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Abstract

For a collection of graphs G1, G2, . . . , Gt, the Gallai-Ramsey number

gr(G1, G2, . . . , Gt)

is the least positive integer p such that every t-coloring of the edges of Kp contains
a subgraph isomorphic to Gi spanned by edges in color i, for some 1 ≤ i ≤ t. This
note focuses on the evaluation of the Gallai-Ramsey number

gr(T,Ks1 ,Ks2 , . . . ,Kst),

where T is a tree. We offer several exact evaluations that build off of known results
and conclude with an overview of critical colorings for such Gallai-Ramsey numbers.

– Dedicated to the memory of Ron Graham.

1. Introduction

Gallai-Ramsey numbers are a common variation of graph Ramsey numbers. Their

name is derived from the close connection that rainbow triangle-free colorings share

with Gallai’s foundational paper [8] on transitively orientable graphs (comparability

graphs). An English translation of [8] by F. Maffray and M. Preissmann can be

found in [13]. This note focuses on the evaluation of the Gallai-Ramsey number for a

tree versus a collection of complete graphs, and a description of the critical colorings

associated with this number. We begin with an overview of the terminology and

background required for our investigation.

If G is a simple graph (avoiding loops and multiedges), we denote by V (G) and

E(G) its vertex and edge sets, respectively. A t-coloring of G is a function

c : E(G) −→ {1, 2, . . . , t}.
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In general, we do not assume that a t-coloring is surjective. A Gallai t-coloring is a

t-coloring that avoids rainbow triangles. That is, there are no instances of distinct

vertices x, y, and z such that |{c(xy), c(yz), c(xz)}| = 3. When t = 1 or t = 2,

observe that every t-coloring is a Gallai t-coloring.

If G1, G2, . . . , Gt are graphs, then the Ramsey number r(G1, G2, . . . , Gt) is de-

fined to be the least positive integer p such that every t-coloring of the complete

graph Kp of order p contains a subgraph isomorphic to Gi spanned by edges in

color i, for some 1 ≤ i ≤ p. The existence of Ramsey numbers follows from the

ubiquitous theorem of Frank Ramsey [14]. Analogously, the Gallai-Ramsey number

gr(G1, G2, . . . , Gt) is the least positive integer p such that every Gallai t-coloring

of Kp contains a subgraph isomorphic to Gi spanned by edges in color i, for some

1 ≤ i ≤ t. Since every Gallai t-coloring is a t-coloring, it follows that

gr(G1, G2, . . . , Gt) ≤ r(G1, G2, . . . , Gt).

If G = G1 = G2 = · · · = Gt, then we write grt(G) for the corresponding t-color

Gallai-Ramsey number. Most research on Gallai-Ramsey numbers has focused on

the “diagonal” case grt(G) (for example, see [2], [5], [7], [9], and [11]). One of the

earliest known results in this area is due to Chung and Graham [2], where in 1983,

they proved a result equivalent to the statement

grt(K3) =

{
5t/2 + 1 if t is even
2 · 5(t−1)/2 + 1 if t is odd,

whenever t ≥ 2. This result will prove to be useful to us in Section 2.

Recall that a tree T is a connected acyclic graph. Throughout the remainder of

this note, assume that Tm is any tree of order m. In 1972, Chvátal and Harary [4]

proved a general lower bound for 2-color Ramsey numbers that implied

r(Tm,Kn) ≥ (m− 1)(n− 1) + 1.

Five years later, Chvátal [3] was able to complete the proof that

r(Tm,Kn) = (m− 1)(n− 1) + 1. (1)

Our main result concerns the evaluation of of the (t + 1)-colored Gallai-Ramsey

number gr(Tm,Ks1 ,Ks2 , . . . ,Kst). Specifically, in Theorem 1, we prove that

gr(Tm,Ks1 ,Ks2 , . . . ,Kst) = (m− 1)(gr(Ks1 ,Ks2 , . . . ,Kst)− 1) + 1.

Known evaluations of gr(Ks1 , . . . ,Kst) then allow us to obtain explicit evaluations.

Finally, we consider the critical colorings for gr(Tm,Ks1 ,Ks2 , . . . ,Kst) and discuss

the “goodness” of graphs in this setting.
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2. The Evaluation of gr(T,Ks1 ,Ks2 , . . . ,Kst)

We begin this section with the main result of this note.

Theorem 1. Let t ≥ 2 and m ≥ 1. Then

gr(Tm,Ks1 ,Ks2 , . . . ,Kst) = (m− 1)(gr(Ks1 , . . . ,Kst)− 1) + 1.

Proof. Let n = gr(Ks1 ,Ks2 , . . . ,Kst) and fix a Gallai t-coloring of Kn−1 that avoids

a monochromatic copy of Ksi in color i, for all 1 ≤ i ≤ t. Replace each of the

vertices in this Kn−1 with complete red copies of Km−1 to form a (t + 1)-colored

K(m−1)(n−1). Clearly, no red Tm exists since the largest red component only contains

m− 1 vertices. The largest complete subgraph in colors other than red contain at

most one vertex from each Km−1, so this construction lacks monochromatic copies

of Ksi in colors 1 ≤ i ≤ t. It is also easy to verify that the resulting coloring is a

Gallai coloring. It follows that

gr(Tm,Ks1 ,Ks2 , . . . ,Kst) ≥ (m− 1)(n− 1) + 1.

To prove the other direction, consider a Gallai (t+ 1)-coloring of K(m−1)(n−1)+1. If

we identify the last t colors together, we obtain a 2-coloring of K(m−1)(n−1)+1. By

Equation (1), it follows that there is a red Tm or a copy of Kn spanned by edges

using only colors 1 ≤ i ≤ t. In the former case, we are done. In the latter case, the

Kn is Gallai t-colored, and since gr(Ks1 ,Ks2 , . . . ,Kst) = n, it follows that there is

a monochromatic copy of Ksi in color i, for some 1 ≤ i ≤ t. Hence,

gr(Tm,Ks1 ,Ks2 , . . . ,Kst) ≤ (m− 1)(n− 1) + 1,

completing the proof of the theorem.

When t = 2, observe that r(Ks1 ,Ks2) = gr(Ks1 ,Ks2). This allows us to apply

known nontrivial 2-color classical Ramsey numbers to obtain 3-color Gallai-Ramsey

numbers (see Section 2.1 of [12]). A list of these results are contained in Table 1.

Next, we apply Chung and Graham’s result [2]:

grt(K3) =

{
5t/2 + 1 if t is even
2 · 5(t−1)/2 + 1 if t is odd.

Theorem 1 implies that the (t + 1)-color Gallai-Ramsey number satisfies

gr(Tm,K3, . . . ,K3︸ ︷︷ ︸
t terms

) =

{
(m− 1)5t/2 + 1 if t is even
2(m− 1)5(t−1)/2 + 1 if t is odd.

Similarly, the recent evaluation

grt(K4) =

{
17t/2 + 1 if t is even
3 · 17(t−1)/2 + 1 if t is odd,
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r(Ks1 ,Ks2) gr(Tm,Ks1 ,Ks2)

r(K3,K3) = 6 gr(Tm,K3,K3) = 5m− 4
r(K3,K4) = 9 gr(Tm,K3,K4) = 8m− 7
r(K3,K5) = 14 gr(Tm,K3,K5) = 13m− 12
r(K3,K6) = 18 gr(Tm,K3,K6) = 17m− 16
r(K3,K7) = 23 gr(Tm,K3,K7) = 22m− 21
r(K3,K8) = 28 gr(Tm,K3,K8) = 27m− 26
r(K3,K9) = 36 gr(Tm,K3,K9) = 35m− 34
r(K4,K4) = 18 gr(Tm,K4,K4) = 17m− 16
r(K4,K5) = 25 gr(Tm,K4,K5) = 24m− 23

Table 1: Gallai-Ramsey numbers that follow from the known nontrivial 2-color
classical Ramsey numbers compiled in Radziszowski’s dynamic survey [12].

by Liu, Magnant, Saito, Schiermeyer, and Shi [11] implies that

gr(Tm,K4, . . . ,K4︸ ︷︷ ︸
t terms

) =

{
(m− 1)17t/2 + 1 if t is even
3(m− 1)17(t−1)/2 + 1 if t is odd.

A well-known conjecture of Fox, Grinshpun, and Pach (Conjecture 1.7 of [6]) states

that

grt(Kn) =

{
(r(Kn,Kn)− 1)t/2 + 1 if t is even
(n− 1)(r(Kn,Kn)− 1)(t−1)/2 + 1 if t is odd,

which, if proved, would imply a similar result as in the cases n = 3, 4.

3. Critical Colorings and Good Graphs

The construction given in the proof of Theorem 1 to obtain the lower bound for

gr(Tm,Ks1 ,Ks2 , . . . ,Kst) turns out to be the only such construction. To be precise,

if p = gr(G1, G2, . . . , Gt), then a critical coloring of Kp−1 is a t-coloring that lacks a

subgraph isomorphic to Gi spanned by edges in color i, for all 1 ≤ i ≤ t. To deter-

mine a critical coloring for gr(Tm,Ks1 ,Ks2 . . . ,Kst), let n = gr(Ks1 ,Ks2 , . . . ,Kst)

and identify the last t-colors together. We know from Theorem 1 and Equation (1)

that

gr(Tm,Ks1 ,Ks2 , . . . ,Kst) = (m− 1)(n− 1) + 1 = r(Tm,Kn).

It was proved by Hook and Isaak (Proposition 2.4 of [10]) that the only critical

colorings for r(Tm,Kn) are formed by taking a blue Kn−1 and replacing each of its

vertices with a red Km−1. Thus, the only critical colorings for gr(Tm,Ks1 ,Ks2 , . . . ,Kst)

are formed by taking a Gallai t-coloring of Kn−1 that lacks a subgraph isomorphic
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to Ksi in color i, for all 1 ≤ i ≤ t, and replacing each vertex with a red copy of

Km−1.

Since every connected graph G contains a spanning tree, it follows that if G has

order m, then

gr(G,Ks1 ,Ks2 , . . . ,Kst) ≥ (m− 1)(gr(Ks1 , . . . ,Kst)− 1) + 1. (2)

Building on the concept of “goodness” introduced by Burr and Erdős [1], we say

that G is Gallai-{Ks1 ,Ks2 , . . . ,Kst}-good if equality holds in Inequality (2). At the

present time, the determination of which G are Gallai-{Ks1 ,Ks2 . . . ,Kst}-good is

an open problem. A good starting point for investigating this problem is motivated

by the work of Chung and Graham [2]: identify the connected graphs G of order m

that satisfy

gr(G,K3, . . . ,K3︸ ︷︷ ︸
t terms

) =

{
(m− 1)5t/2 + 1 if t is even
2(m− 1)5(t−1)/2 + 1 if t is odd.
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