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Abstract

It was proved by Ron Graham and the second author that for any coloring of the
N ×N grid using fewer than log logN colors, one can always find a monochromatic
isosceles right triangle, a triangle with vertex coordinates (x, y), (x + d, y), and
(x, y + d). In this paper we are asking questions where not only axis-parallel, but
tilted isosceles right triangles are considered as well. Both coloring and density
variants of the problem will be discussed.

– Dedicated to the memory of Ron Graham

1. Introduction

In this paper we are going to consider several problems inspired by questions raised

by Ron Graham. After learning Szemerédi’s proof of the Erdős-Turán conjecture

on 4-term arithmetic progressions in dense subsets of integers [24], Graham asked

the following question: Is it true that for any real number δ > 0 there is a natural

number N0 = N0(δ) such that for N > N0 every subset of [N ] × [N ] of size at

least δN2 contains a square, i.e., a quadruple of the form {(a, b), (a + d, b), (a, b +

d), (a + d, b + d)} for some integer d 6= 0 ? ([N ] = {0, 1, 2, . . . , N − 1}.) Using

the full power of Szemerédi’s theorem on k-term arithmetic progressions, Ajtai and

Szemerédi in [1] proved a simpler statement: for sufficiently large N, every subset

of [N ] × [N ] of size at least δN2 contains corners, three points with coordinates

{(a, b), (a + d, b), (a, b + d)}1 (see also in [25]). Later Fürstenberg and Katznelson

proved a much stronger, general theorem in [11], but their proof didn’t give an

1Through the paper we are assuming that the corners and squares are not degenerate, d 6= 0.
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explicit bound as it uses ergodic theory. After Tim Gowers gave an analytical

proof for Szemerédi’s theorem (receiving a $1,000 check from Ron Graham who paid

rewards offered by Paul Erdős) he again raised the question of finding a quantitative

proof for Graham’s question. Such proof was given by the second author in [23] using

a hypergraph regularity lemma of Frankl and Rödl [12]. Although it is quantitative,

it is still very far from a conjecture of Graham:

Conjecture 1 (Ron Graham [8]). Given a set of lattice points in the plane

S = {p1, p2, . . . , pi, pi+1, . . .},

let us denote the distance of pi from the origin by di. If

∞∑
i=1

1

d2i
=∞ ,

then S contains the four vertices of an axes-parallel square.

The second author of this paper heard the conjecture from Ron Graham multiple

times, with increasing reward offer. Once Ron said “I think it is a safe bet to offer

$1,000 for the solution. I don’t think I ever have to pay that.”

Even after the recent breakthrough of Bloom and Sisask, breaking the logarithmic

barrier in Roth’s theorem on three term arithmetic progressions [4], we are very far

from such bounds. We offer a weaker conjecture, changing squares to corners even

allowing rotated (tilted) corners. In light of Theorem 7 below, it might be accessible

using techniques available now.

Conjecture 2. Given a set of lattice points in the plane

S = {p1, p2, . . . , pi, pi+1, . . .},

let us denote the distance of pi from the origin by di. If

∞∑
i=1

1

d2i
=∞ ,

then S contains the three vertices of an isosceles right triangle.

If we restrict our attention to axis parallel corners, then the best known density

bound for the Ajtai-Szemerédi theorem belongs to the first author:

Theorem 1 (Shkredov [21]). For sufficiently large N, every subset of [N ]× [N ] of

size at least N2/(log logN)C contains corners, three points with coordinates

{(a, b), (a+ d, b), (a, b+ d)}.
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Figure 1: Ron Graham, Fan Chung and Jozsef Solymosi

This problem is one of the few examples where the coloring variant has a better

(known) bound than its density version.

Theorem 2 (Graham-Solymosi [10]). For N large enough, any coloring of the

N ×N grid using fewer than log logN colors, one can always find a monochromatic

isosceles right triangle, a triangle with vertex coordinates (x, y), (x+d, y), and (x, y+

d).

In what follows we will see variants of the above mentioned problems. The next

section is about saturated point sets of the integer grid, sets without corners (or

squares) which are maximal, adding any further gridpoint will result a corner (or

square).

In Section 3 we summarize what are the best density results one can expect

using the available techniques. Unfortunately we cannot provide full proofs here,

they are quite technical, but the arguments are hopefully complete enough that

experts could reconstruct the proofs.

The last section is about related coloring problems, briefly addressing Euclidean

Ramsey type problems, one of the many fields where Ron Graham has made sig-

nificant impact. We close this introduction with a nice result of Ron, similar to

problems we are going to consider in this paper, finding monochromatic right tri-

angles in integer grids.

Theorem 3 (Graham [9]). For any r, there exists a positive integer T (r) so that in

any r-coloring of the lattice points Z2 of the plane, there is always a monochromatic

right triangle with area exactly T (r).
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2. Square Saturated Point Sets

For technical reasons here and in future sections we often switch between integer

grids, [n]× [n] and planes over finite fields, Fp × Fp.

The next definition we are going to use originates in graph theory. It goes back

to a paper from 1964 by Erdős, Hajnal and Moon [2].

Definition 1. Given a graph H, a graph G is H-saturated if G does not contain H

but the addition of an edge joining any pair of nonadjacent vertices of G completes

a copy of H. The saturation number of H, written sat(n,H) is the minimum number

of edges in an H-saturated graph with n vertices (assuming n ≥ |V (H)|).

Similar definitions can be given for various combinatorial structures. Here we are

going to use the definition for point sets in a plane. The point sets in the definition

are subsets of a larger set, a universe U, like an integer grid [n]× [n], or a plane over

the finite field Fp. Problems of asking the saturation number for certain subsets of

the integer grid [n] × [n], can be found as early as a paper of Erdős and Guy [6]

from 1970, but similar problems were probably considered earlier.

Definition 2. Given a point set Q, another point set P is Q-saturated if P does

not contain Q but the addition of any point outside of P completes a similar copy

of Q. The saturation number of Q, written sat(U,Q), is the minimum number of

points in a Q-saturated point set in U.

Similarity here means that Q is similar to Q′ if there is a transformation T, given

by translation rotation and scaling, such that T (Q) = Q′.

Let us denote the corner, three points with coordinates (0, 0), (1, 0), (0, 1), by C,

and the square, four points with coordinates (0, 0), (1, 0), (0, 1), (1, 1), by Q.

Claim 1. We have the following bounds on the saturation number for sets in Fp×Fp

without (tilted) corners:

p√
3
≤ sat(Fp × Fp, C) ≤ p.

Proof. Let S be a corner saturated set. Two elements of S are vertices of three

distinct squares, so there are six points which could form a corner with the two

elements. There are p2 elements of Fp × Fp, so

p2 − |S| ≤ 6

(
|S|
2

)
,

providing the lower bound. The upper bound is a simple construction. Set

S = {(0, i) : i ∈ Fp}.

Any point outside S with coordinates (a, b) would form a corner with (0, b), (0, a+

b) ∈ S (also with (0, b), (0, b− a) ∈ S).
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Both bounds hold in [n] × [n] as well. It would be interesting to find the sharp

bound, or even just a construction in Fp × Fp where |S| ≤ p− 1.

Before stating our next result, we recall a nice result of Katz and Tao [18] which

will be our main tool bounding sat(U,Q). It gives a nontrivial bound on a basic

quantity in additive combinatorics.

Theorem 4 (Katz-Tao [18]). Let A,B, be finite subsets of a torsion-free abelian

group, and let

G ⊂ A×B be such that |A|, |B|, |{a+ b : (a, b) ∈ G}| ≤ N.

Then |{a− b : (a, b) ∈ G}| ≤ N11/6.

The 11/6 = 1.833 . . . exponent is not known to be sharp. A lower bound follows

from a variant of a construction of Ruzsa [20] showing that the difference set can

be as large as N log(6)/ log(3) = N1.63093....

Theorem 5. Let p be a prime p ≡ 3 (mod 4). Then sat(Fp×Fp, Q) ≥ p12/11−p3/5,
i.e., every set which is square-saturated in Fp × Fp has size much larger than the

obvious bound, p.

Proof. In this case we can write the elements of Fp×Fp similar to Gaussian integers.

We can work on the field F = {a+ ib : a, b ∈ Fp}. Multiplying by i is a rotation by

90 degrees, so tilted corners are given by α, β, γ triples where

α = (a+ ib), β = (c+ id), γ = α+ i(α− β).

The key observation is that

α =
1 + i

2
β +

1− i
2

γ and − i
(

1 + i

2
β − 1− i

2
γ

)
= β + i(α− β)

which is the fourth point of the square determined by α, β, γ. If S is Q-saturated

then every point outside S is the fourth point of a square with the other three

points in S. We know that |S| = o(p2) from Theorem 7, but here we can simply

assume that |S| ≤ p12/11 (for otherwise we are done). We have at least p2 − p12/11
points outside of S, all of which are fourth corners of a square with 3 vertices

in S. Let us define a graph G with vertex set S and two elements (β, γ) form

an edge if and only if they to be diagonals of a corner. Let us consider the sets

A = (1+i)S,B = (1−i)S, and a graph G′, defined on A×B as (a, b) ∈ G′ if and only

if (a/(1+i), b/(1−i)) ∈ G. With these definitions we have {a+b : (a, b) ∈ G′} ⊂ 2S,

and |{a− b : (a, b) ∈ G′}| ≥ p2 − p12/11. We can apply Theorem 4 with N = |S|, so

p2 − p12/11 ≤ |S|11/6 giving the desired bound.
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Note that we did not use that S was square free; all we used is that any point

outside of S would form a square with a corner in S. The very same proof works

for [n]× [n] using Gaussian integers.

Theorem 6. If S ⊂ [n]× [n] has the property that for any a ∈ ([n]× [n]) \ S there

are three elements in S, which form a square with a, then |S| ≥ n12/11 + o(n).

3. Maximum Corner–Free Sets

In the previous section we gave a bound on the smallest maximal corner free set;

here we are going investigate what the size of the maximum corner free set is. This

part is not self-contained. We collected references to techniques and analogous

results which can be used to tackle our problem. To follow the arguments here,

one should be familiar with Fourier methods used to deal with three- and four-term

arithmetic progressions up to the level of use of Gowers norms. It was pointed out

by the anonymous referee that Theorem 7 below was obtained in a nice paper of

Prendiville [19, Corollary 1.3] and improved in [3, Theorem 2.21] by Bloom. Our

proof below is similar to their work. The main goal is to give a better simple upper

bound (on the density of sets without tilted corners) than what is known for axis

parallel corners [21].

Theorem 7. Let A ⊆ [n]2 be a set having no isosceles right triangles. Then |A| =
O(n2/ logc1 n). Now if A does not contain squares, then |A| = O(n2/(log log n)c2),

where c1, c2 > 0 are some absolute constants.

In order to prove the theorem we will see a more general statement, which shows

that the estimates for Szemerédi’s theorem on k-term arithmetic progressions can

be extended to k-element point sets in dimension two. As we mentioned earlier,

this part of the paper is not self-explanatory, the statements are heavily dependent

on the contents of the cited papers.

Lemma 1. Let k > 2 be a positive integer and M1, . . . ,Mk be 2 × 2 invertible

matrices, Mi 6= Mj, i 6= j. Also, let A ⊆ [n]2 be a set having no configurations

x, x+M1y, . . . , x+Mky. Then there is ck > 0 such that

|A| = O

(
n2

(log log n)ck

)
, (1)

and for k = 2 there exists c > 0 with

|A| = O

(
n2

(log n)c

)
. (2)
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Proof. Consider the quantity

σ =
∑
~x,~y

A(~x)A(~x+M1~y) . . . A(~x+Mk~y) .

Let us follow [15, Proposition 5.3] in the process changing the variables : ~x =

~z1 + · · · + ~zk, ~x + Mi~y =
∑k

j=1(I − MiM
−1
j )~zj , so ~y = −

∑k
j=1M

−1
j ~zj . Since

Mi 6= Mj , i 6= j it follows that this is a uniform cover. 2 Then σ is expressed as

σ = n−k+2
∑

~z1,...,~zk

A(~z1 + · · ·+ ~zk)

k∏
j=1

fj(~z1, . . . , ~zk) ,

where the function fj , j ∈ [k] does not depend on ~zj . Hence by the characteristic

property of Gowers norms, we see that σ is controlled by Uk–uniformity norm of A,

see [14]. Notice also, that the quantity σ is affine–invariant. Applying the method

from Bourgain’s classical paper [5] (or for a sharper bound follow [4]) for k = 2,

and for k > 2 following the steps of [13], [14], and [17] we obtain a similar bound

as in the case of arithmetic progressions of length k.

Now we are ready to prove Theorem 7 as an easy corollary of Lemma 1.

Proof of Theorem 7. To calculate the number of isosceles right triangles we need to

consider ∑
~x,~y

A(~x)A(~x+ ~y)A(~x+ ~y⊥) ,

where ~y = (y1, y2) and ~y⊥ = (−y2, y1). So, in terms of Lemma 1, we have

M1 =

(
1 0
0 1

)
, M2 =

(
0 −1
1 0

)
;

hence both matrices are invertible. In the case of squares the correspondent quantity

is ∑
~x,~y

A(~x)A(~x+ (y1, y2))A(~x+ (−y2, y1))A(~x+ (y1 − y2, y1 + y2)) ,

and hence

M3 =

(
1 −1
1 1

)
is invertible as well so we can apply Lemma 1.

Remark 1. As we have seen the case of squares corresponds to arithmetic progres-

sions of length four and in this particular case the result can be improved further

following the work of Green and Tao in [16]. Also, it will be interesting to improve

Bloom’s bound (see [3]) |A| = O(n2/ log1−o(1) n) for the maximal size of A having

no isosceles right triangles to |A| = O(n2/ log1+c n), c > 0, using methods from [4].
2If A and B are finite non-empty sets and Φ : A −→ B is a map, then we say that Φ is a

uniform cover of B by A if Φ is surjective and all the fibers {Φ−1(b) : b ∈ B} have the same
cardinality.
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4. Coloring Problems

In this section we show two results from Euclidean Ramsey theory related to corners.

These results follow almost directly from a more general result of the first author’s

paper “On some problems of Euclidean Ramsey theory” [22]. As in the previous

section, we are not going to include the details, however we give enough references so

that with the cited paper the full proof can be recovered. As we stated in Theorem

2, coloring the integer grids with few colors results a monochromatic axis parallel

corner. Using two colors and relaxing the axis parallel condition will give many

monochromatic corners. The systematic investigation of monochromatic triangles in

two–coloring of E2 started in the third paper of the fundamental sequence of papers

titled “Euclidean Ramsey Theorems I, II, III.” [7]. The next result [22, Corollary

6] shows that two–coloring of Fp×Fp always gives as many monochromatic corners

as one would expect.

Theorem 8 (Shkredov [22]). Let p be a sufficiently large prime number. Then

for any two–coloring of the plane F × Fp and any a, b 6= 0 such that a/b is a

quadratic residue there is a monochromatic collinear triple {x, y, z} with ‖y−x‖ = a,

‖z − y‖ = b.

Actually, by the arguments of the proof of [22, Theorem 4] we consider σ(R,R,R),

σ(B,B,B) the number of ERT at each color R
⊔
B = Fp × Fp and obtain

σ(R,R,R) + σ(B,B,B) =

= p−3(|R|3+|B|3)+σ(R,R,R)+σ(B,B,B)+3σ(δR, fR, fR)+3σ(δB , fB , fB) , (3)

where fR(x) = R(x) − |R|/p2, fB(x) = B(x) − |B|/p2 are the balanced functions

of the colors B and R, correspondingly. As was showed in [22, Theorem 4] the

terms σ(δR, fR, fR), σ(δB , fB , fB) in (3) are negligible thanks to the bound for the

Kloosterman sums and hence

σ(R,R,R) + σ(B,B,B) = p−3(|R|3 + |B|3) +O(p5/2) > p3/4− Cp5/2 ,

where C > 0 is an absolute constant. As a consequence we obtain

Theorem 9. Let p be a prime number. Then for any two–coloring of Fp × Fp the

number of monochromatic isosceles right triangles is at least

p3

4
+O(p5/2).

A similar argument (now the Kloosterman sums are replaced to the bounds for

the zeroth Bessel function) gives

Theorem 10. Suppose that we have a measurable coloring of the euclidean plane

with two colors. Then the measure of monochromatic isosceles right triangles in

any of such coloring is at least 0.0079 .
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Proof. To obtain the statement we use [22, Theorem 10] and derive that the desired

measure is at least
1

4
+

1

4
·min
t>0

(
2J0(t) + J0(

√
2t)
)
, (4)

where J0 is the zeroth Bessel function. Using Maple we see that the minimum in

(4) is at least −.9683275949. This completes the proof.
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[1] M. Ajtai and E. Szemerédi, Sets of lattice points that form no squares, Studia Scientiarium
Mathematicarum Hungarica 9 (1974), 9–11.
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