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Abstract
The article explores the Anoma Resource Machine (ARM) within the Anoma protocol, pro-
viding a comprehensive understanding of its role in facilitating state updates based on user
preferences. Drawing parallels with the Ethereum Virtual Machine, the ARM introduces a
flexible transaction model, diverging from traditional account and UTXO models. Key prop-
erties such as atomic state transitions, information flow control, account abstraction, and
an intent-centric architecture contribute to the ARM’s robustness and versatility. Inspired
by the Zcash protocol, the ARM leverages commitment accumulators to ensure transaction
privacy. The article outlines essential building blocks, computable components, and require-
ments for constructing the ARM, highlighting its unique approach to resource-based state
management.
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1. Introduction
In the Anoma protocol, users submit preferences about the system state and the
system continuously updates its state based on those preferences. The Anoma
Resource Machine (ARM) is the part of the Anoma protocol that defines and
enforces the rules for valid state updates that satisfy users’ preferences. The
new proposed state is then agreed on by the consensus participants. In that
sense the role of the Anoma Resource Machine in the Anoma protocol is similar
to the role of the Ethereum Virtual Machine in the Ethereum protocol.
The atomic unit of the ARM state is called a resource. Resources are im-

mutable, they can be created once and consumed once, which indicates that the
system state has been updated. The resources that were created but not con-
sumed yet make the current state of the system.

The ARM transaction model is neither the account nor UTXO model. Unlike
the Bitcoin UTXO model, which sees UTXOs as currency units and is limited
in expressivity, the resource model is generalised and provides flexibility — re-
source logics — programmable predicates associated with each resource — can
be defined in a way to construct applications that operate in any desired trans-
action model, including the account and UTXO models. For example, a token
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operating in the account model would be represented by a single resource con-
taining amap𝑢𝑠𝑒𝑟 : 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 (unlike the UTXOmodel, where the tokenwould be
represented by a collection of resources of the token type, each of which would
correspond to a portion of the token total supply and belong to some user own-
ing this portion). Only one resource of that kind can exist at a time. When users
want to perform a transfer, they consume the old balance table resource and
produce a new balance table resource.

The Anoma Resource Machine has the following properties:

• Atomic state transitions of unspecified complexity— the number of resources
created and consumed in every atomic state transition is not bounded by
the system.

• Information flow control — the users of the system can decide how much
of the information about their state to reveal and to whom. From the
resource machine perspective, states with different visibility settings are
treated equally (e.g., there is no difference between transparent — visible
to anyone — and shielded — visible only to the parties holding the viewing
keys— resources), but the amount of information revealed about the states
differs. It is realised with the help of shielded execution, in which the state
transition is only visible to the parties involved.

• Account abstraction — each resource is controlled by a resource logic — a
custom predicate that encodes constraints on valid state transitions for
that kind of resource and determines when a resource can be created or
consumed. A valid state transition requires a resource logic validity proof
for every resource created or consumed in the proposed state transition.

• Intent-centric architecture — the ARM provides means to express intents
and ensures their correct and complete fulfilment and settlement.

The design of the Anoma Resource Machine was significantly inspired by the
Zcash protocol [HBHW23].
The rest of the document contains the definitions of the ARM building blocks

and the necessary and sufficient requirements to build the Anoma Resource Ma-
chine.
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2. Preliminaries
2.1. Notation
For a functionℎ, we denote the output finite field ofℎ as Fℎ . If a functionℎ is used
to derive a component 𝑥 , we refer to the function as ℎ𝑥 , and the corresponding
to ℎ finite field is denoted as Fℎ𝑥 , or, for simplicity, F𝑥 .

3. Resource
A resource is a composite structure 𝑅 = (𝑙, 𝑙𝑎𝑏𝑒𝑙, 𝑞, 𝑣, 𝑒𝑝ℎ, 𝑛𝑜𝑛𝑐𝑒, 𝑛𝑝𝑘, 𝑟𝑠𝑒𝑒𝑑) :
𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 where:

• 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 = F𝑙 × F𝑙𝑎𝑏𝑒𝑙 × F𝑄 × F𝑣 × F𝑏 × F𝑛𝑜𝑛𝑐𝑒 × F𝑛𝑝𝑘 × F𝑟𝑠𝑒𝑒𝑑

• 𝑙 : F𝑙 is a succinct representation of the predicate associated with the
resource (resource logic)

• 𝑙𝑎𝑏𝑒𝑙 : F𝑙𝑎𝑏𝑒𝑙 specifies the fungibility domain for the resource. Resources
within the same fungibility domain are seen as equivalent kinds of dif-
ferent quantities. Resources from different fungibility domains are seen
and treated as distinct asset kinds. This distinction comes into play in the
balance check described later.

• 𝑞 : F𝑄 is a number representing the quantity of the resource

• 𝑣 : F𝑣 is the fungible data associated with the resource. It contains extra
information but does not affect the resource’s fungibility

• 𝑒𝑝ℎ : F𝑏 is a flag that reflects the resource’s ephemerality. Ephemeral
resources do not get checked for existence when being consumed

• 𝑛𝑜𝑛𝑐𝑒 : F𝑛𝑜𝑛𝑐𝑒 guarantees the uniqueness of the resource computable com-
ponents

• 𝑛𝑝𝑘 : F𝑛𝑝𝑘 is a nullifier public key. Corresponds to the nullifier key 𝑛𝑘
used to derive the resource nullifier (nullifiers are further described in
3.1.2)

• 𝑟𝑠𝑒𝑒𝑑 : F𝑟𝑠𝑒𝑒𝑑 : randomness seed used to derive whatever randomness
needed
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To distinguish between the resource data structure consisting of the resource
components and a resource as a unit of state identified by just one (or some) of
the resource computed fields, we sometimes refer to the former as a resource
plaintext.

3.1. Computable Components
Resource computable components are the components that are derivable from
the resource components, other computed components, and possibly some se-
cret data by applying a function from class 𝐻 .

3.1.1. Resource Commitment
Information flow control property implies working with flexible privacy require-
ments, varying from transparent contexts, where almost everything is publicly
known, to contexts with stronger privacy guarantees, where as little informa-
tion as possible is revealed.

From the resource model perspective, stronger privacy guarantees require
operating on resources that are not publicly known in a publicly verifiable way.
Therefore, proving the resource’s existence has to be done without revealing the
resource’s plaintext.

One way to achieve this would be to publish a commitment to the resource
plaintext. For a resource 𝑟 , the resource commitment is computed as 𝑟 .𝑐𝑚 =
ℎ𝑐𝑚 (𝑟 ). Resource commitment has binding and hiding properties, meaning that
the commitment is tied to the created resource but does not reveal information
about the resource beyond the fact of creation. From the moment the resource
is created, and until the moment it is consumed, the resource is a part of the
system’s state.

Remark 1. The resource commitment is also used as the resource’s address
𝑟 .𝑎𝑑𝑑𝑟 in the content-addressed storage. Consumption of the resource does not
necessarily affect the resource’s status in the storage (e.g., it doesn’t get deleted).

All resource commitments are stored in an append-only data structure called
a commitment accumulator𝐶𝑀𝑎𝑐𝑐 . Every time a resource is created, its com-
mitment is added to the commitment accumulator. The resource commitment
accumulator 𝐶𝑀𝑎𝑐𝑐 is external to the resource machine, but the resource ma-
chine can read from it. A commitment accumulator is a cryptographic accumu-
lator [ÖMBS21] that allows to prove membership for elements accumulated in
it, provided a witness and the accumulated value.

Each time a commitment is added to the𝐶𝑀𝑎𝑐𝑐 , the accumulator and all wit-
nesses of the already accumulated commitments are updated. For a commitment
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that existed in the accumulator before a new one was added, both the old wit-
ness and the newwitness (with the corresponding accumulated value parameter)
can be used to prove membership. However, the older the witness (and, conse-
quently, the accumulator) that is used in the proof, the more information about
the resource it reveals (an older accumulator gives more concrete boundaries on
the resource’s creation time). For that reason, it is recommended to use fresher
parameters when proving membership.

The commitment accumulator 𝐴𝑐𝑐 must support the following functionality:

• 𝐴𝐷𝐷 (𝑎𝑐𝑐, 𝑐𝑚) adds an element to the accumulator, returning the witness
used to prove membership.

• 𝑊𝐼𝑇𝑁𝐸𝑆𝑆 (𝑎𝑐𝑐, 𝑐𝑚) for a given element, returns the witness used to prove
membership if the element is present, otherwise returns nothing.

• 𝑉𝐸𝑅𝐼𝐹𝑌 (𝑐𝑚,𝑤, 𝑣𝑎𝑙) verifies themembership proof for an element 𝑐𝑚with
a membership witness𝑤 for the accumulator value 𝑣𝑎𝑙 .

• 𝑉𝐴𝐿𝑈𝐸 (𝑎𝑐𝑐) returns the accumulator value.

Currently, the commitment accumulator is assumed to be aMerkle tree𝐶𝑀𝑡𝑟𝑒𝑒
of depth 𝑑𝑒𝑝𝑡ℎ𝐶𝑀𝑡𝑟𝑒𝑒 , where the leaves contain the resource commitments and
the intermediate nodes’ values are computed using a hash function ℎ𝐶𝑀𝑡𝑟𝑒𝑒 .

Remark 2. The hash function ℎ𝐶𝑀𝑡𝑟𝑒𝑒 used to compute the nodes of the𝐶𝑀𝑡𝑟𝑒𝑒
Merkle tree is not necessarily the same as the function used to compute commit-
ments stored in the tree ℎ𝑐𝑚 .

For a Merkle tree, the witness is the path to the resource commitment, and
the tree root represents the accumulated value. To support the systems with
stronger privacy requirements, the witness for such a proof must be a private
input (4) when proving membership.

3.1.2. Resource Nullifier
A resource nullifier is a computed field, the publishing of which consumes the
associated with the nullifier resource. For a resource 𝑟 , the nullifier is computed
from the resource’s plaintext and a key called a nullifier key: 𝑟 .𝑛𝑓 = ℎ𝑛𝑓 (𝑛𝑘, 𝑟 ).
A resource can be consumed only once. Nullifiers of consumed resources are
stored in a public add-only structure called the resource nullifier set (𝑁𝐹𝑠𝑒𝑡 ).
This structure is external to the resource machine, but the resource machine
can read from it.
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Every time a resource is consumed, it has to be checked that the resource
existed before (the resource’s commitment is in the 𝐶𝑀𝑡𝑟𝑒𝑒) and has not been
consumed yet (the resource’s nullifier is not in the 𝑁𝐹𝑠𝑒𝑡 ).

The nullifier set must support the following functionality:

• 𝑊𝑅𝐼𝑇𝐸 (𝑛𝑓 ) adds an element to the nullifier set.

• 𝐸𝑋𝐼𝑆𝑇𝑆 (𝑛𝑓 ) checks if the element is present in the set, returning a boolean.

3.1.3. Resource Kind
For a resource 𝑟 , its kind is computed as 𝑟 .𝑘𝑖𝑛𝑑 = ℎ𝑘𝑖𝑛𝑑 (𝑟 .𝑙, 𝑟 .𝑙𝑎𝑏𝑒𝑙).

3.1.4. Resource Delta
Resource deltas are used to reason about the total quantities of different kinds
of resources in transactions. For a resource 𝑟 , its delta is computed as 𝑟 .Δ =
ℎΔ(𝑟 .𝑘𝑖𝑛𝑑, 𝑟 .𝑞).

The function used to derive 𝑟 .Δ must have the following properties:

• For resources of the same kind 𝑘𝑖𝑛𝑑 , ℎΔ should be additively homomorphic:
𝑟1.Δ + 𝑟2.Δ = ℎΔ(𝑘𝑖𝑛𝑑, 𝑟1.𝑞 + 𝑟2.𝑞)

• For resources of different kinds, ℎΔ has to be kind-distinct: if there ex-
ists 𝑘𝑖𝑛𝑑 and 𝑞 s.t. ℎΔ(𝑟1.𝑘𝑖𝑛𝑑, 𝑟1.𝑞) + ℎΔ(𝑟2.𝑘𝑖𝑛𝑑, 𝑟2.𝑞) = ℎΔ(𝑘𝑖𝑛𝑑, 𝑞), it is
computationally infeasible to compute 𝑘𝑖𝑛𝑑 and 𝑞.

Remark 3. An example of a function that satisfies these properties is the Peder-
sen commitment scheme: it is additively homomorphic, and its kind-distinctness
property comes from the discrete logarithm assumption.

3.2. Non-linear resources
Non-linear resource is a resource that can be consumed multiple times, as op-
posed to a linear resource, that can only be consumed exactly once. Such re-
sources could be useful to hold external data (e.g., the current gas price) that
can be read multiple times. However, having native non-linear resources intro-
duces some challenges as some basic assumptions about resources (e.g., nullifier
uniqueness) wouldn’t hold any more. At the same time, the resource structure
might be unnecessary and excessive for storing such data. For these reasons,
the ARM doesn’t support native non-linear resources.

Without having non-linear resources, such functionality can be achieved from
storing the data intended to be read separately and passing it to resource logics
as arbitrary input. The authenticity of the provided data has to be verified first,
and then it can be used by the resource logic as a valid source of information.
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4. Proving system
A proving system allows proving statements about resources, which is required
to create or consume a resource. Depending on the security requirements, a
proving system might be instantiated, for example, by a signature scheme, a
zk-SNARK, or a trivial transparent system where the properties are proven by
openly verifying the properties of published data.
To support the intended spectrum of privacy requirements, varying from the

strongest (where the relationship between the published parameters does not
allow an observer to infer any kind of meaningful information about the state
transition) to the weakest, where no privacy is required, we divide the proving
system inputs into public (instance) and private (witness). The inputs that could
potentially reveal the connection between components or other kinds of sensi-
tive information are usually considered private, and the components that have
to be and can be safely published regardless of the privacy guarantees of the
system would be public inputs. Note that in the context of a transparent only
system, this distinction is not meaningful because all inputs are public in such
a system.

We define a set of structures required to define a proving system 𝑃𝑆 as follows:

• Proof 𝜋 : 𝑃𝑆.𝑃𝑟𝑜𝑜 𝑓

• Instance 𝑥 : 𝑃𝑆.𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 is the public input used to produce a proof.

• Witness𝑤 : 𝑃𝑆.𝑊 𝑖𝑡𝑛𝑒𝑠𝑠 is the private input used to produce a proof.

• Proving key 𝑝𝑘 : 𝑃𝑆.𝑃𝑟𝑜𝑣𝑖𝑛𝑔𝐾𝑒𝑦 contains the secret data required to pro-
duce a proof for a pair (𝑥,𝑤).

• Verifying key 𝑣𝑘 : 𝑃𝑆.𝑉𝑒𝑟𝑖 𝑓 𝑦𝑖𝑛𝑔𝐾𝑒𝑦 contains the data required, along
with the witness 𝑥 , to verify a proof 𝜋 .

A proof record carries the components required to verify a proof. It is de-
fined as a composite structure 𝑃𝑅 = (𝜋, 𝑥, 𝑣𝑘) : 𝑃𝑟𝑜𝑜 𝑓 𝑅𝑒𝑐𝑜𝑟𝑑 , where:

• 𝑃𝑟𝑜𝑜 𝑓 𝑅𝑒𝑐𝑜𝑟𝑑 = 𝑃𝑆.𝑉𝑒𝑟𝑖 𝑓 𝑦𝑖𝑛𝑔𝐾𝑒𝑦 × 𝑃𝑆.𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 × 𝑃𝑆.𝑃𝑟𝑜𝑜 𝑓

• 𝑣𝑘 : 𝑃𝑆.𝑉𝑒𝑟𝑖 𝑓 𝑦𝑖𝑛𝑔𝐾𝑒𝑦

• 𝑥 : 𝑃𝑆.𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒

• 𝜋 : 𝑃𝑆.𝑃𝑟𝑜𝑜 𝑓 is the proof of the desired statement.
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A proving system 𝑃𝑆 consists of a pair of algorithms, (𝑃𝑟𝑜𝑣𝑒,𝑉𝑒𝑟𝑖 𝑓 𝑦):

• 𝑃𝑟𝑜𝑣𝑒 (𝑝𝑘, 𝑥,𝑤) : 𝑃𝑆.𝑃𝑟𝑜𝑣𝑖𝑛𝑔𝐾𝑒𝑦×𝑃𝑆.𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒×𝑃𝑆.𝑊 𝑖𝑡𝑛𝑒𝑠𝑠 → 𝑃𝑆.𝑃𝑟𝑜𝑜 𝑓

• 𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑝𝑟 ) : 𝑃𝑆.𝑃𝑟𝑜𝑜 𝑓 𝑅𝑒𝑐𝑜𝑟𝑑 → F𝑏

A proving system used to produce the ARM proofs should have the following
properties (as defined in [Tha23]):

• Completeness. This property states that any true statement should have a
convincing proof of its validity.

• Soundness. This property states that no false statement should have a
convincing proof.

• Proving systems used to provide privacy should additionally be zero-knowledge,
meaning that the produced proofs reveal no information other than their
own validity.

A proof 𝜋 for which 𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑝𝑟 ) = 1 is considered valid.
The party responsible for creating proofs is also responsible for providing the

input to the proving system. Public inputs are required to verify the proof and
must be available to any party that verifies the proof; private inputs do not have
to be available and can be stored locally by the proof creator. The same rule
applies to custom (inputs not specified by the ARM) public and private inputs.

5. Roles and requirements
Table 1 contains a list of resource-related roles. In the Anoma protocol, the role
of the resource creator will often be taken by a solver, which creates additional
security requirements compared to the case when protocol users solve their own
intents. Because of that, extra measures are required to ensure reliable distribu-
tion of the information about the created resource to the resource receiver.

5.1. Reliable resource plaintext distribution
In the case of in-band distribution of created resources in contexts with higher
security requirements, the resource creator is responsible for encrypting the
resource plaintext. Verifiable encryption must be used to ensure the correctness
of the encrypted data: the encrypted plaintext must be proven to correspond to
the resource plaintext, which is passed as a private input.
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Role Description
Authorizer approves the resource consumption on the application level. The resource logic encodes the mecha-

nism that connects the authorizer’s external identity (public key) to the decision-making process
Annuler knows the data required to nullify a resource
Creator creates the resource and shares the data with the receiver
Owner can both authorize and annul a resource
Sender owns the resources that were consumed to create the created resource
Receiver owns the created resource

Table 1. Resource-related roles.

5.2. Reliable nullifier key distribution
Knowing the resource’s nullifier reveals information about when the resource
is consumed, as the nullifier will be published when it happens, which might be
undesirable in the contextswith higher security requirements. For that reason, it
is advised to keep the number of parties who can compute the resource’s nullifier
as low as possible in such contexts.

In particular, the resource creator should not be able to compute the resource
nullifier, and as the nullifier key allows to compute the resource’s nullifier, it
shouldn’t be known to the resource creator. At the same time, the resource
plaintext must contain some information about the nullifier key. One way to
fulfil both requirements is, instead of sharing the nullifier key itself with the
resource creator, to share some parameter derived from the nullifier key, but
that does not allow computing the nullifier key or any meaningful information
about it. This parameter is called a nullifier public key and is computed as 𝑛𝑝𝑘 =
ℎ𝑛𝑝𝑘 (𝑛𝑘).
Remark 4. Note that these concerns are not meaningful in the contexts with
lower security requirements.

6. Transaction
A transaction is a composite structure𝑇𝑋 = (𝑟𝑡𝑠, 𝑐𝑚𝑠, 𝑛𝑓 𝑠,Π,Δ, 𝑒𝑥𝑡𝑟𝑎,Φ), where:

• 𝑟𝑡𝑠 ⊆ F𝑟𝑡 is a set of roots of 𝐶𝑀𝑡𝑟𝑒𝑒

• 𝑐𝑚𝑠 ⊆ F𝑐𝑚 is a set of created resources’ commitments.

• 𝑛𝑓 𝑠 ⊆ F𝑛𝑓 is a set of consumed resources’ nullifiers.

• Π : {𝜋 : 𝑃𝑟𝑜𝑜 𝑓 𝑅𝑒𝑐𝑜𝑟𝑑} is a set of proof records.

• Δ𝑡𝑥 : FΔ is computed from Δ parameters of created and consumed re-
sources. It represents the total delta change induced by the transaction.
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• 𝑒𝑥𝑡𝑟𝑎 : {(𝑘, (𝑑, 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛)) : 𝑘 ∈ F𝑘𝑒𝑦, 𝑑 ⊆ F𝑑} contains extra
information requested by the logics of created and consumed resources.
The deletion criterion field is described in 7.4.4.

• Φ : 𝑃𝑅𝐸𝐹 where 𝑃𝑅𝐸𝐹 = 𝑇𝑋 → [0, 1] is a preference function that takes a
transaction as input and outputs a normalised value in the interval [0, 1]
that reflects the users’ satisfaction with the produced transaction. For
example, a user who wants to receive at least 𝑞 = 5 of resource of kind A
for a fixed amount of resource of kind B might set the preference function
to implement a linear function that returns 0 at 𝑞 = 5 and returns 1 at
𝑞 = 𝑞𝑚𝑎𝑥 = |F𝑞 | − 1.

• 𝐼𝐹𝐶𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 : 𝑇𝑋 → 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 → F2 is a predicate that speci-
fies the transaction visibility.

6.1. Information flow control
The transaction visibility specified by the 𝐼𝐹𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 describes what parties
are and are not allowed to process the transaction. In the current version it is
assumed that every node is following the policy and enforcing the conditions
specified by the predicate.

6.1.1. Predicate options
In principle, the information flow predicate can be arbitrary as long as it satisfies
the defined signature, but for now we define a set of allowed options to instan-
tiate the IFC predicate as 𝐵𝑎𝑠𝑒𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 : 𝐵𝑎𝑠𝑒𝐷𝑎𝑡𝑎− > 𝐼𝐹𝐶𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒 , where
𝐵𝑎𝑠𝑒𝐷𝑎𝑡𝑎 can be:

-𝐴𝑙𝑙𝑜𝑤𝐴𝑛𝑦 - always returns 1 -𝐴𝑙𝑙𝑜𝑤𝑂𝑛𝑙𝑦 (𝑆𝑒𝑡 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦) - returns 1
for the specified set of identities - 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑆ℎ𝑖𝑒𝑙𝑑𝑒𝑑 (𝑆𝑒𝑡 𝐻𝑎𝑠ℎ) - returns 1 if the
transaction doesn’t contain the specified set of hashes in its fields -𝐴𝑛𝑑 (𝑆𝑒𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒)
- returns 1 when all the specified predicates (instantiated by one of the base
predicates) are satisfied -𝑂𝑟 (𝑆𝑒𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒) - returns 1 when at least one of the
specified predicates (instantiated by one of the base predicates) is satisfied

6.2. Transaction balance change
Δ𝑡𝑥 of a transaction is computed from the delta parameters of the resources
(3.1.4) consumed and created in the transaction. It represents the total quantity
change per resource kind induced by the transaction which is also referred to
as transaction balance.
From the homomorphic properties of ℎΔ, for the resources of the same kind

𝑘𝑖𝑛𝑑 :
∑
𝑗 ℎΔ(𝑘𝑖𝑛𝑑, 𝑟𝑖 𝑗 .𝑞)−

∑
𝑗 ℎΔ(𝑘𝑖𝑛𝑑, 𝑟𝑜 𝑗 .𝑞) =

∑
𝑗 𝑟𝑖 𝑗 .Δ−

∑
𝑗 𝑟𝑜 𝑗 .Δ = ℎΔ(𝑘𝑖𝑛𝑑, 𝑞𝑘𝑖𝑛𝑑).
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The kind-distinctness property of ℎΔ allows computing Δ𝑡𝑥 =
∑
𝑗 𝑟𝑖 𝑗 .Δ−

∑
𝑗 𝑟𝑜 𝑗 .Δ

adding resources of all kinds together without the need to explicitly distinguish
between the resource kinds:

∑
𝑗 𝑟𝑖 𝑗 .Δ −

∑
𝑗 𝑟𝑜 𝑗 .Δ =

∑
𝑗 ℎΔ(𝑘𝑖𝑛𝑑 𝑗 , 𝑞𝑘𝑖𝑛𝑑 𝑗 )

Remark 5. Note that only transactions with Δ𝑡𝑥 committing to 0 (or any other
balancing value specified by the system) can be executed and settled.

6.3. Proofs
Each transaction refers to a set of resources to be consumed and a set of re-
sources to be created. Creation and consumption of a resource requires a set of
proofs that attest to the correctness of the proposed state transition. There are
three proof types associated with a transaction:

• Resource logic proof 𝜋𝑅𝐿 . For each resource consumed or created in a
transaction, it is required to provide a proof that the logic of the resource
evaluates to 1 given the input parameters that describe the state transition
(the exact resource machine instantiation defines the exact set of parame-
ters).

• A delta proof (balance proof) 𝜋Δ makes sure that Δ𝑡𝑥 is correctly derived
from Δ parameters of the resources created and consumed in the transac-
tion and commits to the expected publicly known value, called a balancing
value.

• A resource machine compliance proof 𝜋𝑐𝑜𝑚𝑝𝑙 is required to ensure that the
provided transaction is well-formed. The resource machine compliance
proof must check that each consumed resource was consumed strictly af-
ter it was created, that the resource commitments and nullifiers are de-
rived according to the commitment and nullifier derivation rules, and that
the resource logics of created and consumed resources are satisfied.

Remark 6. It must also be checked that the created resource was created exactly
once and the consumed resource was consumed exactly once. These checks can
be performed separately, with read access to the 𝐶𝑀𝑡𝑟𝑒𝑒 and 𝑁𝐹𝑠𝑒𝑡 .

Remark 7. Every proof is created with a proving system 𝑃𝑆 and has the type
𝑃𝑆.𝑃𝑟𝑜𝑜 𝑓 . The proving system might differ for different proof types.

Remark 8. For privacy-preserving contexts, all proving systems in use should
support data privacy, and the proving system used to create resource logic proofs
should provide function privacy in addition to data privacy: provided proofs
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of two different resource logics, an observer should not be able to tell which
proof corresponds to which logic. It is a stronger requirement compared to data
privacy, which implies that an observer does not know the private input used to
produce the proof.

6.4. Composition
Having two transactions 𝑡𝑥1 and 𝑡𝑥2, their composition 𝑡𝑥1 ◦ 𝑡𝑥2 is defined as a
transaction 𝑡𝑥 , where:

• 𝑟𝑡𝑠𝑡𝑥 = 𝑟𝑡𝑠1 ∪ 𝑟𝑡𝑠2

• 𝑐𝑚𝑠𝑡𝑥 = 𝑐𝑚𝑠1 ⊔ 𝑐𝑚𝑠2

• 𝑛𝑓 𝑠𝑡𝑥 = 𝑛𝑓 𝑠1 ⊔ 𝑛𝑓 𝑠2

• Proofs:

– delta proof: ΠΔ
𝑡𝑥 = 𝐴𝐺𝐺 (ΠΔ

1 ,Π
Δ
2 ), where 𝐴𝐺𝐺 is an aggregation

function s.t. for𝑏𝑣1 being the balancing value of the first delta proof,
𝑏𝑣2 being the balancing value of the second delta proof, and 𝑏𝑣𝑡𝑥
being the balancing value of the composed delta proof, it satisfies
𝑏𝑣𝑡𝑥 = 𝑏𝑣1 + 𝑏𝑣2. The aggregation function takes two delta proofs
as input and outputs a delta proof.

– resource logic proofs: Π𝑅𝐿𝑡𝑥 = Π𝑅𝐿1 ⊔ Π𝑅𝐿2

– compliance proofs: Π𝑐𝑜𝑚𝑝𝑙𝑡𝑥 = Π
𝑐𝑜𝑚𝑝𝑙
1 ⊔ Π

𝑐𝑜𝑚𝑝𝑙
2

• Δ𝑡𝑥 = Δ1 + Δ2

• 𝑒𝑥𝑡𝑟𝑎𝑡𝑥 = 𝑒𝑥𝑡𝑟𝑎1 ∪ 𝑒𝑥𝑡𝑟𝑎2

• Φ𝑡𝑥 = 𝐺 (Φ1,Φ2), where𝐺 : 𝑃𝑅𝐸𝐹 × 𝑃𝑅𝐸𝐹 → 𝑃𝑅𝐸𝐹 , and𝐺 is a preference
function composition function

• 𝐼𝐹𝐶𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑡𝑥 = 𝐼𝐹𝐶𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝐼1𝐹𝐶𝑃𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒2

Remark 9. Composing sets with disjoint union operator ⊔, it has to be checked
that those sets do not have any elements in common. Otherwise, the transac-
tions cannot be composed.
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6.5. Validity
A transaction is considered valid if the following statements hold:

• 𝑟𝑡𝑠 contains valid𝐶𝑀𝑡𝑟𝑒𝑒 roots that are correct inputs for themembership
proofs

• input resources have valid resource logic proofs and the compliance proofs
associated with them

• output resources have valid resource logic proofs and the compliance proofs
associated with them

• Δ is computed correctly, and its opening is equal to the balancing value
for that transaction

7. Resource Machine
A resource machine is a deterministic stateless machine that creates, composes,
and verifies transaction functions.
It has read-only access to the external global state, which includes the content-

addressed storage system (which in particular stores resources), global commit-
ment accumulator, and the global nullifier set, and can produce writes to the
external local state that will later be applied to the system state.

The resource machine has two layers: the outer layer, the resource machine
shell, that creates and processes transaction functions, and the inner layer,
the resource machine core, that creates and processes transactions.

We assume the shell is trivial in this version of the ARM: it only evaluates the
transaction function without any verification steps. The result is a transaction
that is then passed to the core. The distribution of responsibilities between the
shell and the core is expected to change.

To support the shell layer, the resource machine must have the functionality
to produce, compose, and evaluate transaction functions. Assuming the shell is
trivial in the current version of the specification, the following description of
the resource machine functionality describes the functionality of the resource
machine core.

A transaction function is defined as𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 : () → 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛.
See section 8.1 for a description of what data the transaction function can read

during execution.
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7.0.1. Post- and pre-ordering execution
Pre-ordering execution implies partial evaluation of the transaction function. In
practice pre-ordering execution happens before the transactions are ordered by
the ordering component external to the ARM.

Post-ordering execution implies full evaluation of the transaction function. As
the name suggests, post-ordering execution happens after the ordering compo-
nent external to the ARM completed the ordering of transaction functions.

7.1. Create
Given a set of components required to produce a transaction, the create function
produces a transaction data structure, which involves computing the nullifiers
of the consumed resources, commitments of the created resources, transaction
Δ, and all the required proofs.
Assuming that the produced transaction induces a state change consuming

resources 𝑟𝑖1, · · · , 𝑟𝑖𝑛 and creating resources 𝑟𝑜1, · · · , 𝑟𝑜𝑚 , the inputs and outputs
of the create function are defined as follows.

Input:

• a set of 𝐶𝑀𝑡𝑟𝑒𝑒 roots {𝑟𝑡𝑖𝑘 , 𝑘 ≤ 𝑛}

• a set of resources {𝑟𝑖1, ..., 𝑟𝑖𝑛 , 𝑟𝑜1, ..., 𝑟𝑜𝑚 }

• a set of nullifier secret keys {𝑛𝑘𝑖1, ..., 𝑛𝑘𝑖𝑛 }

• extra data 𝑒𝑥𝑡𝑟𝑎

• preference function Φ

• custom inputs required for resource logic proofs

Output: a transaction 𝑡𝑥 = (𝑟𝑡𝑠𝑐𝑚𝑠, 𝑛𝑓 𝑠,Π,Δ𝑡𝑥 , 𝑒𝑥𝑡𝑟𝑎,Φ), where:
• 𝑟𝑡𝑠 = {𝑟𝑡𝑖1, .., 𝑟𝑡𝑖𝑛 }

• 𝑛𝑓 𝑠 = {𝑛𝑓𝑖𝑘 = ℎ𝑛𝑓 (𝑛𝑘𝑖𝑙 , 𝑟𝑖𝑙 ), 𝑘 = 1..𝑛}

• 𝑐𝑚𝑠 = {𝑐𝑚𝑜1 = ℎ𝑐𝑚 (𝑟𝑜𝑙 ), 𝑘 = 1..𝑚}

• Π = {𝜋Δ𝑡𝑥 , 𝜋𝑐𝑜𝑚𝑝𝑙1, ..., 𝜋𝑐𝑜𝑚𝑝𝑙𝑐 , 𝜋𝑖1, ..., 𝜋𝑖𝑛 , 𝜋𝑜1, ..., 𝜋𝑜𝑚 }, where 1 ≤ 𝑐 ≤ 𝑚 + 𝑛

• Δ𝑡𝑥 =
∑
𝑘 Δ𝑖𝑘 −

∑
𝑙 Δ𝑜𝑙

• 𝑒𝑥𝑡𝑟𝑎

• Φ
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Name Structure Key Type Value Type
Commitment accumulator (node) Cryptographic accumulator timestamp F

Commitment accumulator (leaf) - (timestamp, F) F

Nullifier set Set F F

Hierarchical index Chained Hash sets Tree path F

Data blob storage Key-value store with del. criteria F (var. length byte array, del. criteria)

Figure 1. Stored Data Format.

7.2. Compose
Taking two transactions 𝑡𝑥1 and 𝑡𝑥2 as input, produces a new transaction 𝑡𝑥 =
𝑡𝑥1 ◦ 𝑡𝑥2 according to the transaction composition rules (6.4).

7.3. Verify
Taking a transaction as input, verifies its validity according to the transaction
validity rules (6.5). If the transaction is valid, the resource machine outputs a
state update. Otherwise, the output is empty.

7.4. Stored data format
The ARM state that needs to be stored includes resource plaintexts, the commit-
ment accumulator and the nullifier set. Figure 1 defines the format of that data
assumed by the ARM.

7.4.1. 𝑪𝑴𝒕𝒓𝒆𝒆

Each commitment tree node has a timestamp associatedwith it, such that a lower
depth (closer to the root) tree node corresponds to a less specified timestamp: a
parent node timestamp is a prefix of the child node timestamp, and only the
leaves of the tree have fully specified timestamps (i.e. they are only prefixes of
themselves). For a commitment tree of depth 𝑑 , a timestamp for a commitment
𝑐𝑚 would look like 𝑡𝑐𝑚 = 𝑡1 : 𝑡2 : .. : 𝑡𝑑 , with the parent node corresponding
to it having a timestamp 𝑡1 : 𝑡2 : .. : ∗. The timestamps are used as keys for
the key-value store. For the tree leaves, < 𝑐𝑚, 𝑡𝑐𝑚 > pairs are used as keys.
Merkle paths to resource commitments can be computed from the hierarchy of
the timestamps.

7.4.2. 𝑵𝑭𝒔𝒆𝒕

Nullifiers are used as keys in the key-value store. In future versions, a more
complex structure that supports efficient non-membership proofs might be used
for storing the nullifier set.
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7.4.3. Hierarchical index
The hierarchical index is organised as a tree where the leaves refer to the re-
sources, and the intermediate nodes refer to resource subkinds that form a hi-
erarchy. The label of a resource 𝑟 stored in the hierarchical index tree is inter-
preted as an array of sublabels: 𝑟 .𝑙𝑎𝑏𝑒𝑙 = [𝑙𝑎𝑏𝑒𝑙1, 𝑙𝑎𝑏𝑒𝑙2, 𝑙𝑎𝑏𝑒𝑙3, ...], and the i-th
subkind is computed as 𝑟 .𝑠𝑢𝑏𝑘𝑖𝑛𝑑𝑖 = 𝐻𝑘𝑖𝑛𝑑 (𝑟 .𝑙, 𝑟 .𝑙𝑎𝑏𝑒𝑙𝑖).

Remark 10. In the current version, only the subkinds derived from the same
resource logic can be organized in the same hierarchical index path.

The interface of the tree enables efficient querying of all children of a specific
path and verifying that the returned children are the requested nodes. Permis-
sions to add data to the hierarchical index are enforced by the resource logics
and do not require additional checks.

7.4.4. Data blob storage
Data blob storage stores data without preserving any specific structure. The
data is represented as a variable length byte array and comes with a deletion
criterion that determines for how long the data will be stored. The deletion
criterion, in principle, is an arbitrary predicate, which in practice currently is
assumed to be instantiated by one of the following options:

• delete after 𝑏𝑙𝑜𝑐𝑘

• delete after 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

• delete after 𝑠𝑖𝑔 over 𝑑𝑎𝑡𝑎

• delete after either predicate 𝑝1 or 𝑝2 is true; the predicates are instantiated
by options from this list

• store forever

7.5. ARMs as intent machines
Together with (𝐶𝑀𝑡𝑟𝑒𝑒, 𝑁𝐹𝑠𝑒𝑡), the Anoma Resource Machine forms an instan-
tiation of the intent machine, where the state 𝑆 = (𝐶𝑀𝑡𝑟𝑒𝑒, 𝑁𝐹𝑠𝑒𝑡), a batch
𝐵 = 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛, and the transaction verification function of the resource ma-
chine corresponds to the state transition function of the intent machine [HR24].
To formally satisfy the intent machine’s signature, the resource machine’s verify
function may return the processed transaction along with the new state.
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8. Program Formats
8.1. Transaction function
The system used to represent and interpret transaction functions must have a
deterministic computation model; each operation should have a fixed cost of
space and time (for total cost computation). To support content addressing, it
must have memory and support memory operations (specifically read, write, al-
locate).

The system must support the following I/O operations:

• 𝑅𝐸𝐴𝐷_𝑆𝑇𝑂𝑅𝐴𝐺𝐸 (𝑎𝑑𝑑𝑟𝑒𝑠𝑠 : F𝑐𝑚): read the global content-addressed stor-
age at the specified address and return the value stored at the address. If
the value is not found, the operation should return an error. Storage not
accessible to the machine should be treated as non-existent.

• 𝐷𝐴𝑇𝐴_𝐵𝑌_𝐼𝑁𝐷𝐸𝑋 (𝑖𝑛𝑑𝑒𝑥_𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛): read data from the storage (either
resources or arbitrary data kept in the storage requested by the transac-
tion function) at the execution time by the specified index function. If the
index function output is invalid or uncomputable, or the data cannot be lo-
cated, the operation should return an error. Typically, the index functions
allowed will be very restricted, e.g. an index function returning current
unspent resources of a particular kind.

8.2. Gas model
To compute and bound the total cost of computation, the transaction function
system must support a gas model. Each evaluation would have a gas limit 𝑔𝑙𝑖𝑚𝑖𝑡 ,
and the evaluation would start with 𝑔𝑐𝑜𝑢𝑛𝑡 = 0. Evaluating an operation, the
system would add the cost of the operation to the counter 𝑔𝑐𝑜𝑢𝑛𝑡 and compare it
to𝑔𝑙𝑖𝑚𝑖𝑡 . Whenmaking recursive calls,𝑔𝑐𝑜𝑢𝑛𝑡 is incremented before the recursion
occurs. If the value of 𝑔𝑐𝑜𝑢𝑛𝑡 is greater than 𝑔𝑙𝑖𝑚𝑖𝑡 , the execution is terminated
with an error message indicating that the gas limit has been surpassed.

8.3. Resource Logic
A resource logic is a predicate associated with a resource that checks that the
provided data satisfies a set of constraints. It does not require I/O communica-
tion and is represented by or can feasibly be turned into a zk-SNARK circuit if
desired to support shielded execution.
Each resource logic has a set of public and private input values as in 4. Re-

source logics are customizable on both implementation of the ARM (different
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instantiations might have different requirements for all resource logics compat-
ible with this instantiation) and resource logic creation level (each instantiation
supports arbitrary resource logics as long as they satisfy the requirements). A
concrete implementation of the ARM can specify more mandatory inputs and
checks (e.g., if the resources are distributed in-band, resource logics have to
check that the distributed encrypted value indeed encrypts the resources creat-
ed/consumed in the transaction), but the option of custom inputs and constraints
must be supported to enable different resource logic instances existing on the
application level.

The proving system used to interpret resource logics must provide the follow-
ing properties:

• Verifiability. It must be possible to produce and verify a proof of type
𝑃𝑆.𝑃𝑟𝑜𝑜 𝑓 that given a certain set of inputs, the resource logic output is
true value.

• The system 𝑃𝑆 used to interpret resource logics must be zero-knowledge-
and function-privacy-friendly to support privacy-preserving contexts.

Resource logics take as input a subset of resources created and consumed in
the transaction:

Resource Logic Public Inputs:

• 𝑛𝑓 𝑠 ⊆ 𝑛𝑓 𝑠𝑡𝑥

• 𝑐𝑚𝑠 ⊆ 𝑐𝑚𝑠𝑡𝑥

• 𝑡𝑎𝑔 : F𝑡𝑎𝑔 — identifies the resources being checked

• 𝑒𝑥𝑡𝑟𝑎 ⊆ 𝑡𝑥 .𝑒𝑥𝑡𝑟𝑎

Resource Logic Private Inputs:

• input resources corresponding to the elements of 𝑛𝑓 𝑠

• output resource corresponding to the elements of 𝑐𝑚𝑠

• custom inputs

Resource Logic Constraints:

• for each output resource, check that the corresponding 𝑐𝑚 value is derived
according to the rules specified by the resource machine instance
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• for each input resource, check that the corresponding 𝑛𝑓 value is derived
according to the rules specified by the resource machine instantiation

• custom checks

8.4. Preference Function
Preference functions do not require I/O communication or have any other spe-
cial requirements. They are stateless. It may make sense to interpret them using
the same system used for transaction functions for simplicity.

8.5. Nockma
Nockma (Nock-Anoma) is a modification of the Nock4K specification [Urb] and
a Nock standard library altered and extended for use with Anoma. Nockma
is designed to support the transaction function interpreter requirements (Sec-
tion 8.1), namely, global storage read and deterministic bounded computation
costs.
Nockma is parameterized over a specific finite field Fℎ and function ℎ. The

function ℎ takes an arbitrary noun (a data unit in Nockma) as input and re-
turns an element of Fℎ . This function is used for verifying reads from content-
addressed storage.

A scry (inspired by Urbit’s concept of the same name) is a read-only request to
Anoma’s global content-addressed namespace or indices computed over values
stored in this namespace. Scrying is used to read data that would be inefficient to
store in the noun, to read indices whose value might only be known at execution
time, or to read data that may not be accessible to the author of the noun.
Scrying comes in two types: “direct” or “index”. A direct lookup simply re-

turns the value stored at the address (integrity can be checked using ℎ), or an
error if a value is not found. An index lookup uses the value stored at the ad-
dress as an index function and returns the results of computing that index or
an error if the index is not found, invalid, or uncomputable. The lookup type is
the only parameter required apart from the content address (which must be an
element of Fℎ).

Typically, the index functions allowed will be very restricted, e.g. current
unspent resources of a particular kind. Gas costs of scrying will depend on the
index function and the size of the results returned.

Scrying may be used to avoid unnecessary, redundant transmission of com-
mon Nockma subexpressions, such as the standard library.

Nockma is a combinator interpreter defined as a set of reduction rules over
nouns. A noun is an atom or a cell, where an atom is a natural number and a
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cell is an ordered pair of nouns.
The Nockma reduction rules as presented in Figure 8 are applied from top to

bottom, the first rule from the top matches. Variables match any noun. As in
regular Nock4K, a formula that reduces to itself is an infinite loop, which we
define as a crash (“bottom” in formal logic). A real interpreter can detect this
crash and produce an out-of-band value instead.

The only difference between Nockma and Nock4K reduction rules is that in-
struction 12 is defined for scrying.

Used with the resource machine, Nockma should return a set of modifications
to the state transition expressed by the input transaction:

• a set of resources to additionally create (resource plaintexts)

• a set of resources to additionally consume (addresses)

• a set of storage writes (in the format specified in Section 7.4)

The Nockma standard library must include the following functions.
For a finite field F𝑛 of order 𝑛, it should support:

• additive identity of type F𝑛

• addition operation F𝑛 × F𝑛 → F𝑛

• additive inversion F𝑛 → F𝑛

• multiplicative identity of type F𝑛

• multiplication operation F𝑛 × F𝑛 → F𝑛

• multiplicative inversion F𝑛 → F𝑛

• equality operation F𝑛 × F𝑛 → F2

• comparison operation based on canonical ordering F𝑛 × F𝑛 → F2

For a ring 𝑍𝑛 of unsigned integers mod 𝑛, it should support:

• additive identity of type 𝑍𝑛

• addition operation 𝑍𝑛 × 𝑍𝑛 → 𝑍𝑛 × F2 (with overflow indicator)

• subtraction operation 𝑍𝑛 × 𝑍𝑛 → 𝑍𝑛 × F2 (with overflow indicator)
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• multiplicative identity of type 𝑍𝑛

• multiplication operation 𝑍𝑛 × 𝑍𝑛 → 𝑍𝑛 × F2 (with overflow indicator)

• division operation (floor division) 𝑍𝑛 × 𝑍𝑛 → 𝑍𝑛

• equality 𝑍𝑛 × 𝑍𝑛 → F2

• comparison 𝑍𝑛 × 𝑍𝑛 → F2

Additionally, it should provide a parametrized conversion function 𝑐𝑜𝑛𝑣𝑖, 𝑗,𝑘,𝑙 ,
where

• 𝑖 is a flag that defines the input type: 𝑖 = 0 corresponds to a finite field,
𝑖 = 1 corresponds to a ring of unsigned integers

• 𝑗 is the input structure order

• 𝑘 is a flag that defines the output type: 𝑘 = 0 corresponds to a finite field,
𝑘 = 1 corresponds to a ring of unsigned integers

• 𝑙 is the output structure order

If the order of the input structure is bigger than the order of the output struc-
ture ( 𝑗 > 𝑙 ), the conversion function would return a flag (of type F2) indicating
if overflow happened in addition to the converted value.

The conversion function must use canonical ordering and respect the inver-
sion laws.

9. Applications
The ARM applications are characterised by a set of resource logics and a set of
transaction functions.
𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = (𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑜𝑔𝑖𝑐, 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒), where

1. 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑜𝑔𝑖𝑐 ⊆ F𝑙 is a set of resource logics.

2. 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒 = {𝑡 : 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛} is a set of transaction
functions.

As any abstract action can be represented as a transaction consuming and
creating resources of certain kinds (or a transaction function that evaluates to
such a transaction), the transaction functions associated with the application
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represent the set of actions that the application can provide to its users. Each
transaction function would require a subset of the application resource logics to
approve the transaction in order to realise the desired action. The transaction
function evaluated with the exact resources to be created and consumed forms
a transaction.

The resources that are bound with the application resource logics are said to
belong to the application and constitute the application state. When the appli-
cation does not have any resources that were created but not consumed yet, the
application only exists virtually but not tangibly.

The abstraction of an application is virtual - applications are not deployed or
tracked in any sort of global registry, and the ARM is unaware of the existence
of applications.

We define𝐴𝑝𝑝𝐾𝑖𝑛𝑑𝑠 ⊆ F𝑘𝑖𝑛𝑑 as a union of all resource kinds that are involved
in the transaction functions that comprise the application interface.

9.1. Composition
Applications are composable. The composition of two (or more) applications
would be a composition of the corresponding logics and interfaces.
𝐴𝑝𝑝12 = 𝐴𝑝𝑝1 ◦𝐴𝑝𝑝2:

1. 𝐴𝑝𝑝𝐿𝑜𝑔𝑖𝑐12 = 𝐴𝑝𝑝𝐿𝑜𝑔𝑖𝑐1 ∪𝐴𝑝𝑝𝐿𝑜𝑔𝑖𝑐2

2. 𝐴𝑝𝑝𝐼𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒12 = 𝐴𝑝𝑝𝐼𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒1 ∪𝐴𝑝𝑝𝐼𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒2

3. 𝐴𝑝𝑝𝐾𝑖𝑛𝑑𝑠12 = 𝐴𝑝𝑝𝐾𝑖𝑛𝑑𝑠1 ∪𝐴𝑝𝑝𝐾𝑖𝑛𝑑𝑠2

In this type of composition the order in which the applications are composed
doesn’t matter.

9.2. Application extension
Application extension is a way to generate a new application starting from an
existing one by enhancing the application logic and the application interface
with operations on more resource kinds. The new application is dependent on
the initial one, meaning that the new application logic includes constraints in-
volving the first application resource kinds, and the new interface requires the
presence of resources of the first application kinds.

9.3. Distributed application state synchronisation
In [She24], a controller is defined as a component that orders transactions. The
resourcemachine is designed towork in both single-controller andmulti-controller
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environments, such as Anoma. In the context of multi-controller environments,
each resource contains information about its current controller, can only be con-
sumed on its controller, and can be transferred from one controller to another,
meaning that a new controller becomes responsible for the correct resource con-
sumption. Transferring a resource can be done by consuming a resource on the
old controller and creating a similar resource on the new controller [She24].

Applications do not have to exist within the bounds of a single controller,
and can maintain a single virtual state while the application resources being
distributed among multiple controllers, which forms a distributed application
state. To make sure such a distributed state correctly represents the application
state, state synchronisation between multiple controllers is required.

9.3.1. Controller state synchronisation
Each controllerwould have their own commitment tree associatedwith it. Treated
as subtrees of a larger Merkle tree, the controller commitment trees comprise a
global commitment tree, where the leaves are the roots of the controller trees.

10. Transaction Examples
This section describes how resources and transactions get created and composed
in various use cases to provide some intuition for how the described resource
model works.

In the examples below, the superscript parameter indicates the party associ-
ated with the resource, e.g., a resource 𝑅𝐴𝑙𝑖𝑐𝑒 is associated with Alice. In the case
of proofs, it indicates the party created the proof.

10.1. Two Party Exchange
Let us consider an example of a two-party exchange. One party’s intent is pre-
cise, and the other party’s intent implies options (the requested NFT’s exact
properties may also vary). We assume that the resources parties initially con-
sume were already created at some point in the past.

Step 1: specify intents

• Alice’s intent: exchange either a resource 𝑅1𝐴 of kind A and quantity 1
or a resource 𝑅2𝐵 of kind B and quantity 2 for a blue dolphin NFT resource
𝑅𝑁𝐹𝑇 . The intent is contained in the resource logic of a resource 𝑅𝐼 of kind
I.
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Figure 2. Two-party exchange

• Bob’s intent: exchange a blue dolphin NFT resource for a resource of
kind A and quantity 1. The intent is referred to in a transaction.

Remark 11. For simplicity, in the examples in this section, the set of compli-
ance proofs for initial transactions (the transactions that were not composed of
other transactions) is assumed to contain all the necessary compliance proofs,
but the proofs themselves are not specified. Additionally, the delta proof ag-
gregation function can take an arbitrary number of arguments. 𝐴𝐺𝐺 (𝑋,𝑌, 𝑍 )
in practice would be implemented as𝐴𝐺𝐺 (𝐴𝐺𝐺 (𝑋,𝑌 ), 𝑍 ), similarly defined for
any number of proofs.

Step 2: create initial transactions
Alice creates a transaction 𝑇𝑋𝐴 creating 𝑅𝐴𝐼 , and consuming 𝑅𝐴1𝐴 and 𝑅𝐴2𝐵 :

• 𝑟𝑡𝑠 = {𝑟𝑡𝑅𝐴1𝐴, 𝑟𝑡𝑅𝐴2𝐵 }

• 𝑐𝑚𝑠 = {𝑐𝑚𝑅𝐴𝐼
}

• 𝑛𝑓 𝑠 = {𝑛𝑓𝑅𝐴1𝐴, 𝑛𝑓𝑅𝐴2𝐵 }

• Proofs:

– Π𝐴Δ
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– Π𝐴
𝑐𝑜𝑚𝑝𝑙

– Π𝐴
𝑟𝑙
= {𝜋𝐴𝐴 , 𝜋𝐴𝐵 , 𝜋𝐴𝐼 }

• Δ ↦→ {𝐼 : 1, 𝐴 : −1, 𝐵 : −2}. For simplicity, represent Δ as a dictionary

• 𝑒𝑥𝑡𝑟𝑎 = 𝑒𝑥𝑡𝑟𝑎𝐴

• Φ = Φ𝐴

Bob creates a transaction 𝑇𝑋𝐵 creating 𝑅𝐵1𝐴 and consuming 𝑅𝐵𝑁𝐹𝑇 :

• 𝑟𝑡𝑠 = {𝑟𝑡𝑅𝐵𝑁𝐹𝑇
}

• 𝑐𝑚𝑠 = {𝑐𝑚𝑅𝐵1𝐴
}

• 𝑛𝑓 𝑠 = {𝑛𝑓𝑅𝐵𝑁𝐹𝑇
}

• Proofs:

– Π𝐵Δ

– Π𝐵
𝑐𝑜𝑚𝑝𝑙

– Π𝐵
𝑟𝑙
= {𝜋𝐵𝐴, 𝜋𝐵𝑁𝐹𝑇 }

• Δ ↦→ {𝑁𝐹𝑇 : −1, 𝐴 : 1}

• 𝑒𝑥𝑡𝑟𝑎 = 𝑒𝑥𝑡𝑟𝑎𝐵

• Φ = Φ𝐵

Step 3: solve
A solver 𝑆 , having 𝑇𝑋𝐴 and 𝑇𝑋𝐵 , creates a transaction 𝑇𝑋 𝑆 :

• 𝑟𝑡𝑠 = {𝑟𝑡𝑅𝐴𝐼 }

• 𝑐𝑚𝑠 = {𝑐𝑚𝑅𝐴2𝐵
, 𝑐𝑚𝑅𝐴𝑁𝐹𝑇

}

• 𝑛𝑓 𝑠 = {𝑛𝑓𝑅𝐴𝐼 }

• Proofs:
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– Π𝑆Δ

– Π𝑆
𝑐𝑜𝑚𝑝𝑙

– Π𝑆
𝑟𝑙
= {𝜋𝑆𝐵, 𝜋𝑆𝑁𝐹𝑇 , 𝜋𝑆𝐼 }

• Δ ↦→ {𝑁𝐹𝑇 : 1, 𝐵 : 2, 𝐼 : −1}

• 𝑒𝑥𝑡𝑟𝑎 = 𝑒𝑥𝑡𝑟𝑎𝑆

• Φ = Φ𝑆

and composes all three transactions together, producing a balanced transac-
tion 𝑇𝑋 :

• 𝑟𝑡𝑠 = {𝑟𝑡𝑅𝐴𝐼 , 𝑟𝑡𝑅𝐴2𝐵 , 𝑟𝑡𝑅𝐴1𝐴, 𝑟𝑡𝑅𝐵𝑁𝐹𝑇
}

• 𝑐𝑚𝑠 = 𝑐𝑚𝑠𝐴 ⊔ 𝑐𝑚𝑠𝐵 ⊔ 𝑐𝑚𝑠𝑆 = {𝑐𝑚𝑅𝐴𝐼
, 𝑐𝑚𝑅𝐴2𝐵

, 𝑐𝑚𝑅𝐴𝑁𝐹𝑇
, 𝑐𝑚𝑅𝐵1𝐴

}

• 𝑛𝑓 𝑠 = 𝑛𝑓 𝑠𝐴 ⊔ 𝑛𝑓 𝑠𝐵 ⊔ 𝑛𝑓 𝑠𝑆 = {𝑛𝑓𝑅𝐴𝐼 , 𝑛𝑓𝑅𝐴2𝐵 , 𝑛𝑓𝑅𝐴1𝐴, 𝑛𝑓𝑅𝐵𝑁𝐹𝑇
}

• Proofs:

– ΠΔ = 𝐴𝐺𝐺 (Π𝐴Δ,Π𝐵Δ,Π𝑆Δ)

– Π𝑐𝑜𝑚𝑝𝑙 = Π𝐴
𝑐𝑜𝑚𝑝𝑙

⊔ Π𝐵
𝑐𝑜𝑚𝑝𝑙

⊔ Π𝑆
𝑐𝑜𝑚𝑝𝑙

– Π𝑟𝑙 = Π𝐴
𝑟𝑙
⊔ Π𝐵

𝑟𝑙
⊔ Π𝑆

𝑟𝑙

• Δ ↦→ {𝐴 : 0, 𝐵 : 0, 𝐼 : 0, 𝑁 𝐹𝑇 : 0}

• 𝑒𝑥𝑡𝑟𝑎 = 𝑒𝑥𝑡𝑟𝑎𝐴 ∪ 𝑒𝑥𝑡𝑟𝑎𝐵 ∪ 𝑒𝑥𝑡𝑟𝑎𝑆

• Φ = 𝐺 (Φ𝐴,Φ𝐵,Φ𝑆 )

In practice, the step of creation of the transaction 𝑇𝑋𝑆1 can be merged with
the composing step, but we separate the steps for clarity.
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Figure 3. Three-party exchange cycle

10.2. Three-party NFT exchange cycle
Another example is a three-party exchange cycle. Each party uses ephemeral
resource logics to express their intents.

Step 1: specify intents

• Alice’s intent: Alice wants to exchange her star NFT resource 𝑅𝐴𝑠𝑡𝑎𝑟 for a
blue dolphin NFT resource 𝑅𝑑𝑜𝑙𝑝ℎ𝑖𝑛

• Bob’s intent: Bob wants to exchange his blue dolphin NFT 𝑅𝐵
𝑑𝑜𝑙𝑝ℎ𝑖𝑛

for a
tree NFT resource 𝑅𝑡𝑟𝑒𝑒

• Charlie’s intent: Charlie wants to exchange his tree NFT 𝑅𝐶𝑡𝑟𝑒𝑒 for a star
NFT resource 𝑅𝑠𝑡𝑎𝑟

Step 2: create initial transactions
Alice’s initial transaction:

• 𝑟𝑡𝑠 = {𝑟𝑡𝑅𝐴𝑠𝑡𝑎𝑟 }

• 𝑐𝑚𝑠 = {𝑐𝑚𝑅𝐴
𝐼𝐴
}

• 𝑛𝑓 𝑠 = {𝑛𝑓𝑅𝐴𝑠𝑡𝑎𝑟 }

• Proofs:

– Π𝐴Δ
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– Π𝐴
𝑐𝑜𝑚𝑝𝑙

– Π𝐴
𝑟𝑙
= {𝜋𝐴𝑠𝑡𝑎𝑟 , 𝜋𝐴𝐼 }

• Δ ↦→ {𝐼𝐴 : 1, 𝑠𝑡𝑎𝑟 : −1, } – for simplicity, represent Δ as a dictionary

• 𝑒𝑥𝑡𝑟𝑎 = 𝑒𝑥𝑡𝑟𝑎𝐴

• Φ = Φ𝐴

Bob’s initial transaction:

• 𝑟𝑡𝑠 = {𝑟𝑡𝑅𝐵
𝑑𝑜𝑙𝑝ℎ𝑖𝑛
}

• 𝑐𝑚𝑠 = {𝑐𝑚𝑅𝐵
𝐼𝐵
}

• 𝑛𝑓 𝑠 = {𝑛𝑓𝑅𝐵
𝑑𝑜𝑝𝑙ℎ𝑖𝑛
}

• Proofs:

– Π𝐵Δ

– Π𝐵
𝑐𝑜𝑚𝑝𝑙

– Π𝐵
𝑟𝑙
= {𝜋𝐵

𝑑𝑜𝑙𝑝ℎ𝑖𝑛
, 𝜋𝐵𝐼 }

• Δ ↦→ {𝐼𝐵 : 1, 𝑑𝑜𝑙𝑝ℎ𝑖𝑛 : −1}

• 𝑒𝑥𝑡𝑟𝑎 = 𝑒𝑥𝑡𝑟𝑎𝐵

• Φ = Φ𝐵

Charlie’s initial transaction:

• 𝑟𝑡𝑠 = {𝑟𝑡𝑅𝐶𝑡𝑟𝑒𝑒 }

• 𝑐𝑚𝑠 = {𝑐𝑚𝑅𝐶
𝐼𝐶
}

• 𝑛𝑓 𝑠 = {𝑛𝑓𝑅𝐶𝑡𝑟𝑒𝑒 }

• Proofs:

– Π𝐶Δ
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– Π𝐶
𝑐𝑜𝑚𝑝𝑙

– Π𝐶
𝑟𝑙
= {𝜋𝐶𝑡𝑟𝑒𝑒, 𝜋𝐶𝐼 }

• Δ ↦→ {𝐼𝐶 : 1, 𝑡𝑟𝑒𝑒 : −1, }

• 𝑒𝑥𝑡𝑟𝑎 = 𝑒𝑥𝑡𝑟𝑎𝐶

• Φ = Φ𝐶

Step 3: solve
A solver 𝑆1, seeing𝑇𝑋𝐴 and𝑇𝑋𝐵 , creates a transaction𝑇𝑋 𝑆1 (on the diagram:

𝑇𝑋3.1, green arrows):

• 𝑟𝑡𝑠 = {𝑟𝑡𝑅𝐴
𝐼𝐴
}

• 𝑐𝑚𝑠 = {𝑐𝑚𝑅𝐴
𝑑𝑜𝑙𝑝ℎ𝑖𝑛
}

• 𝑛𝑓 𝑠 = {𝑛𝑓𝑅𝐴
𝐼𝐴
}

• Proofs:

– Π𝑆1Δ

– Π𝑆1
𝑐𝑜𝑚𝑝𝑙

– Π𝑆1
𝑟𝑙
= {𝜋𝑆1

𝑑𝑜𝑙𝑝ℎ𝑖𝑛
, 𝜋𝑆1𝐼𝐴 }

• Δ ↦→ {𝑑𝑜𝑙𝑝ℎ𝑖𝑛 : 1, 𝐼𝐴 : −1}

• 𝑒𝑥𝑡𝑟𝑎 = 𝑒𝑥𝑡𝑟𝑎𝑆1

• Φ = Φ𝑆1

and composes all three transactions together, producing a transaction 𝑇𝑋3.1:

• 𝑟𝑡𝑠 = {𝑟𝑡𝑅𝐴𝑠𝑡𝑎𝑟 , 𝑟𝑡𝑅𝐵𝑑𝑜𝑙𝑝ℎ𝑖𝑛 , 𝑟𝑡𝑅𝐴𝐼𝐴 }

• 𝑐𝑚𝑠 = 𝑐𝑚𝑠𝐴 ⊔ 𝑐𝑚𝑠𝐵 ⊔ 𝑐𝑚𝑠𝑆1 = {𝑐𝑚𝑅𝐴
𝐼𝐴
, 𝑐𝑚𝑅𝐵

𝐼𝐵
, 𝑐𝑚𝑅𝐴

𝑑𝑜𝑙𝑝ℎ𝑖𝑛
}

• 𝑛𝑓 𝑠 = 𝑛𝑓 𝑠𝐴 ⊔ 𝑛𝑓 𝑠𝐵 ⊔ 𝑛𝑓 𝑠𝑆1 = {𝑛𝑓𝑅𝐴𝑠𝑡𝑎𝑟 , 𝑛𝑓𝑅𝐵𝑑𝑜𝑙𝑝ℎ𝑖𝑛 , 𝑛𝑓𝑅𝐴𝐼𝐴 }
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• Proofs:

– Π3.1
Δ = 𝐴𝐺𝐺 (Π𝐴Δ,Π𝐵Δ,Π

𝑆1
Δ )

– Π3.1
𝑐𝑜𝑚𝑝𝑙

= Π𝐴
𝑐𝑜𝑚𝑝𝑙

⊔ Π𝐵
𝑐𝑜𝑚𝑝𝑙

⊔ Π𝑆1
𝑐𝑜𝑚𝑝𝑙

– Π3.1
𝑟𝑙

= Π𝐴
𝑟𝑙
⊔ Π𝐵

𝑟𝑙
⊔ Π𝑆1

𝑟𝑙

• Δ ↦→ {𝐼𝐴 : 0, 𝐼𝐵 : 1, 𝑠𝑡𝑎𝑟 : −1, 𝑑𝑜𝑙𝑝ℎ𝑖𝑛 : 0}

• 𝑒𝑥𝑡𝑟𝑎 = 𝑒𝑥𝑡𝑟𝑎𝐴 ∪ 𝑒𝑥𝑡𝑟𝑎𝐵 ∪ 𝑒𝑥𝑡𝑟𝑎𝑆1

• Φ = 𝐺 (Φ𝐴,Φ𝐵,Φ𝑆1)

Step 4: continue solving
Seeing𝑇𝑋𝐶 and𝑇𝑋3.1, a solver 𝑆2 creates a transaction𝑇𝑋𝑆2 (on the diagram:

𝑇𝑋4.1, green arrows):

• 𝑟𝑡𝑠 = {𝑟𝑡𝑅𝐶
𝐼𝐶
, 𝑟𝑡𝑅𝐵

𝐼𝐵
}

• 𝑐𝑚𝑠 = {𝑐𝑚𝑅𝐶𝑠𝑡𝑎𝑟
, 𝑐𝑚𝑅𝐵𝑡𝑟𝑒𝑒

}

• 𝑛𝑓 𝑠 = {𝑛𝑓𝑅𝐶
𝐼𝐶
, 𝑛𝑓𝑅𝐵

𝐼𝐵
}

• Proofs:

– Π𝑆2Δ

– Π𝑆2
𝑐𝑜𝑚𝑝𝑙

– Π𝑆2
𝑟𝑙
= {𝜋𝑆2𝑠𝑡𝑎𝑟 , 𝜋

𝑆2
𝐼𝐶
𝜋𝑆2𝑡𝑟𝑒𝑒, 𝜋

𝑆2
𝐼𝐵
}

• Δ ↦→ {𝐼𝐶 : −1, 𝐼𝐵 : −1, 𝑠𝑡𝑎𝑟 : 1, 𝑡𝑟𝑒𝑒 : 1}

• 𝑒𝑥𝑡𝑟𝑎 = 𝑒𝑥𝑡𝑟𝑎𝑆2

• Φ = Φ𝑆2

and composes all three into a balanced transaction 𝑇𝑋4.1:

• 𝑟𝑡𝑠 = {𝑟𝑡𝑅𝐴𝑠𝑡𝑎𝑟 , 𝑟𝑡𝑅𝐵𝑑𝑜𝑙𝑝ℎ𝑖𝑛 , 𝑟𝑡𝑅𝐶𝑡𝑟𝑒𝑒 , 𝑟𝑡𝑅𝐴𝐼𝐴 , 𝑟𝑡𝑅𝐵𝐼𝐵 , 𝑟𝑡𝑅𝐶𝐼𝐶 }
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• 𝑐𝑚𝑠 = 𝑐𝑚𝑠𝑇𝑋
3.1 ⊔ 𝑐𝑚𝑠𝑆2 = {𝑐𝑚𝑅𝐴

𝑑𝑜𝑙𝑝ℎ𝑖𝑛
, 𝑐𝑚𝑅𝐵𝑡𝑟𝑒𝑒

, 𝑐𝑚𝑅𝐶𝑠𝑡𝑎𝑟
, 𝑐𝑚𝑅𝐴

𝐼𝐴
, 𝑐𝑚𝑅𝐵

𝐼𝐵
, 𝑐𝑚𝑅𝐶

𝐼𝐶
}

• 𝑛𝑓 𝑠 = 𝑛𝑓 𝑠𝑇𝑋
3.1 ⊔ 𝑛𝑓 𝑠𝑆2 = {𝑛𝑓𝑅𝐴𝑠𝑡𝑎𝑟 , 𝑛𝑓𝑅𝐵𝑑𝑜𝑙𝑝ℎ𝑖𝑛 , 𝑛𝑓𝑅𝐶𝑡𝑟𝑒𝑒 , 𝑛𝑓𝑅𝐴𝐼𝐴 , 𝑛𝑓𝑅𝐵𝐼𝐵 , 𝑛𝑓𝑅𝐶𝐼𝐶 }

• Proofs:

– Π4.1
Δ = 𝐴𝐺𝐺 (Π3.1

Δ ,Π
𝐶
Δ,Π

𝑆2
Δ )

– Π4.1
𝑐𝑜𝑚𝑝𝑙

= Π𝐶
𝑐𝑜𝑚𝑝𝑙

⊔ Π3.1
𝑐𝑜𝑚𝑝𝑙

⊔ Π𝑆2
𝑐𝑜𝑚𝑝𝑙

– Π4.1
𝑟𝑙

= Π𝐶
𝑟𝑙
⊔ Π3.1

𝑟𝑙
⊔ Π𝑆2

𝑟𝑙

• Δ ↦→ {𝐼𝐴 : 0, 𝐼𝐵 : 0, 𝐼𝐶 : 0, 𝑠𝑡𝑎𝑟 : 0, 𝑑𝑜𝑙𝑝ℎ𝑖𝑛 : 0, 𝑡𝑟𝑒𝑒 : 0}

• 𝑒𝑥𝑡𝑟𝑎 = 𝑒𝑥𝑡𝑟𝑎𝐴 ∪ 𝑒𝑥𝑡𝑟𝑎𝐵 ∪ 𝑒𝑥𝑡𝑟𝑎𝐶 ∪ 𝑒𝑥𝑡𝑟𝑎𝑆1 ∪ 𝑒𝑥𝑡𝑟𝑎𝑆2

• Φ = 𝐺 (Φ𝐴,Φ𝐵,Φ𝑆1,Φ𝐶,Φ𝑆2)

In practice, the step of creation of the transactions 𝑇𝑋𝑆1 and 𝑇𝑋𝑆2 can be
merged with the composing step, but we separate the steps for clarity.

11. Application examples
This section provides some examples of applications that can be built with a
resource model. The applications in this section are simple and do not reflect all
the capabilities of the resource model but can be helpful to gain some intuition
for how to build applications using this model. More application examples can
be found on the Anoma Research Forum1.

11.1. Token transfer with identity isolation
This example describes the design of a token application where a transfer is
authorised by the token owner’s signature isolated into a separate resource logic.

Identity isolation allows the user to bind the account resource to multiple ap-
plications and have a simplemechanism to update the key used for authorisation
just by updating a single account resource instead of individually updating the
key in each application that requires authorisation. The user may have multiple
accounts bound to different sets of applications.

It is implemented with the help of three resource types:

1https://research.anoma.net/c/applications/36
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Figure 4. Identity isolation example diagram

1. token resource corresponds to the token being transferred,

2. message resource carries arbitrary information,

3. and account resource allows approving arbitrary data by signing it.

11.1.1. Account resource
An account resource stores a public key that corresponds to a user’s private
key (that is stored privately by the user) and enables public key authorisation
mechanics: the user signs some data using their private key and publishes the
signature; the corresponding public key, that is stored in the account resource,
is used to publicly verify the signature.
Using such account resourcemechanics allows to require a signature presence

and its validity as a resource logic constraint, so that it becomes an explicit and
a verifiable requirement for a valid transaction.

To verify the signature, the account resource is consumed, with the corre-
sponding account resource logic verifying the signature, using the public key
the resource stores.

The keypair associated with the account can also be updated, so that the new
account resource contains a new public key. This action requires the authoriza-
tion by the old keypair.
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11.1.2. Message resource
Message resource is a resource that carries an arbitrarymessage. Creating ames-
sage requires the user to sign the message with their private key and consume
an account resource to verify the signature, as described above.

11.1.3. Token resource
Token resource represents a token. To transfer a token, a message authorising
the transfer must be created.

Remark 12. In practice, transferring a token means consuming the current to-
ken resource(s) and creating equivalent token resource(s) but referring to a dif-
ferent owner, but abstractly it can be seen as transferring.

11.2. Counter application
This example describes the mechanics of counters associated with a specific con-
troller, implemented in a resource model.

11.2.1. CounterId resource
CounterId resource represents a counter tied to a specific controller that is used
to initialise other counters. In a sense, it can be seen as a counter of counters.
There are two actions associated with a CounterId resource:

1. Init: A new CounterId resource can be initiated to 0.

2. Update: An existing CounterId resource can be updated from value 𝑛 to
value 𝑛 + 1.

Both operations require a relevant controller to approve the transaction.

11.2.2. Counter resource
Counter resource represents a simple counter. There are two actions associated
with a Counter resource:

1. Init: A new counter can be initialised from the current 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐼𝑑 re-
source (the 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐼𝑑 value goes to the counter resource label). When
a new counter is created, the 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝐼𝑑 resource’s value is incremented
by 1 to ensure there are no counters that have the same label.

2. Update: An existing 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 resource can be updated from value 𝑛 to
value 𝑛 + 1.
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Figure 5. Counter application example diagram
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Figure 6. CounterId resource is a counter of counters

In this simple version, updating the counter doesn’t require any special per-
missions but the counter resource logic can be modified to be more complex
with more restricted counter update rules.

11.3. Proof-of-Stake
This section describes an example of a simplified version of the Proof-of-Stake
application. The goal of the PoS protocol is to assign voting power in the BFT
consensus algorithm: users delegate their tokens to validators to signal that
they trust the chosen validator with making decisions. The voting power of
each validator is determined from the amount of tokens delegated to them. The
delegated tokens are locked for a period of time, so that if the validator mis-
behaves, this behaviour could be tracked and reacted on by burning a part of
the delegated tokens. This application can be a useful building block for other
applications or, more generally, for the contexts that require a mechanism for
decision-making.

Remark 13. The advantage of having infractions as resources as opposed to us-
ing proofs of misbehaviour directly is that in order to be created such resources
have to follow the specified format which is guaranteed by the resource logic.

1. Delegate: create a new bond given that a user transferred their tokens to
the pool.
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Resource
kind

Description Create Consume

Token Governance token used to dis-
tribute the voting power.

Generic token logic Generic token logic

Pool An account that owns bonded
tokens. Does not necessarily
have to be a special resource
type, can be just a dedicated
type of the owner.

Generic account logic Generic account logic

Bond Re presents a bonded token del-
egated to the desired valida-
tor. Always owned by the pool.
𝐵𝑎𝑚𝑜𝑢𝑛𝑡 contains the delegated
quantity, 𝐵𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟 refers to
the validator the token is dele-
gated to, 𝐵𝑜𝑤𝑛𝑒𝑟 refers to the
delegator. Looking at all the
bonds allows seeing how much
tokens are delegated to each
validator and determine their
voting power.

Requires the user to send their
assets to the pool

Can be consumed to create a
withdrawal.

Withdrawal Represents the asset be-
ing undelegated. 𝑊𝑎𝑚𝑜𝑢𝑛𝑡 ,
𝑊𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟 ,𝑊𝑜𝑤𝑛𝑒𝑟 defined the
same way as for bonds. Ad-
ditionall, it contains 𝑊𝑢𝑛𝑙𝑜𝑐𝑘
field that defines when the
resource can be consumed.

Created from consuming a
bond

Can be consumed when the
portion of assets remaining af-
ter the slashing is performed
are sent from the pool to the
user and strictly after𝑊𝑢𝑛𝑙𝑜𝑐𝑘

Infraction Represents a proof of misbe-
haviour of a certain validator
𝐼𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟 and defines the in-
fraction rate 𝐼𝑟𝑎𝑡𝑒 for slashing.
𝐼𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 defines when the
misbehaviour was committed.

Created provided a proof of
misbehaviour

Never consumed

Voting
power

Contains the distribution of
voting power among the valida-
tors

Can be created provided a
proof of correct computation of
voting power from the existing
bonds.

Never consumed

Table 2. Resource kinds involved in the PoS application
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Figure 7. PoS application interface

2. Undelegate: consume a bond, create a withdrawal resource.

3. Withdraw: consume a withdrawal resource, transfer the token from the
pool back to the user. To consume the correct amount to return, iterate
over all infractions (read, not consume) for this validator created after
the assets were delegated but before the withdrawal period initiated, i.e.,
only account for infractions created while the assets were delegated. The
amount of the returned tokens is then calculated as: Π1 − 𝐼𝑟𝑎𝑡𝑒 , where 𝐼𝑟𝑎𝑡𝑒
is the infraction rate of the infraction resource 𝐼 .

4. Slash: create an infraction resource provided a proof of misbehaviour.

5. Calculate voting power: iterate over all bonds (read, but not consume),
computing the voting power of each validator.

12. Conclusion and Future directions
This report contains the necessary information to build a resource machine that
has the desired properties, but there are more properties we might want and
more questions worth investigating. One such question would be whether re-
source logics should be able to see all resources in a transaction. This would
allow us to perform “for all” checks — for example, a resource logic might want
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to enforce a non-inclusion of resources of a certain type in this transaction. How-
ever, enforcing such a feature is a non-trivial task, and it is not clear if it is as
beneficial as it seems: for example, if there is a valid way to escape such checks
(e.g., by wrapping a resource in another resource kind), it will not be helpful to
have a mechanism for checking.
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A. The Nockma reduction rules

Pattern Reduces to
𝑛𝑜𝑐𝑘 (𝑎) ∗𝑎
[𝑎 𝑏 𝑐] [𝑎 [𝑏 𝑐]]
?[𝑎 𝑏] 0
?𝑎 1
+[𝑎 𝑏] +[𝑎 𝑏]
+𝑎 1 + 𝑎

= [𝑎 𝑎] 0
= [𝑎 𝑏] 1
/[1 𝑎] 𝑎
/[2 𝑎 𝑏] 𝑎
/[3 𝑎 𝑏] 𝑏

/[(𝑎 + 𝑎) 𝑏] /[2 /[𝑎 𝑏]]
/[(𝑎 + 𝑎 + 1) 𝑏] /[3 /[𝑎 𝑏]]

/𝑎 /𝑎
#[1 𝑎 𝑏] 𝑎

#[(𝑎 + 𝑎) 𝑏 𝑐] #[𝑎 [𝑏 /[(𝑎 + 𝑎 + 1) 𝑐]] 𝑐]
#[(𝑎 + 𝑎 + 1) 𝑏 𝑐] #[𝑎 [/[(𝑎 + 𝑎) 𝑐] 𝑏] 𝑐]

#𝑎 #𝑎
∗[𝑎 [𝑏 𝑐] 𝑑] [∗[𝑎 𝑏 𝑐] ∗ [𝑎 𝑑]]
∗[𝑎 0 𝑏] /[𝑏 𝑎]
∗[𝑎 1 𝑏] 𝑏
∗[𝑎 2 𝑏 𝑐] ∗[∗[𝑎 𝑏] ∗ [𝑎 𝑐]]
∗[𝑎 3 𝑏] ? ∗ [𝑎 𝑏]
∗[𝑎 4 𝑏] + ∗ [𝑎 𝑏]
∗[𝑎 5 𝑏 𝑐] = [∗[𝑎 𝑏] ∗ [𝑎 𝑐]]
∗[𝑎 6 𝑏 𝑐 𝑑] ∗[𝑎 ∗ [[𝑐 𝑑] 0 ∗ [[2 3] 0 ∗ [𝑎 4 4 𝑏]]]]
∗[𝑎 7 𝑏 𝑐] ∗[∗[𝑎 𝑏] 𝑐]
∗[𝑎 8 𝑏 𝑐] ∗[[∗[𝑎 𝑏] 𝑎] 𝑐]
∗[𝑎 9 𝑏 𝑐] ∗[∗[𝑎 𝑐] 2 [0 1] 0 𝑏]
∗[𝑎 10 [𝑏 𝑐] 𝑑] #[𝑏 ∗ [𝑎 𝑐] ∗ [𝑎 𝑑]]
∗[𝑎 11 [𝑏 𝑐] 𝑑] ∗[[∗[𝑎 𝑐] ∗ [𝑎 𝑑]] 0 3]
∗[𝑎 11 𝑏 𝑐] ∗[𝑎 𝑐]
∗[𝑎 12 𝑏 𝑐 𝑑] 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑆𝐶𝑅𝑌 𝑏 𝑐; ∗[𝑎 𝑟𝑒𝑠𝑢𝑙𝑡 𝑑]

∗𝑎 ∗𝑎
Figure 8. Nockma reduction rules.
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