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Abstract—RAN virtualization is revolutionizing the telco in-
dustry, enabling 5G Distributed Units to run using general-
purpose platforms equipped with Hardware Accelerators (HAs).
Recently, GPUs have been proposed as HAs, hinging on their
unique capability to execute 5G PHY operations efficiently while
also processing Machine Learning (ML) workloads. While this
ambivalence makes GPUs attractive for cost-effective deploy-
ments, we experimentally demonstrate that multiplexing 5G
and ML workloads in GPUs is in fact challenging, and that
using conventional GPU-sharing methods can severely disrupt 5G
operations. We then introduce YinYangRAN, an innovative O-
RAN-compliant solution that supervises GPU-based HAs so as to
ensure reliability in the 5G processing pipeline while maximizing
the throughput of concurrent ML services. YinYangRAN per-
forms GPU resource allocation decisions via a computationally-
efficient approximate dynamic programming technique, which is
informed by a neural network trained on real-world measure-
ments. Using workloads collected in real RANs, we demonstrate
that YinYangRAN can achieve over 50% higher 5G processing
reliability than conventional GPU sharing models with minimal
impact on co-located ML workloads. To our knowledge, this is
the first work identifying and addressing the complex problem
of HA management in emerging GPU-accelerated vRANs, and
represents a promising step towards multiplexing PHY and ML
workloads in mobile networks.

I. INTRODUCTION

Radio Access Network (RAN) virtualization enables base-

band processing on commercial off-the-shelf (COTS) com-

puting platforms. The approach decouples base station (BS)

tasks from dedicated hardware, and eases the disaggregation of

monolithic and close BS equipment into minimal Radio Unit

(RU) hardware connected to cloud-oriented platforms that take

care of all computationally intensive signal processing tasks.

Virtualized RANs (vRANs) based on this concept promise

to bring unprecedented flexibility in the management of PHY-

and MAC-layer processing, and yield the potential to disrupt

traditional vendor lock-ins that have historically stagnated the

RAN ecosystem, stifling competition and innovation. It is thus

unsurprising that vRANs have garnered significant attention

from the mobile telecommunications industry in the context

of 5G: driven by the O-RAN Alliance [1], virtually all leading

industry players are investing in 5G vRAN development [2],

[3], with forecasts that the technology will eclipse conventional

RANs and generate revenues of $20 billion by 2028 [4], [5].

As illustrated in Fig. 1, 5G BSs are disaggregated into the

RU, which performs basic RF operations, the Distributed Unit

(DU), responsible for PHY- and MAC-layer tasks, and the

Centralized Unit (CU), in charge of the highest BS layers.
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Virtualized RANs implement most of DU and CU tasks

as software components that run on virtualized platforms,

typically containers. However, the most compute-intensive

DU operations (e.g., Forward Error Correction, or FEC) are

offloaded to a Hardware Accelerator (HA) to meet certain pro-

cessing latency targets. Traditional HAs include PCIe boards

integrating ASICs [6] or FPGAs [7], and are mandatory to

execute compute-intensive PHY tasks with guaranteed latency

in industry-grade mobile systems [8].

Recently, GPUs have emerged as a compelling alternative

for 5G DU HAs, with commercial solutions developed by

market leaders like NVIDIA [9], [10]. Leveraging the mas-

sive computational parallelism offered by arrays of streaming

multiprocessors (SMs), GPUs promise high-performance DU

load processing [11]. As an example, Fig. 2 (solid blue

curve) shows the results of tests we run on a NVIDIA A100

GPU serving a 5G 100-MHz DU workload recorded from

operational RANs: the GPU can keep the processing latency

distribution well below 1 ms, a conventional target in 5G [8].

A feature unique to GPUs, and a major selling point by

vendors pushing for wide adoption of the technology, is their

potential to be shared between computationally intensive 5G

PHY-layer processing and the different Machine Learning

(ML) workloads that will be run at DUs [11]. Indeed, many

DU operations require fast automated decision-making that

is expected to build on advanced ML models, which in turn

need GPU resources to execute efficiently; examples include

traffic load forecasting at RU level [12], [13], policing of

radio resource schedulers [14], [14], possibly with awareness

of compute resources [15], [16], just to name a few. The

capability of multitasking such ML operations with DU PHY

functions enables a cost-effective utilization of high-priced

HAs, justifying their adoption over ASIC/FPGA-based HAs.



However, having DU and ML workloads share GPU re-

sources is far from obvious in practice. For instance, our ex-

periments (dashed red curve) in Fig. 2 show that co-locating a

realistic ML inference task with the DU workloads in the A100

GPU using the conventional software concurrency methods

(see §II) results in substantial disruption of the 5G pipeline

operation. Indeed, the PHY processing latency becomes highly

erratic, with a low 50% probability of meeting latency targets

that is an unacceptable industry-grade performance.

In light of these results, it does become evident that GPU-

based vRAN acceleration introduces new resource control

challenges that are alien to traditional radio systems, or to con-

ventional vRANs based on ASIC and FPGA HAs. Specifically,

to maximize gains, it is crucial to devise robust mechanisms

that aptly allocate GPU resources between inelastic PHY-

layer processing at DUs and elastic ML workloads. These

mechanisms must effectively learn the complex relationships

between time-varying wireless communication dynamics [8]

and their associated computational needs, and then share GPU

resources so that DUs meet their processing targets while ML

processing throughput is maximized.

The task is complicated by a number of obstacles.

• First, industry standards enforce tight DU processing

latency of around 1 ms [8] to be upheld with a given

probability to provide a pre-determined reliability tar-

get: therefore, one must hard-guarantee enough GPU

resources to meet that requirement.

• Second, DU PHY workloads are intrinsically stochastic,

as they are contingent on random factors such as user mo-

bility patterns or environmental scatterers, and allocating

GPU resources to them is arduous.

• Third, as we will later demonstrate, GPU resource real-

location involves considerable overheads, which must be

factored into the optimal system control.

• Lastly, as also depicted in Fig. 1, O-RAN specification

platforms only permit compute-control decisions at non-

real time intervals (seconds or even minutes) through

an O2 interface between the Service and Management

Orchestrator (SMO) and the O-Cloud hosting GPU re-

sources used by virtualized DUs, which creates a signifi-

cant disconnect between long-timescale decision-making

and short-timescale system operation.

We propose YinYangRAN, a resource control solution de-

signed to be integrated into the O-RAN’s Service Management

and Orchestration (SMO). YinYangRAN dynamically allocates

the minimum necessary GPU resources to 5G DUs to ensure

maximal reliability, which enables reusing spare resources for

other ML services thereby enhancing the overall efficiency of

costly GPU platforms. Our solution is rooted in a two-stage

approach derived from an approximate dynamic programming

technique known as Certainty Equivalent Control (CEC). The

first stage is a more compute-intensive procedure where an ap-

proximation of the optimal cost is computed offline using CEC.

The second stage is a lightweight, dynamic resource allocation

algorithm designed for online operation. This decision-making

mechanism is assisted by a neural network trained with real-

world traffic loads that predicts the distribution of the DU

reliability to ensure the satisfaction of the latency targets. In

summary, our work makes the following contributions.

• We perform extensive measurements with high-end pro-

cessors and industry-grade PHY pipelines, and character-

ize for the first time the performance of high-end GPUs

for computationally intensive LDPC decoding. Relying

on recent strategies for GPU resource sharing, we prove

that there exist substantial opportunities for multiplexing

DU processing with ML workloads.

• We show, however, that such a sharing space is complex,

as it depends in entangled ways on the heterogeneous

contexts of 5G demands and on unique GPU resource

reconfiguration delays, all of which create trade-offs

between decoding reliability and resource utilization ef-

ficiency that are difficult to model and exploit.

• We devise YinYangRAN, a solution to efficiently manage

GPU resources, based on approximated dynamic pro-

gramming. Using an experimental prototype and data

from operational RANs, we demonstrate that YinYan-

gRAN achieves over 50% higher processing reliability

than conventional GPU sharing models with minimal

impact on co-located ML workloads.

To the best of our knowledge, this paper is the first work

highlighting the reliability risk of blindly sharing GPUs for

both 5G PHY and ML workloads; and YinYangRAN is the

first solution to efficiently solve this problem.

II. BACKGROUND

In this section, we present a primer on 5G RAN (§II-A),

and introduce modern techniques to sharing GPUs (§II-B).

A. 5G New Radio

O-RAN 5G base stations are composed of a Radio Unit

(RU) handling basic radio tasks such as FFTs, a Distributed

Unit (DU) taking care of PHY, MAC, and RLC layers [17],

and a Central Unit (CU) managing higher layer tasks.

The 5G PHY/MAC interface is called New Radio (NR).

Our focus is on sub-6GHz bands, which allow radio bandwidth

configurations of up to 100MHz for each carrier, and provide a

flexible numerology µ = {0, 1, 2}. The basic unit of spectrum

is a resource block (RB), which is comprised of 12 subcarriers

with 15 ·2µ-KHz spacing. The time domain is segmented into

1-ms subframes, each containing 2µ slots that typically include

14 OFDM symbols with a duration of 66.7 · 2−µµs. Every

Transmission Time Interval (TTI) that usually takes one slot,

the DU’s MAC gathers a set of bits from/to every active User

Equipment (UE) into a Transport Block (TB) per user. The size

of each TB is contingent upon the numerology, the amount of

buffered data, a RB scheduling policy, and a modulation and

coding scheme (MCS) chosen based on the signal-to-noise

ratio (SNR). Hence, every TTI, the DU has to process a PHY

workload with a specific context, i.e., a set of TBs and their

characteristics (SNR, MCS, number of RBs).
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On the transmitting end, TBs are split into code blocks

(CBs) each with its own CRC fields. Filler bits adjust the

CB size to meet the LDPC encoder’s demands used for FEC,

generating a codeword with parity bits. Lastly, the codeword is

matched to the capacity of the allocated RBs (as per the MCS)

via rate matching. On the receiving side, a soft-output detector

calculates the data reliability as log-likelihood ratios (LLR),

known as soft bits. An LDPC decoder then converts these

soft bits into hard bits using an iterative belief propagation

algorithm. The TB is rebuilt once all its CBs are successfully

decoded. For additional details, refer to [18]. 3GPP and O-

RAN specify concrete processing latency bounds between UEs

and CUs [17], [19]. Consequently, the most-compute intense

PHY tasks, usually FEC, have stringent latency targets [8],

[16], which are usually met by a hardware accelerator (HA)

like a GPU as considered in this paper.

B. GPU Resource Sharing

As stated in §I, GPU-based HAs are gaining the attention

of mobile operators thanks to their capability of reusing

computing resources for ML workloads [11]. For instance,

NTT Docomo are set to roll out GPU-accelerated 5G trials

this year, and SoftBank have recently explored a proof-of-

concept about sharing the resources of a GPU between 5G DU

workloads and ML-based edge computing applications [10].

There are essentially three methods to share GPU resources.

One is application-level sharing, which leverages conventional

single-process concurrency methods, such as CUDA streams

and multi-threading. While remarkably simple, time-sliced

context switching can create significant and non-controllable

overhead, ruling out per-process performance guarantees that

are critical in PHY-layer processing pipelines.

Process-level sharing can be achieved with Multi-Process

Sharing (MPS), first introduced on NVIDIA’s Kepler archi-

tectures and further enhanced on Volta. MPS assigns subsets

of GPU compute units, known as streaming multi-processors

(SM), to individual partitions for specific processes. Although

MPS offers SM isolation to circumvent context switching over-

heads, cache and memory resources are still shared between

processes without any isolation, as illustrated in Fig. 3. This

can potentially lead to large overheads when memory-intensive

processes compete for GPU resources.

Finally, hardware-level sharing can be achieved with Multi-

Instance GPU (MIG), a feature appeared with Ampere GPUs

(e.g., NVIDIA A100). As shown in Fig. 3, MIG facilitates true

hardware isolation, guaranteeing Quality of Service (QoS) and

resource allocation. Specifically, MIG enables the division of

a GPU into fully isolated sub-GPUs, which in practice only

share the PCI interface bandwidth towards the CPU.

While it ensures full isolation, MIG presents two notable

drawbacks compared to MPS. First, MIG offers only a limited

set of partition options — for example, the smallest partition

in a 40GB NVIDIA A100 provides 1/7th of SMs and 5GB

of memory. Conversely, MPS allows for more granular SM

splitting. Second, GPU repartitioning using MIG incurs sub-

stantial overhead, on the order of several seconds, as opposed

to a few hundred milliseconds with MPS; we will empirically

assess this in §III. Ultimately, these limitation makes MIG less

suitable for exploiting GPU multiplexing opportunities real-

world 5G vRANs, as discussed in more details in §III-D.

III. ANALYSIS

Re-using spare HA resources from the O-Cloud to handle

tasks external to PHY processing is a unique opportunity to

build more cost-effective vRAN systems. Previous works have

explored this strategy with CPU resources [8], yet industry-

grade DUs hardly rely upon CPU for hardware accelera-

tion [20]. GPUs are a much more realistic candidate for HA,

yet, as anticipated in §I, they also pose novel challenges.

A. Practical trade-offs in DU/ML GPU sharing

The industry imposes PHY processing latency targets that

range from 0.5 to 3 ms, which the DU must satisfy with a

certain probability to attain a certain reliability goal. In order

to optimize vRAN cost-efficiency, it is critical to allocate to

DUs just the right amount of GPU resources needed to meet

their target, so as to free as much computing capacity as pos-

sible to maximize ML performance and GPU utilization. The

conflicting goals create a trade-off of fulfilling 5G processing

latency targets and maximizing the ML throughput.

We experimentally characterize this trade-off by analyzing a

commercial solution for GPU-accelerated 5G processing on a

NVIDIA A100 GPU with 40 GB of RAM. Motivated by real-

world RAN workloads (see §III-C), we consider a wide range

of workload contexts, i.e., combinations of MCS, RBs, SNR,

and concurrent users in a 5G 100-MHz DU. We also run ML

tasks on the same GPU and measure the related throughput

as the number of inferences per second. More specifically,

we deploy the TES-RNN model [21], which is a state-of-the-

art predictor in mobile traffic forecasting that blends statistical

modeling and deep neural networks to predict traffic loads. All

this is done with the control of the GPU computing resources

(SMs) via MPS by assigning a given amount of resources to

the DU and its complementary value to the ML workload.

The result of these experiments is illustrated in Fig. 4. The

plot depicts in blue the FEC processing latency of the DU

under diverse GPU resource allocations, along the abscissa.

Specifically, the dark blue lines show the highest and lowest

latency performance recorded across all possible contexts; the

light blue area in between illustrates the possible operating

region of the DU for any intermediate context, with thin lines

therein showing the latency profiles of some sample contexts.

For illustration purposes, the dashed horizontal line highlights

one of the most conventional PHY-layer processing latency

targets, i.e., 1 ms, which the DU must meet.
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Fig. 4. DU performance (FEC processing latency, in blue) vs ML
performance (inferences per second, in red) for different SM alloca-
tions and DU contexts (combinations of number of concurrent TBs,
SNR, MCS, and RBs). The x-axis indicates the allocation for DU
workloads. The allocation for ML workload is the complementary
of the x-axis ((100-x)%). The light blue area depicts the operating
region for DU FEC workloads across a wide range of contexts.

We observe that the latency curves span very diverse values,

both above and below the 1-ms target. Most relevantly, the

minimum fraction of GPU SMs required to fulfil the target

ranges all the way from 1% to 80% depending on the DU

context. In other words, our experiments demonstrate for the

very first time that sub-6GHz 5G PHY-layer processing only

needs a (potentially very small) portion of the full capacity

of a modern GPU, hence there exists a substantial space for

multiplexing DU requests with other ML workloads. To prove

this point, as explained above, we also run a trained ML

model on the SMs of the same GPU not allocated to the DU

processing. The red curve in Fig. 4 shows that the throughput

of the ML model, in terms of inferences per second, is strongly

dependent on the amount of spare SMs it is allowed to use.

Thus, operating DUs only with the limited GPU resources they

really necessitate opens the way to significant gains in terms

of ML performance for co-located edge and O-RAN services.

B. Characterizing DU processing latency in GPU HAs

The multiplexing space identified above is not homoge-

neous, as different contexts entail very diverse latency curves

for DU processing depending on the dedicated SMs. We shed

light on the GPU resource requirements of DU workloads by

empirically measure the latency performance when processing

a single 100-MHz TB with a wide range of combinations of

MCS and SNR on the setup described in §III-A, while also

sweeping through a number of SM allocations for that task.

Fig. 5 presents excerpts of the results, for three GPU

configurations where 15%, 50% and 100% of the available

SMs are reserved to DU processing. In each plot, the FEC

processing latency is reported as a function of the SNR and

the MCS of the demand. A higher MCS typically results in

increased latency because it encodes more bits into the TB,

thereby requiring a longer decoding time. For a given MCS,

a lower SNR can further inflate latency, as the decoder may

necessitate more iterations over the data to decode it. More-

over, reducing the allocation of SM computational resources

naturally increases the latency too.

However, most importantly, we observe that the relationship

between latency, MCS, SNR, and the amount of SM resources

forms complex patterns. These intricate patterns challenge the

formulation of tractable mathematical models. Such a complex

FEC latency behavior is further compounded by different
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Fig. 5. Latency performance to process a single 100-MHz TB on an
NVIDIA A100 GPU with different combinations of MCS, SNR, and
allocation of GPU SM resources.
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Fig. 6. A 24-hour cell load snapshot of the aggregated load of 4 cells
from a large operator in a major European city.

allocations of radio resources (which impact the size of the

TB through the number of allocated RBs) and the number of

concurrent users in the system (which affects the number of

TBs that the GPU must process simultaneously). Due to space

constraints, these additional variables are not illustrated here.

C. Dynamic DU workloads

In addition to highly heterogeneous performance across dif-

ferent contexts, DU loads are also affected by the strong tem-

poral variance of demands generated by mobile subscribers. As

an example, Fig. 6 depicts 24-hour snapshots of the real-world

load dynamics recorded at five-minute granularity in a few 4G

and 5G RAN cells with Falcon [22] and 5GSniffer [23]. The

plots also zoom in into a 4-hour window. Clearly, the time

series show large fluctuations, which translate in very different

burdens on the DU, and hence on its required amount of GPU

resources. Yet, these patterns are predictable as demonstrated

in [21], so we can anticipate the DU resource requirements

with appropriate data-driven models.

Ultimately, our results unveil the need to adapt the allocation

of GPU resources to changing vRAN conditions in terms of

both traffic demands and workload contexts. This calls for dy-

namic control solutions that can amortize the cost of expensive

GPU-based HAs by rescuing computing power for concurrent

ML workloads without compromising DU reliability.

D. Overheads in GPU resource reconfiguration

To meet the above-mentioned goal, one last aspect of GPU-

accelerated DU operation that we need to characterize are the

overheads incurred by GPU resources re-configurations. These

are an important factor when taking decisions on updating the

share of SMs allocated to DUs and ML workloads.
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In §II, we introduced two methods for sharing GPU re-

sources: MIG and MPS. As mentioned therein, MIG provides

full resource isolation among tasks, while MPS only partitions

SMs by keeping memory and caches as shared resources. The

two approaches induce very different latency overheads when

re-configuring a GPU slice, as reported in Fig. 7. The plot

summarizes 200 random re-configurations on our NVIDIA

A100 GPU with both MIG (red) and MPS (blue): each re-

configuration changing the partitioning of SMs across tasks,

which implies tearing down the existing SM configuration

and creating a new one. It is worth noting that during the

re-configuration process the GPU cannot run any task.

As shown in the figure, the median latency is fairly constant

for each strategy. More precisely, re-configuring a MIG parti-

tion in the target GPU takes 6.9 seconds, against the 0.266

seconds of re-allocating SM resources using MPS. During

such re-configuration intervals, we let the higher-priority DU

fall back to software processing, e.g., using available CPU

cores in the O-Cloud, which can process the workload at a

cost in energy consumption [24]. We provide more details in

§VI. As continued and substantial performance drops during

several seconds are hardly acceptable in production-grade

systems, MIG does not seem a viable option for GPU-based

HA sharing. On the other hand, the delays introduced by

MPS appear bearable for non-real time O-RAN operations that

occur at the order of seconds.

We recall that MPS does not provide memory or cache

isolation, which could potentially cause resource contention

and lower raw performance than MIG. Yet, unlike MIG that is

constrained to a small set of possible partition configurations,

MPS provides full flexibility when allocating SM resources (as

also captured by Fig. 4), which can compensate for the shared

memory with a better adaptation to DU workload dynamics.

In conclusion, based on the experimental analysis above, we

advocate for a dynamic MPS-based GPU resource allocation

method, and will adopt this strategy in the rest of the paper.

IV. PROBLEM FORMULATION

We consider an O-Cloud platform comprising one GPU

that runs two services at the same time: 5G PHY operations

offloaded from a virtualized DU, and a deep learning model

offloaded from a general-purpose ML service. We use MPS

(introduced in §II-B) to allocate GPU resources (SMs) to each

of the services. At each TTI, a set of TBs arrives at the DU

to be decoded. Each TB is characterized by its SNR, MCS,

and TB size (number of bits). Note that the computational

capacity needed by the DU to decode these TBs depends on

the number of received TBs that changes at every TTI and the

SNR, MCS, and TB size of each TB (see §III).

Smaller SM allocations for the DU may imply that some

TBs are not decoded in time and therefore are discarded.

However, once the DU has enough computational resources

to decode all the TBs in time, there is no further benefit in

assigning more SM resources to this end, which describes

an inelastic service. Conversely, co-located AI/ML services,

which are competing for the same GPU resources, can improve

throughput performance if more SM resources were allocated

(see again §III), which describes an elastic service.

Following the standard O-RAN architecture, we operate in

the Service and Management Orchestrator (SMO) with a time

granularity δ = 1 second or higher, where t = 0, 1, 2 . . .
denotes the decision periods. The normalized SM allocation

for the DU at t is denoted by at ∈ A ⊆ [0, 1], where A is a

discrete set with all possible allocations; and the set of TBs

received by the DU during period t is denoted by Tt.
Now, we let ϕt = Φ(Tt−1, D) be a 2-dimensional histogram

of the DU contexts (TBs per TTI: SNR and size) that charac-

terize the observed traffic, where D is the number of histogram

bins in each dimension. Consequently, we define the system

state as st = (ϕt, at−1) ∈ S , where S is the state space.

At each decision period t, an SM allocation at is selected.

Our goal is to minimize the allocation of SM resources to

DU workloads to maximize the performance of the co-located

ML service. If configuration at differs from the one selected in

the previous decision period, i.e., if at ̸= at−1, the GPU needs

to be re-configured, which, as mentioned above, causes ML

service disruption during a re-configuration period of duration

r. We model this re-configuration cost as:

∆(st, at) =

{

r
δ
· (1− at) if at ̸= at−1

0 otherwise.
(1)

where δ corresponds to the duration of a decision period t.
Note that the cost acts as a proxy for the throughput of the

AI/ML application, following an inverse correlation with it.

Therefore, we model the overall system cost at period t as

C(st, at) = at +∆(st, at), (2)

We now denote the ratio of TBs timely processed before

their latency target at t by ζ(st, at), also referred to as

reliability. Then, we formulate our problem as a finite horizon

Markov Decision Process (MDP) with constraints.

min
a0,...,aT−1

J(s0; a0, . . . , aT−1) (3)

s.t. γτ [ζt(st, at)] > 1− ϵ, for t = 1, . . . T

where

J(s0; a0,. . . ,aT−1) :=E

{

CT (sT , aT ) +

T−1
∑

t=0

Ct(st, at)

}

(4)

is the cost of a sequence of actions {a0, . . . , aT−1} and an

initial state s0. In addition, CT (sT , aT ) is the termination cost,

aT is the termination action, γτ [Z] provides the τ -quantile of



a distribution Z, and ϵ sets the reliability target. Note that

the reliability of the system denoted by ζ(·) is random due

to the intrinsic stochasticity of the radio access network. By

adjusting the value of τ , we can balance the trade-off between

constraint satisfaction probability and cost. In this way, with

this formulation, we capture all the important aspects of our

problem: (i) the cost of the different SM allocations for the

AI/ML application; (ii) the critical reliability constraint of the

DU; and (iii) the impact of the re-configurations on the long-

term performance of the system.

To obtain the minimum cost and consequently the optimal

sequence of actions, we rely on the principle of optimality

[25], which states that the optimal sequence of actions for a

truncated tail subproblem (e.g., from t′ to T ) is also optimal

for the full problem. Therefore, the optimal cost J∗(st) for a

given state st can be obtained recursively as follows:

J∗
t (st) :=min

a∈A
E
{

Ct(st, a) + J∗
t+1(st+1)

}

(5)

s.t. γτ [ζt(st, at)] > 1− ϵ for t = 1, . . . T.

where J∗
T (sT ) := CT (sT , aT ).

Note that the optimal cost cannot be computed in practice as

defined above because future traffic conditions ϕt′ for t′ > t
are unknown in advance. In the next section, we present a

control strategy to overcome this limitation.

V. YINYANGRAN

We present two algorithms in this section. YinYangRAN-

Full, an approximate solution to (3) rooted in certainty equiv-

alent control principle (§V-A); and YinYangRAN-Lite, a sim-

plified version of YinYangRAN-Full suitable when r/δ → 0
(§V-B). Finally, in §V-C, we present a solution to ensure that

the lowest quantiles of the DU reliability performance are

above the required target.

A. YinYangRAN-Full (YYR-Full)

To solve the problem defined in eq. (3), we propose an ap-

proximate control strategy, named YinYangRAN-Full (YYR-

Full), that relies on certainty equivalent control (CEC) [26].

Our solution comprises two phases. In an offline phase,

we replace the uncertain metrics (in our case, future traffic

demands) with their estimated values. Thus, based on the CEC

principle, the problem in eq. (3) becomes deterministic and we

can compute an estimation of the optimal cost. Second, during

online operation, YinYangRAN-Full sequentially selects an

action based on system observations m and the estimation of

the optimal cost computed in the offline phase.

1) Offline phase: We define ϕ̃ = {ϕ̃0 . . . ϕ̃T−1} as the

sequence of expected traffic demands. Using ϕ̃ in eq. (5), we

compute an estimation of the optimal cost as follows:

J̃t(s̃t) := min
at∈A

E

{

C(s̃t, at) + J̃t+1(s̃t+1)
}

(6)

s.t. ζ̃t(s̃t, at, τ) > 1− ϵ for t = 1, . . . T

where J̃T (s̃T ) := ∆(s̃T , aT ), s̃t := (ϕ̃t, at−1), and

ζ̃t(s̃t, at, τ) is an approximation of the τ quantile of the

reliability for the pair (s̃t, at). The latter can be obtained,

for instance, by training a neural network with a quantile

loss as we detail in §V-C. The termination cost is defined

as the re-configuration cost of a predefined termination action

aT . To accomplish this phase, we use eq. (6) to compute the

estimation of the optimal cost for all possible values of s̃, i.e.,

(T + 1)× |A| values in total, which are stored in memory.

More formally, the approximation of the optimal cost de-

tailed in eq. (6) has a complexity of O(T × |A|2). Note that,

even when we consider a large T , this phase is computed

offline and hence its execution time is not a limitation.

Nevertheless, if the offline execution time is a limitation for

large T values, we propose in §V-B a lighter version, which

ignores the re-configuration costs and is suitable when the re-

configuration costs are negligible, i.e., when r/δ → 0.
2) Online phase: During online operation, YYR-Full se-

lects each at solving a one-step look-ahead problem:

min
at∈A

C(st, at) + J̃t+1(ϕ̃t+1, at) (7)

s.t. ζ̂(st, at, τ) ≥ 1− ϵ.

Note that the online phase of YYR-Full uses st, which in-

cludes actual DU traffic load observations ϕt. Thus, the current

cost is computed accurately according to system observations,

and using J̃t+1(·) we estimate the impact of current actions

in the future cost. These two terms provide a computationally

efficient farsighted decision-making mechanism.

We make two remarks. First, the CEC strategy obtains

optimal results when the future states match their estimations.

However, when the observed traffic conditions differ from

their expectation, this strategy still provides good empirical

results as we show in the next section. Second, eq. (7) can be

solved with low complexity as it only requires searching over

the action space and therefore its complexity is O(|A|). This

makes YYR-Full suitable for online operation in real systems.

B. YinYangRAN-Lite (YYR-Lite)

Due to the re-configuration cost of our problem, it is very

important for our control strategy to be farsighted. An over-

adaption to the changes in the traffic load can lead to a large

number of re-configurations, whose cost should be taken into

account in the design of an efficient control scheme.

However, in some cases, the re-configuration cost can be

considered negligible. For example, if the duration of each

decision period δ is in the order of minutes; or when the re-

configuration time of the GPU r is very small. In these cases,

the impact of the future cost on the decision-making tends to

zero and we can rely on a simpler version of YYR-Full.

In such a case, at every decision period t, the objective is

to select greedily the minimum SM allocation for the DU at
that satisfies the reliability constraint, that is,

min
at∈A

at (8)

s.t. ζ̂(st, at, τ) ≥ 1− ϵ.

Note that with this approach, which we name YinYangRAN-

Lite (YYR-Lite), the offline phase used by YYR-Full can be

omitted as we rely on a greedy version of the online phase.



C. Reliability satisfaction scheme

A critical aspect of our problem is reliability satisfaction

because the computing workloads of the DU are inelastic.

The challenges of reliability satisfaction are deeply analyzed

in §III. In addition, as we operate in time scales of one second

or longer, the observed values of reliability for a given traffic

load and MPS configuration are stochastic, due to the intrinsic

randomness of the RAN (due to, e.g., mobility of the users,

app-dependent traffic generation, etc.). Taking this into con-

sideration, the goal is to minimize the probability of missing

DU latency targets by learning the quantiles of the reliability

function. Thus, we can formulate an SM allocation problem

that ensures that the lowest quantiles of the distribution are

above the required reliability target.

To this end, we define FZ(z) as the cumulative distribution

function (CDF) of Z. For a given quantile τ ∈ [0, 1], the

value of the quantile function is defined as qτ= F−1

Z (τ). The

quantile regression loss is an asymmetric convex function that

penalizes overestimation error with weight τ and underestima-

tion error with weight 1− τ :

Lτ (q̂τ ) := Ez∼Z [ρτ (z − q̂τ )] , where (9)

ρτ (u) := u · (τ − Γ{u<0}) ∀u ∈ R (10)

where q̂τ is the quantile function estimation, and Γ{x} takes

value 1 when the condition x is met and 0 otherwise. We let the

reliability estimator ζ̂(·) have N outputs, which approximates

the set {qτ1 , . . . , qτN }. Thus, we train ζ̂(·) using stochastic

gradient descent to minimize the following joint objective:

N
∑

i=1

Lτi(q̂τi). (11)

It is worth mentioning that the quantile regression loss

presents a discontinuity at zero, which limits its practical

performance when using function approximators such as NNs.

To overcome this limitation, we consider the quantile Huber

loss [27]. This loss function has an asymmetric squared shape

in an interval [−κ, κ], and reverts to the standard quantile loss

outside of this interval:

Lκ(u) :=

{

1

2
u2 if |u| ≤ κ

κ(|u| − 1

2
κ) otherwise.

(12)

Thus, the asymmetric variation of the Huber loss is

ρκτ (u) := |τ − δ{u<0}|
Lκ(u)

κ
. (13)

Finally, the quantile Huber loss can be derived by introducing

ρκτ (u) in eq (9). Note that when κ tends to zero the quantile

Huber loss reverts to the quantile regression loss.

VI. EXPERIMENTAL EVALUATION

System. We implemented an O-RAN system as depicted in

Fig. 8. The O-Cloud server is an HP server with an Intel Xeon

Gold 6240R CPU at 2.4GHz with 16 cores and an NVIDIA

A100 GPU. O-RAN specifies an Acceleration Abstraction
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Fig. 8. System implementation.

Layer (AAL) in between HAs and network functions such

as DUs [28]. The AAL abstracts the O-Cloud resources as

Logical Processing Units (LPU). We implemented O-RAN’s

AAL using Intel DPDK’s Wireless Baseband Device Library

(BBDev)1. Like DPDK’s solutions for Ethernet, BBDev pro-

vides an abstraction for DU tasks through devices that can

be used as O-RAN LPUs [29]. We implemented two LPUs

to execute (i) the GPU DU processor, and (ii) instances of

Intel FlexRAN [30] on a CPU pool for fallback DU operation,

which is triggered by an LPU broker on top of the LPUs.

YinYangRAN controls the O-Cloud by enforcing actions

at using O-RAN O2 interface, and receives DU load data

ϕt through O1 interface, as shown in the figure. According

to O-RAN, the O-Cloud infrastructure is locally managed by

an Infrastructure Management Serivce (IMS). To this end, we

implement an interface between the GPU driver and the IMS,

to control the allocation of SM resources, and another interface

between the LPU Broker and the IMS, to fall back to DU

software processing during the GPU re-configuration period.

RUs and UEs are simulated following real-world wireless

load patterns like those presented in §III-C. To this end, we

encode and modulate the corresponding user data according

to the 5G specification and add noise to match the observed

patterns. We also let the same ML model we introduced in §III

to concurrently use the spare GPU resources of the O-Cloud.

YinYangRAN. We implemented YinYangRAN using

Python and PyTorch. For the reliability estimator ζ̂(·), we use a

neural network with two convolutional layers of 8 and 4 filters

of dimension 3x3, respectively, and two fully connected layers

of 256 units each. The convolutional layers receive as input the

traffic characterization ϕ and the fully connected layers receive

the output of the convolutional layers plus the selected action

at. We set the size of the traffic characterization histogram to

D = 5 and we learn N = 10 quantiles. In our evaluations,

we consider the lowest quantile τ1 = 0.005 to be higher than

the reliability target, i.e., q̂τ1 > 1 − ϵ. We train ζ̂(·) offline

considering diverse traffic loads and SNR patterns obtained

from real-world traces introduced in §III-C.

1https://doc.dpdk.org/guides/prog guide/bbdev.html
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Fig. 9. DU reliability (left) and ML throughput (right) vs reliability
target ϵ. Comparison between YYR-Full, YYR-Lite, and a baseline.

We compare both of our solutions, YYR-Full and YYR-

Lite, with a baseline approach that deploys both DU and

ML workloads on the same GPU using conventional software

concurrency methods, i.e., with no SM isolation between them.

Unless otherwise stated, we set ϵ = 0.1, the decision period

duration δ = 1 s, we conservatively set r = 0.5 s, and present

mean performance values with standard errors as error bars.

A. Impact of the reliability target

We first assess the system performance for different reliabil-

ity targets. To this end, Fig. 9 shows the relative DU reliability

(left) and the ML throughput (right) for different targets ϵ as

shown in the x-axis. We observe both YYR-Full and YYR-

Lite adapt to ϵ, trading off ML throughput as ϵ gets smaller

(more stringent target). In contrast, a DU-agnostic baseline

solution achieves poor reliability performance as it relies on

the default GPU scheduler, which aims to be fair between

workloads, which penalizes the inelastic DU demands.

Note that YYR-Full achieves higher ML throughput than

YYR-Lite. This is because, though the re-configuration over-

head is substantial (r/δ = 0.5), YYR-Full takes into account

the joint impact of re-configuring on the instantaneous cost

and on the future cost (farsighted decision-making). In con-

trast, YYR-Lite selects the best action every decision period

ignoring the impact of the re-configuration overhead in both

the short and long terms (myopic decision-making).

We can confirm this in Fig. 10, which shows the temporal

evolution of the DU SM allocations made by our solutions

during 20 decision periods of the above experiments. Both

YYR-Full and YYR-Lite adapt the allocation of SM resources

to the time-varying load, which explains the ML throughput

variance shown in Fig. 9 (right), to guarantee meeting the

reliability target. However, the myopic nature of YYR-Lite

enforces a substantially higher number of re-configurations

than YYR-Full, which explains YYR-Lite’s throughput loss.

B. Impact of the traffic estimation error

Although the farsighted decision-making of YYR-Full

shows better performance than YYR-Lite, it relies on traffic

predictions ϕ̃ that can deviate from the actual traffic observed

in the network. To evaluate this, Fig. 11 depicts the ratio of the

cost of YYR-Full over YYR-Lite when we artificially induce

different traffic estimation errors. To this end, we add a zero-

mean Gaussian error with variance σ2 to the output of our
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Fig. 10. Temporal evolution of the DU SM allocations made by YYR-
Full and YYR-Lite for a subtrace of 20 decision periods.

0.80

0.85

0.90

0.95

0 25 50 75 100

Traffic estimation error s (%)

C
o

s
t 
ra

ti
o

Fig. 11. Ratio of the cost (eq. (2)) of YYR-Full over YYR-Lite as a
function of the prediction error. The shaded area cover the 10th and
90th quantiles of the measurements.

YYR-Lite YYR-Full

1

60

0 20 40

Cost (%)

D
e

c
is

io
n

p
e

ri
o

d
 (

s
e

c
)

1

60

0 20 40 60 80

Ratio of Re-configs (%)

D
e

c
is

io
n

p
e

ri
o

d
 (

s
e

c
)

Fig. 12. Impact of the duration of each decision period on cost (left)
and rate of re-configurations (right) for YYR-Full and YYR-Lite.

estimator. The figure shows values of σ relative to the mean

load observed. When the traffic estimations are very accurate

(σ → 0), we observe around 20% cost savings when using

YYR-Full with respect to using YYR-Lite. Evidently, these

savings reduce as σ increases. However, even when σ is equal

to the mean load estimated (σ = 100%), YYR-Full achieves

around 10% cost savings in average over YYR-Lite.

C. Decision period

In the experiments shown before, YYR-Full shows better

performance than YYR-Lite because the latter is a myopic

approach that does not consider the cost of frequently re-

configuring the GPU. As we discussed in §V, this cost

depends on the ratio between re-configuration time r and the

duration of each decision period δ. To assess this, we show in

Fig. 12 the cost and the ratio of re-configuration (percentage

of time periods that the algorithms re-configures the GPU)

for two decision lengths δ: one second (as in the previous

experiments), which sets r/δ = 1/2 and one minute, which

sets r/δ = 1/120. As expected, when we δ = 1 min, YYR-

Lite provides the same performance as YYR-Full because

the impact of greedily re-configuring the GPU every decision

period is negligible in this case.



D. GPU Capacity

Finally, we evaluate the impact of the GPU capacity (in

terms of the number of available SMs) on the system perfor-

mance for all the solutions. Fig. 13 depicts the DU reliability

(left) and the ML throughput (right) as a function of the GPU’s

available number of SMs. Remarkably, YYR-Full and YYR-

Lite attains the reliability target (ϵ = 0.01) in all cases at

the cost of ML throughput losses. The baseline solution also

sacrifices ML throughput when the GPU capacity shrinks, but

it sacrifices DU reliability as well without any prioritization.

VII. RELATED WORK

A. O-RAN Control and Virtualization

The advent of O-RAN has motivated substantial research

on radio control and management. OrchestRAN [31], for

instance, is a notable solution capable of orchestrating data-

driven models in the O-RAN context, offering intent-based

control operations for mobile operators. This orchestration tool

has been successfully validated through ColO-RAN [32], a

comprehensive testbed equipped with software-defined radios-

in-the-loop. The authors of [14] present an O-RAN control

algorithm that employs Bayesian learning theory to derive

energy-efficient radio policies. It was subsequently extended

in [33] to account for co-located edge services. However,

they assume dedicated and statically pre-assigned computing

resources for both the base station and edge services.

The concept of shared computing resources is not new.

For example, Nuberu [16] is a DU design that ensures re-

liability on virtualized platforms, balancing reliability with

network delay. Nevertheless, it lacks efficient mechanisms

for sharing computing resources within the platform. Some

research has investigated CPU resource sharing in the context

of vRANs. vrAIn [15] utilizes a deep deterministic policy

gradient (DDPG) to allocate CPU resources across multiple

base stations; and Concordia [8] employs a quantile decision

tree for CPU resource sharing between a base station and

third-party applications. However, these works do not address

sharing of hardware accelerators, which have become the

industry-standard approach for processing PHY workloads.

Other related studies include GPF [34], an ultra-fast (∼
100µs) GPU-accelerated radio resource scheduler, and [35],

an approach for sharing RU front-ends.

B. GPU Sharing

Recently, NVIDIA’s MIG technology has been the focus

of extensive attention due to its capability to create rigid

partitions of GPU resources (see §II). An exhaustive charac-

terization, in terms of performance and energy consumption

with various state-of-the-art deep learning models, is provided

in [36]. However, as evidenced in §III, MIG struggles with

the dynamic multiplexing of GPU resources due to high re-

configuration overheads.

In response, MISO [37] uses MPS to predict the most

effective MIG partitions for diverse jobs, thereby mitigating

the challenge of exploring different partitions with MIG alone.

Yet, MISO fails to address the issue of re-configuring slices
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Fig. 13. Impact of the GPU computational capacity on DU reliability
(left) and ML throughput (right).

for dynamically changing workloads. Both Salus [38] and

TGS [39] offer lightweight GPU sharing. Salus enables two

primitives: quick job switching and memory sharing, fostering

fine-grained GPU sharing among applications. TGS provides

transparent GPU sharing among deep learning training work-

loads in container clouds. However, these solutions do not

adequately handle the two fundamentally disparate workloads

generated by DUs (inelastic) and by ML tasks (elastic).

NVIDIA Aerial is a promising avenue for accelerating DU

workloads using GPUs [11]. In collaboration with NVIDIA,

NTT Docomo is on track to initiate GPU-accelerated 5G trials

this year, and SoftBank has recently piloted a proof-of-concept

around sharing GPU resources between 5G DU workloads

and ML-based edge computing applications [10]. Despite this,

they do not yet propose viable brokering solutions for online

sharing of GPU resources between virtualized DUs and third-

party applications like those running ML models.

VIII. CONCLUSIONS

GPU-accelerated general-purpose computing platforms can

process the PHY-layer workload of 5G Distributed Units

concurrently with Machine Learning (ML) operations. This

approach promises to increase flexibility and cost-effectiveness

compared to conventional RAN virtualization techniques

based on ASICs or FPGAs. However, blindly sharing GPU

resources using conventional sharing methods can severely dis-

rupt the reliability of 5G processors, which generate inelastic

loads, especially when balancing these with ML tasks, which

are elastic. In response, we have developed YinYangRAN,

an innovative O-RAN-compliant solution that manages GPU-

based HAs, ensuring 5G processing reliability and maximizing

the throughput of concurrent ML services.

YinYangRAN employs an efficient approximate dynamic

programming technique for GPU resource allocation, informed

by a neural network trained on real-world measurements. Tests

with real RAN workloads show that YinYangRAN signifi-

cantly outperforms traditional GPU sharing models, achieving

over 50% higher reliability with minimal impact on ML tasks.
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tualized RAN Ecosystem,” IEEE Communications Standards Magazine,
vol. 5, no. 4, pp. 96–103, 2021.

[2] Heavy Reading, “Heavy Reading’s Accelerating Open RAN Platforms
Operator Survey,” White Paper, June 2021.

[3] RCR Wireless News, “From greenfield to brownfield: Open RAN in
2022 (With large scale carrier commitments in place, what’s next for
the Open RAN ecosystem?),” Editorial Report, October 2021.

[4] ABI Research, “Open RAN.” Market Data Report, 2020.
[5] Dell’Oro Group, “Advanced Research Reports on Open RAN.” Report,

July 2022.
[6] Silicom, “Silicom’s eASIC ACC100 FEC Accelerator,” Nov. 2022.
[7] Intel, “Enabling 5G Wireless Acceleration in FlexRAN: for the Intel®

FPGA Programmable Acceleration Card N3000,” 2020.
[8] X. Foukas and B. Radunovic, “Concordia: Teaching the 5g vran to

share compute,” in Proceedings of the 2021 ACM SIGCOMM 2021

Conference, SIGCOMM ’21, (New York, NY, USA), p. 580–596,
Association for Computing Machinery, 2021.

[9] Soma Velayutham, “NVIDIA CEO Introduces Aerial — Software to
Accelerate 5G on NVIDIA GPUs,” Oct. 2019.

[10] Keith Dyer, “AI everywhere all the time,” 2023.
[11] A. Kelkar and C. Dick, “Nvidia aerial gpu hosted ai-on-5g,” in 2021

IEEE 4th 5G World Forum (5GWF), pp. 64–69, 2021.
[12] J. Lee, S. Lee, J. Lee, S. D. Sathyanarayana, H. Lim, J. Lee, X. Zhu,

S. Ramakrishnan, D. Grunwald, K. Lee, and S. Ha, “Perceive: Deep
learning-based cellular uplink prediction using real-time scheduling
patterns,” in Proceedings of the 18th International Conference on Mobile

Systems, Applications, and Services, MobiSys ’20, (New York, NY,
USA), p. 377–390, Association for Computing Machinery, 2020.

[13] A. Banchs, M. Fiore, A. Garcia-Saavedra, and M. Gramaglia, “Network
intelligence in 6g: Challenges and opportunities,” in Proceedings of the

16th ACM Workshop on Mobility in the Evolving Internet Architecture,
pp. 7–12, 2021.

[14] J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez, and G. Iosi-
fidis, “Bayesian online learning for energy-aware resource orchestration
in virtualized rans,” in IEEE INFOCOM 2021-IEEE Conference on

Computer Communications, pp. 1–10, IEEE, 2021.
[15] J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez,

A. Banchs, and J. J. Alcaraz, “vrain: A deep learning approach tailoring
computing and radio resources in virtualized rans,” in The 25th Annual

International Conference on Mobile Computing and Networking, pp. 1–
16, 2019.

[16] G. Garcia-Aviles, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez,
P. Serrano, and A. Banchs, “Nuberu: Reliable ran virtualization in shared
platforms,” in Proceedings of the 27th Annual International Conference

on Mobile Computing and Networking, MobiCom ’21, (New York, NY,
USA), p. 749–761, Association for Computing Machinery, 2021.

[17] O-RAN Alliance, “Cloud Architecture and Deployment Scenarios for
O-RAN Virtualized RAN (O-RAN.WG6.CADS-v04.00) .” Technical
Report, Oct. 2022.

[18] Y. Blankenship, D. Hui, and M. Andersson, Channel Coding in NR,
pp. 303–332. Cham: Springer International Publishing, 2021.

[19] 3rd Generation Partnership Project (3GPP), “3GPP TR 38.913; Technical
Specification Group Radio Access Network; Study on Scenarios and
Requirements for Next Generation Access Technologies; (Release 17).”
Technical Report, 2022.

[20] E. A. Papatheofanous, D. Reisis, and K. Nikitopoulos, “Ldpc hardware
acceleration in 5g open radio access network platforms,” IEEE Access,
vol. 9, pp. 152960–152971, 2021.

[21] L. Lo Schiavo, M. Fiore, M. Gramaglia, A. Banchs, and X. Costa-Perez,
“Forecasting for network management with joint statistical modelling

and machine learning,” in 2022 IEEE 23rd International Symposium

on a World of Wireless, Mobile and Multimedia Networks (WoWMoM),
pp. 60–69, 2022.

[22] R. Falkenberg and C. Wietfeld, “FALCON: An accurate real-time
monitor for client-based mobile network data analytics,” in 2019 IEEE

Global Communications Conference (GLOBECOM), (Waikoloa, Hawaii,
USA), IEEE, Dec. 2019.

[23] N. Ludant, P. Robyns, and G. Noubir, “From 5g sniffing to harvesting
leakages of privacy-preserving messengers,” in 2023 2023 IEEE Sym-

posium on Security and Privacy (SP) (SP), (Los Alamitos, CA, USA),
pp. 3146–3161, IEEE Computer Society, may 2023.

[24] J. Ding, R. Doost-Mohammady, A. Kalia, and L. Zhong, “Agora: Real-
time massive mimo baseband processing in software,” in Proceedings of

the 16th international conference on emerging networking experiments

and technologies, pp. 232–244, 2020.
[25] D. Bertsekas, A Course in Reinforcement Learning. Athena Scientific,

2023.
[26] D. Bertsekas, Dynamic programming and optimal control: Volume I,

vol. 4. Athena scientific, 2012.
[27] P. J. Huber, “Robust estimation of a location parameter,” Breakthroughs

in statistics: Methodology and distribution, pp. 492–518, 1992.
[28] O-RAN Alliance, “O-RAN Acceleration Abstraction Layer – General

Aspects and Principles (O-RAN.WG6.AAL-GAnP-v04.00) .” Technical
Specification, Oct. 2022.

[29] O-RAN Alliance, “O-DU Low Project Introduction,” 2022.
[30] Intel, “FlexRAN LTE and 5G NR FEC Software Development Kit

Modules,” May 2019.
[31] S. D’Oro, L. Bonati, M. Polese, and T. Melodia, “Orchestran: Network

automation through orchestrated intelligence in the open ran,” in IEEE

INFOCOM 2022 - IEEE Conference on Computer Communications,
pp. 270–279, 2022.

[32] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Colo-
ran: Developing machine learning-based xapps for open ran closed-loop
control on programmable experimental platforms,” IEEE Transactions

on Mobile Computing, pp. 1–14, 2022.
[33] J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Pérez, and G. Iosi-
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