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Abstract

A set of positive integers D is called lonely if there exist real numbers α, δ ∈ (0, 1)
such that each point of the dilation αD is at distance at least δ from the nearest
integer. We prove that for every lonely set there is a 2-coloring of the integers
without arbitrarily long monochromatic arithmetic progressions with steps d ∈ D.
This result is a step towards a more general conjecture by Brown, Graham, and
Landman, stating that a similar 2-coloring exists whenever the set of allowable
steps D violates the restricted version of van der Waerden’s theorem.

– Dedicated to the memory of Ron Graham

1. Introduction

Let D ⊆ N be a fixed subset of the set of positive integers. Consider a graph GD
on the set of vertices N in which two vertices a, b ∈ N, with a < b, are joined by

an edge if and only if b − a ∈ D. Investigations of such graphs were initiated by

Eggleton, Erdős, and Skilton [3] in connection with the famous Hadwiger-Nelson

problem concerning the chromatic number of the plane (see [13]).

Let χ(D) denote the chromatic number of GD. A challenging problem is to

characterize sets D with finite chromatic number. For example, if D consists of all

even integers, then χ(D) =∞, since there is an infinite clique in GD. On the other

hand, if D consists of all odd numbers, then χ(D) = 2, since the sets of even and

odd integers are independent in GD. This shows that the chromatic number χ(D)

may radically differ for sets that are just translates one of another.

1Supported by the National Science Center of Poland, grant 2015/17/B/ST1/02660.
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The main conjecture in this matter was posed independently by Katznelson [9]

and Ruzsa (personal communication), using different terminology of topological

dynamics and additive number theory, respectively. To make a precise statement,

let us denote by ‖x‖ the distance from x to the nearest integer. A set D is called

lonely, if there exist real numbers α, δ > 0 such that the inequality ‖αd‖ > δ is

satisfied for all d ∈ D. For example, the set of all odd integers is lonely, as can be

seen by taking α = δ = 1/2.

Conjecture 1 (Katznelson-Ruzsa). The chromatic number χ(D) is finite if and

only if the set D is a finite union of lonely sets.

That the loneliness condition on D is sufficient for the finiteness of χ(D) was

proved by Katznelson [9] and independently (implicitly) by Ruzsa, Tuza and Voigt

[12]. Both papers solve a problem posed by Erdős whether χ(D) is finite for sets

with exponential growth (so called lacunary sets).

In this note we prove a result concerning arithmetic progressions whose steps

are restricted to lonely sets. The celebrated theorem of van der Waerden [14] as-

serts that any finite coloring of N admits arbitrarily long monochromatic arithmetic

progressions. Clearly, this is not necessarily true if we restrict the set of allowable

steps of arithmetic progressions to some fixed set D. In particular, in a proper

coloring of GD with χ(D) colors, there are no nontrivial monochromatic arithmetic

progressions (with steps from D) at all.

The problem of characterizing sets D for which the restricted van der Waerden’s

theorem holds was undertaken by Brown, Graham, and Landman [2]. They posed

the following intriguing conjecture.

Conjecture 2 (Brown, Graham, Landman, [2]). Let D be a set of positive integers.

Suppose that there is a finite coloring of N such that all monochromatic arithmetic

progressions with steps in D have bounded length. Then there is a 2-coloring of N
with the same property.

In this note we prove that lonely sets satisfy this conjecture. In particular, this

solves an open problem, posed in [1] (see also [10]), of determining the least number

of colors needed to avoid long monochromatic arithmetic progressions with steps

belonging to the set of Fibonacci numbers.

2. The Result

Let us consider the torus T = R/Z, which is geometrically just a circle of unit

circumference with a distinguished point 0. For x ∈ R, there is a unique point on

T corresponding to x whose circular coordinate is the factional part {x} of x. We

will denote real numbers and their corresponding points on the torus by the same
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symbols. By ‖x‖ we denote the circular distance from x ∈ T to the point 0. More

precisely, ‖x‖ equals {x} or 1 − {x}, where {x} is the fractional part of x. Notice

also that for any two numbers x, y ∈ R, the number ‖x− y‖ is equal to the circular

distance between the corresponding points on the torus T.

Suppose now that D is a lonely set, that is, the inequality ‖αd‖ > δ holds for some

α, δ ∈ (0, 1) and all d ∈ D. For a fixed α ∈ (0, 1), let δα(D) = inf{‖αd‖ : d ∈ D},
and let λ(D) = sup{δα(D) : α ∈ (0, 1)}. We shall call it the loneliness constant of

the set D.

Theorem 1 (Katznelson [9]). Let D be a lonely set with the loneliness constant

λ(D). Then χ(D) 6 d 1
λ(D)e.

Proof. Put k = d 1
λ(D)e and partition the torus T into half-open arcs Aj =

[
j
k ,

j+1
k

)
,

for j = 0, 1, . . . , k − 1. Define a k-coloring c : N → {0, 1, . . . , k − 1} by c(n) = j if

and only if αn ∈ Aj . We claim that this is a proper coloring of the distance graph

GD. Indeed, suppose that c(a) = c(b) = j for some a, b ∈ N. Then αa, αb ∈ Aj ,
which implies that ‖αa− αb‖ < 1

k . Hence, ‖α(a−b)‖ < 1
k , and in consequence a−b

cannot be an element of D (since every d ∈ D satisfies ‖αd‖ > λ(D) > 1
k .

Now we use similar methods to prove Theorem 2, which is an effective version of

both Lemma 7.4 in [7] and Corollary 8.11 in [4].

Theorem 2. Let D be a lonely set with the loneliness constant λ. Then there exists

a 2-coloring of N such that no arithmetic progression of length ` = d 1
2λe + 1 and

step d ∈ D is monochromatic.

Proof. Let D be a lonely set with loneliness λ > 0. Consider a red-blue coloring of

the torus T = R∪B, where R = [0, 12 ) and B = [ 12 , 1). Define a red-blue coloring of

N so that the color of a number n ∈ N coincides with the color of the corresponding

point αn ∈ T on the torus. Here α is a constant satisfying the loneliness condition

‖αd‖ > λ for all d ∈ D.

Now, consider any arithmetic progression a, a+ d, a+ 2d, . . . , a+ kd with d ∈ D.

We claim that it is not monochromatic, provided that k > 1
2λ . Indeed, consider the

corresponding points αa, α(a+ d), α(a+ 2d), . . . , α(a+ kd). These points also form

an arithmetic progression with step s = ‖αd‖ > λ on the torus T (going clockwise

or counterclockwise). So, the length of the whole arc spanned between the first and

the last point of this progression equals at least ks > 1
2λλ = 1

2 . On the other hand,

s 6 1
2 , so, there must exist two points in the progression dropping into different

parts of the partition of the torus. This proves the theorem.

Recall that a set D = {d1, d2, . . . } is lacunary if there exists a real number

θ > 0 such that di+1

di
> 1 + θ, for all i = 1, 2, . . . . It was independently proved by

Katznelson [9] and Ruzsa, Tuza, and Voigt [12] that every lacunary set is lonely.
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For instance, the set of Fibonacci numbers F = {1, 2, 3, 5, 8, 13, . . . } is well-known

to be lacunary. Hence, F is lonely and satisfies the assertion of Theorem 2. As

mentioned at the end of the Introduction, this answers a question posed in [1] (see

also [10]).

Moreover, as proved by Peres and Schlag in [11], every finite union of lacunary

sets is a lonely set. By their results one may derive the dependence between lone-

liness and lacunary constants and obtain thereby an upper bound on the length of

monochromatic arithmetic progressions in this case. More specifically, let t > 1 be

a fixed integer, and suppose that Di is a lacunary set with the lacunary constant

1 + θi, for i = 1, 2 . . . , t. Then, as proved in [11], the set D =
⋃t
i=1Di is lonely with

the loneliness constant satisfying

λ(D) >
1

240M log2M
,

where M =
∑t
i=1 θ

−1
i (provided that M > 4).

Finally, notice that Theorem 2 has the following consequence for finite unions of

lonely sets.

Corollary 1. Let t > 1 be an integer and let D = D1 ∪D2 ∪ · · · ∪Dt, where each

Di is a lonely set. Then there exists a 2t-coloring of N and a constant ` = `(D)

such that no arithmetic progression of length ` and step d ∈ D is monochromatic.

Proof. It is enough to take the product coloring whose components are the 2-

colorings guaranteed by Theorem 2 for each of the sets Di. Clearly, there can be

no monochromatic progression with step in D of length greater than d 1
2λe, where

λ = minλ(Di).

3. Further Remarks

We conclude this short note with some reflections on further possible applications

of the torus coloring method to other problems for distance graphs.

The first and natural attempt would be to extend Theorem 2 to all sets D with

finite chromatic number χ(D). A natural attempt here is to consider finite unions

of lonely sets (cf. Conjecture 8.13 in [4]). By Corollary 1, we know that a desired

coloring (avoiding long arithmetic progressions with steps in D) can be obtained by

using at most 2t colors, where t is the number of lonely sets in the union.

We will now propose a series of 2-colorings of the integers which we believe to

show (but are unable to prove) that a union of two lonely sets is not 2-large. Given

a partition of the 2-Torus T2 = A ∪ B, and some (α, β) ∈ T2, we may define the

coloring fA,B,α,β : N→ {1, 2} by
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fA,B,α,β(n) =

{
1 if (nα, nβ) ∈ A
2 if (nα, nβ) ∈ B

. (1)

Informally, Theorem 2 was proven by analyzing the coloring fR,B,α. Now let

S = L1 ∪L2 be a union of two lonely sets. Suppose that α, β ∈ R and δ > 0 is such

that ||nα|| > δ for every n ∈ L1 and ||nβ|| > δ for every n ∈ L2. We conjecture that

for at least one of the partitions of T2 that are shown below, the coloring fA,B,α,β
will not contain long monochromatic arithmetic progressions with steps in S.

We hope that at least one of the above partitions will also give insight into

partitions of higher dimensional Tori that will allow us to generalize Theorem 2 to

finite unions of lonely sets.
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Another direction could be to look at arbitrary forward paths in distance graphs,

not only following arithmetic progressions. It is known, for instance, that for the

set F of Fibonacci numbers, there is a 6-coloring of GF avoiding arbitrarily long

monochromatic forward paths. On the other hand, two colors are not sufficient for

this property (see [1]). Other related problems and results can be found in [6].

It is also known that there is a set H with infinite chromatic number χ(H) and

a finite coloring of N avoiding 3-term monochromatic arithmetic progressions with

steps in H (see [8] or Section 9.1 of [5]). On the other hand, there is no finite

coloring of N avoiding arbitrarily long monochromatic forward paths in the graph

GH .
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[8] V. Jungić, On a conjecture of Brown concerning accessible sets, J. Combin. Theory Ser. A
110 (2005), 175–178.

[9] Y. Katznelson, Chromatic numbers of Cayley graphs on Z and recurrence, Combinatorica 21
(2001), 211–219.

[10] B. L. Landman, A. Robertson, Ramsey Theory on the Integers, second edition, Student
Mathematical Library, vol. 73, The American Mathematical Society, 2014.
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