dupas, and M. L. Pallec, “Packet delay variation man-
agement for a better IEEE1588V2 performance,” in 2009 International
Symposium on Precision Clock Synchronization for Measurement, Con-
trol and Communication, Oct. 2009, pp. 1–6.

[11] M. Anyaegbu, C. X. Wang, and W. Berrie, “A sample-mode packet delay
variation filter for IEEE 1588 synchronization,” in ITS Telecommunica-
tions (ITST), 2012 12th International Conference on, Nov. 2012, pp.
1–6.

[12] Z. Chaloupka, N. Alsindi, and J. Aweya, “Clock skew estimation
using kalman filter and IEEE 1588v2 PTP for telecom networks,”
Communications Letters, IEEE, vol. 19, no. 7, pp. 1181–1184, Jul. 2015.

[13] I. Instrumentation and M. Society, “IEEE 1588-2008: Standard for a
precision clock synchronization protocol for networked measurement
and control systems,” Jul. 2008.

[14] B. Mochizuki and I. Hadzic, “Improving IEEE 1588v2 clock perfor-
mance through controlled packet departures,” IEEE Communications
Letters, vol. 14, no. 5, pp. 459–461, May 2010.

[15] 3GPP TS 36.104, “Evolved Universal Terrestrial Radio Access (E-
UTRA); Base Station (BS) radio transmission and reception,” 2014.
[Online]. Available: http://www.3gpp.org/dynareport/36104.htm

[16] Y. Huang, T. Li, X. Dai, H. Wang, and Y. Yang, “Ts2: a realistic
IEEE1588 time-synchronization simulator for mobile wireless sensor
networks,” Simulation, vol. 91, no. 2, pp. 164–180, 2015.


