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Abstract—Radio Access Network (RAN) virtualization, key
for new-generation mobile networks, requires Hardware Accel-
erators (HAs) that swiftly process wireless signals from Base
Stations (BSs) to meet stringent reliability targets. However, HAs
are expensive and energy-hungry, which increases costs and has
serious environmental implications. To address this problem, we
gather data from our experimental platform and compare the
performance and energy consumption of a HA (NVIDIA GPU
V100) vs. a CPU (Intel Xeon Gold 6240R, 16 cores) for energy-
friendly software processing. Based on the insights obtained from
this data, we devise a strategy to offload workloads to HAs
opportunistically to save energy while preserving reliability. This
offloading strategy, however, needs to be configured in near-
real-time for every BS sharing common computational resources.
This renders a challenging multi-agent collaborative problem in
which the number of involved agents (BSs) can be arbitrarily
large and can change over time. Thus, we propose an efficient
multi-agent contextual bandit algorithm called ECORAN1, which
applies concepts from mean field theory to be fully scalable. Using
a real platform and traces from a production mobile network,
we show that ECORAN can provide up to 40% energy savings
with respect to the approach used today by the industry.

I. INTRODUCTION

Driven by the O-RAN Alliance [1], RAN virtualization

(vRAN) has gained the attention of the industry to shift from

hardwired BSs to inexpensive general-purpose computing plat-

forms [2], [3]. Despite the rapid success of dense vRANs,

the industry today is concerned about the energy consumption

of such systems. Verizon and Vodafone have set targets to

reach net zero energy emissions by 2040 [4]. China Mobile

committed to reduce energy consumption and carbon emission

intensity by no less than 20% by the end of 2025 [5]. Indeed,

even before the latest surge in energy prices, the energy-related

expenditures in mobile networks are one of the predominant

factors of their costs [6]. vRAN solutions on the market today

are not well-suited to achieving these targets.

In contrast to more conventional network functions such

as network switches or firewalls, RAN functions have strin-

gent latency constraints to process wireless signals. Violat-

ing processing deadlines, which span between 1 and 3 ms

depending on the scenario [7], may result in users losing

wireless synchronization with the BS, which leads to dropping

connectivity [8]. Hence, an industry-grade BS must respect

such deadlines with 99.999% probability to provide relia-

bility [7]. However, to process wireless signals, a BS has

1Our solution is publicly available at https://github.com/jaayala/ECORAN
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Fig. 1: Latency and energy consumption to process 5G signals with
a CPU (software) and a GPU (hardware accelerator). Experimental
results obtained using a platform introduced in §VII. Bars show
median values. Error bars show 10th and 90th percentiles.

to execute compute-intensive operations such as decoding

forward error correction (FEC) codes [8], which prevents

conventional virtualization platforms based on general-purpose

CPUs from attaining the required reliability.

Consequently, today’s industry relies on hardware accel-

erators (HAs) to offload the most intensive FEC processing

operations. HAs are GPUs, FPGAs, or ASICs that are spe-

cialized in specific operations (FEC, in the case of vRANs)

and help attain industry-grade reliability. Fig. 1 (top) shows

that a HA (a GPU in this case) can process large chunks of

data (called transport blocks) an order of magnitude faster

than processing this data via software. Unfortunately, HAs are

expensive (between 5 and 50× more expensive than a CPU

core2), and consume a lot of energy (between 30 and 80% of

the overall consumption in a commodity server).

A natural approach to reduce the energy toll of these

systems is to use HAs opportunistically and rely on software

as much as possible. Fig. 1 (bottom) shows that small and

medium-sized transport blocks (TBs) can be decoded in soft-

ware within common deadlines (1-3 ms) with an order of

magnitude lower energy consumption than a HA. However,

to design a policy that determines when to use a HA, three

challenges emerge:

1) Complexity: Balancing the workload between software

(CPUs) and hardware (HAs) while preserving reliability is

particularly challenging. This is because the time required

to process signals is hard to predict since it depends, not

only on the size of the transport block as depicted in Fig. 1,

2An NVIDIA GPU V100 required to accelerate FEC operations costs
around $10K, in contrast to $150 of an Intel Xeon CPU core.



but also on many other features such as, e.g., signal-to-

noise ratio (SNR). The error bars in Fig. 1 hide away the

impact of these additional features, which must be taken

into account to attain industry-grade reliability.

2) Speed: BSs must adapt their configuration to the changing

environment dynamics, but wireless conditions change very

fast in real mobile networks [7] due to the high mobility of

users and reflectors in the environment. Therefore, a useful

policy must operate at the same time granularity.

3) Scalability: Every transmission time interval (TTI≤1 ms), a

large number of signals from multiple users and cells have

to be processed by the vRAN, e.g., NTT Docomo famously

centralized up to 48 cells in a single platform [9], and each

cell may handle dozens of users concurrently. Hence, a

practical policy must reliably operate at scale.
To address these challenges, we propose an Energy-aware

learning strategy for Computing Offloading in vRANs (ECO-

RAN). ECORAN consists in (i) a simple and fast threshold-

based offloading rule (ECORAN-R) to operate in real-time

(< 1 ms), and (ii) a multi-agent contextual bandit algorithm

(ECORAN-P) to optimally configure the offloading rule for

each BS in near-real-time (∼100 ms).
We hence face a problem where multiple BSs (learning

agents) need to find the optimal configuration of their of-

floading strategy as a function of their context (traffic load).

However, the offloading strategy of each BS affects all the

others as they all share the same computing resources, which

renders a multi-agent collaborative problem. As mentioned

before, the number of BSs involved can be arbitrarily large,

which increases the complexity of the solution.
To address this problem, we propose a novel multi-agent

learning algorithm that uses concepts from mean field theory

to make it fully scalable. Importantly, we build ECORAN to

be standard-compliant such that our solution can be smoothly

transferred to the industry. To this end, each agent is hosted by

an O-RAN xApp in a near-real-time RAN intelligent controller

(Near-RT RIC), as defined by O-RAN [1].
To evaluate our solution, we have integrated ECORAN in a

real O-RAN system in a lab environment and experimentally

assessed its performance using traces collected from a real

operational RAN. We verified that the execution time of our

solution meets the time constraints of the platform with a

negligible energy footprint. We also evaluated its convergence

with up to 60 learning agents, which is aligned with today’s

deployments, showing a fast convergence rate independent

of the number of agents. We also compared ECORAN with

other benchmarks in scenarios with a dynamic number of

BSs, revealing up to 41% energy savings with respect to

using dedicated HAs, which is the industry standard today.

To summarize, the main contributions of this work are:

• We built a fully-fledged experimental platform and per-

formed an analysis of the performance and energy con-

sumption of a real vRAN system.

• Based on the gathered data, we devised the structure of a

strategy to improve the system’s efficiency substantially

based on opportunistic offloading.

• We formulated the problem as a multi-agent contextual

bandit and proposed an efficient learning algorithm based

on concepts from mean field theory to make it scalable.

• We evaluated our approach in our experimental platform

using traces from a real operational radio access network.

II. RELATED WORK

A. Energy Efficiency in Mobile Networks

Energy efficiency in mobile networks is extensively re-

searched, with the primary focus on the energy consumed

by BSs for amplifying wireless signals (a.k.a. transmission

power) [10], [11], [12]. Numerous studies and literature ad-

dress this issue, delving into analytical models and deployment

planning tools derived from these models [10], [11], [12].

The current trend in network densification involves de-

ploying a higher number of small base stations with lower

transmission power and higher data rates [13]. Due to network

virtualization, the computing capacity needed to process high-

bitrate signals is now a significant factor in the Radio Access

Network’s (RAN) energy consumption [14], [15]. While a

few studies focus on virtualized RANs, such as a sequential

decision-making algorithm for CPU resource allocation in

the RAN [16] and a Bayesian online learning algorithm to

optimize energy consumption in virtualized RANs [15], [17],

none of these consider hardware acceleration, crucial for

industry-grade systems [18], [19].

The use of HAs brings new challenges as these high-

performing devices are energy-hungry and costly. Hence, we

address this unexplored challenge and propose a novel strategy

to share HAs in order to minimize energy consumption while

meeting the performance targets. To the best of our knowledge,

this is the first work that addresses this problem.

B. Multi-Agent Learning for Mobile Networks

Previous Multi-Agent Reinforcement Learning (MARL)

methods often handle only a small number of agents due

to the exponential increase in complexity with the number

of agents, known as the curse of dimensionality [20]. A few

works tackle the scalability issue by using concepts from Mean

Field Theory [21], [22]. In these studies, interactions within

the agent population are approximated by those between a

single agent and the population’s average effect. While these

techniques were applied in fields like the control of Unmanned

Aerial Vehicles (UAVs) [23] and the management of ride-

sharing platforms [24], [22], they were never applied to mobile

networks to the best of our knowledge.

In mobile networking, Single-agent Reinforcement Learn-

ing (RL) finds extensive use in spectrum management [25],

network diagnostics [26], software-defined networking [27],

among others. In mobile network problems, the Markov Deci-

sion Process (MDP) is often particularized with a contextual

bandit due to several reasons. First, these problems typically

have an infinite horizon, with the goal of optimizing long-term

performance, leading to a zero discount factor. Second, state

transitions are often independent of the selected action. Finally,

the reward observation is usually not delayed. Consequently,



numerous works express mobile network challenges through

contextual bandits [28], [29], [16], [15], [17], [30].

In this work, we deal with an arbitrarily large number of

agents solving a contextual bandit collaboratively. To the best

of our knowledge, such a setting has not yet been considered in

the literature on mobile networks. To address it, we introduce a

novel algorithm that combines a multi-agent contextual bandit

approach with ideas from mean field theory.

III. BACKGROUND

In 5G systems, Base Stations (BSs) exchange modulated

radio signals with User Equipment (UE) to wirelessly transfer

data, following protocols outlined by the New Radio (NR)

interface. During each Transmission Time Interval (TTI), a

variable amount of data bits is packaged into a transport block

(TB) for each active UE. The TTI duration ranges from 125 µs

to 1 ms, depending on the BS configuration. The TB size (in

bits) depends on factors like the BS’s scheduler, modulation

and coding scheme (MCS), signal-to-noise ratio (SNR), etc.

Fig. 2 depicts a BS receiving data from three mobile users.

At the transmitter, each transport block (TB) undergoes

operations like modulation or rate matching for conversion into

radio signals [7]. The reverse process at the receiver extracts

data from these signals. We specifically focus on forward

error correction (FEC) among these operations, as it is the

most compute-intensive task [8], typically offloaded to a HA

for fast execution. FEC-decoding involves an iterative belief

propagation algorithm, with the number of required iterations

(and computing operations) depending on factors like TB size,

MCS, or SNR. Refer to [31] for more details.

The novel O-RAN architecture for mobile systems defines

a computing platform known as O-Cloud to offload signal

processing workloads from virtualized BSs. An O-Cloud pro-

vides signal processors comprised of general-purpose CPUs

(software processing) and HAs such as FPGAs, GPUs, or

ASICs. Each processor queues FEC processing requests in

a first-in-first-out (FIFO) queue and, once processed, the

resulting TB data is sent back to the associated BS (see

Fig. 2). In O-RAN, BSs are controlled by a near-real-time

RAN intelligent controller (Near-RT RIC) using apps, known

as xApps, which operate in the timescale of ∼ 10 − 100 ms

(i.e., 10x or 100x longer than a TTI). In this paper, we deploy

a data-driven policy in a Near-RT RIC to control the offloading

strategy of BSs deployed over a prototype O-Cloud platform.

IV. PROBLEM FORMULATION

In this section, we formulate an opportunistic HA offloading

problem for 5G signal processing workload as a discrete-time

decision-making problem where each time step k corresponds

to a TTI. We let Bk denote the set of Bk BSs that share the

same O-Cloud platform at time step k. Note that the number

of active BSs may change over time. Every time step k, each

BS b ∈ Bk receives from its users a set of encoded TBs T b
k

that must be FEC-decoded by the O-Cloud.

Every TB di ∈ T b
k is characterized by its SNR (ci),

MCS (mi), and the amount of data bits it carries (li). BSs

O-Cloud

Encoded TBs

Decoded TBs

 (data)
......

CPU CPU... ...HA HA

Time
TTI

Transport Blocks (TBs)

Wireless 

transmissions

...

Users

BS

Fig. 2: System architecture. A BS with three mobile users is shown.
At the top, we depict each TTI with different TBs. The size of
each TB and the associated radio resources are decided by the BS’s
scheduling algorithm. The (encoded) TBs are sent to the BS, which
uses the O-Cloud to decode them to extract the data.

must assign each encoded TB to one type of processor: a

software processor (no offloading) or a hardware accelerator

(offloading). We let Ab
k denote the set of assignment actions

taken by the BS b ∈ Bk at time k. Each individual action

αi ∈ Ab
k is associated with a TB di ∈ T b

k . Therefore, both sets

have the same cardinality (|Ab
k| = |T b

k |), which may change

over time steps k, i.e., the number of TBs generated by a

BS can change for different TTIs. Evidently, the individual

action αi ∈ Ab
k takes binary values. When αi = 0, di ∈ T b

k

is assigned to a CPU queue (software processing), and when

αi = 1, the TB is assigned to the HA queue (for hardware

acceleration). We also let Ak denote the joint set of actions,

i.e., Ak := {Ab
k | b ∈ Bk}.

We now let γ(αi, di) and q(αi, di) denote the processing

and waiting/queuing time of di, respectively. Note that γ(·)
and q(·) not only depend on the selected resource for pro-

cessing (software or HA) as we show in Fig.1, but also on

the features associated with the TB , i.e., ci, mi, and li. We

will study this in more detail later. In line with the industry

standards, we assume that all the CPU cores are identical as

well as all the HAs in the O-Cloud.

According to the specifications, every TB in the system

older than a time deadline τ is discarded, incurring data loss. A

TB can be discarded while waiting in a queue (q(αi, di) > τ )

or after being processed (γ(αi, di) + q(αi, di) > τ ), whatever

happens first. We assume a long enough queue in the HA pool

to avoid TB losses due to queue overflow.

Note that, although γ(·) and q(·) are continue-valued, i.e.,

a processing task can finish between two consecutive time

steps, the decision intervals (every TTI) are discrete, and hence

the problem can be formulated in discrete time. However, as

processing a task can take more than one time step, the actions

taken in k may affect the system state in future time steps.

We now let Ek :=
∑

b∈Bk

∑

di∈T b

k

e(αi, di) denote the

energy consumed by the O-Cloud due to the transport blocks

generated at time step k, where e(αi, di) corresponds to

the energy consumed by the processor selected by action

αi to process TB di. Similarly, we define the ratio of TBs

successfully processed in the O-Cloud within the deadline



during the time step k as ζk ∈ [0, 1]. We then formulate our

opportunistic HA offloading problem as follows:

Problem 1.

min
{Ak}K

k=1

lim
K→∞

1

K

K
∑

k=1

Ek

s.t. lim
K→∞

1

K

K
∑

k=1

ζk ≥ 1− ϵ.

where ϵ sets the target reliability (e.g., ϵ = 10−5 in [7]).
Problem 1 assumes that the O-Cloud system is dimensioned

with sufficient computing resources (HAs and CPUs) to op-

erate always within the problem’s feasibility region, but this

may not necessarily hold always. If that is the case, the goal

is to maximize throughput regardless of energy consumption:

Problem 2.

max
{Ak}K

k=1

lim
K→∞

1

K

T
∑

k=1

ζk

Solving these problems is highly intricate. Firstly, O-Cloud

energy consumption relies on computing resource utilization

(CPU and HAs), influenced by the number of generated TBs

from the BSs, the selected actions Ak, and TB characteristics

(ci, mi, and li) at time step k and previous steps. Notably,

a TB lost at time k might have been assigned in a prior

time step (TTI < τ ), and queued TBs add up waiting time

to TBs in the near future. Secondly, TB processing time

and energy consumption involve a random component, as

observed in our experiments in §V. This randomness pertains

to how bits are ordered within a TB and how an FEC

decoder extracts information (see [31]). Thirdly, both TB

energy consumption and processing time depend on O-Cloud

hardware specifics and software processing implementation,

which can vary across platforms or evolve over time due to

hardware/software upgrades. Fig. 3 illustrates processing time

variations for different software and HA decoder implementa-

tions and configurations. Lastly, determining which problem to

solve (Problem 1 or 2) is inherently challenging as it depends

on unknown system dynamics.
Therefore, our main problem cannot be solved analytically.

One typical approach is to model it as a Markov Decision

Process (MDP) and employ Deep Reinforcement Learning

(DRL). However, this is not feasible due to time constraints.

xApps make decisions every 100 ms, while computing resource

allocations need to be made every TTI ≤ 1ms, as discussed in

§III. Even with relaxed time constraints, the problem remains

challenging due to a vast action space, involving 2|Ak| possible

actions, where |Ak| can be arbitrarily large. Additionally,

the action space dynamically changes over time, contrasting

with the typical RL assumption of a fixed action space.

Furthermore, our primary goal is to minimize the system’s

energy cost. Using large models to solve our problems may

induce a noticeable energy burden on the system. To avoid this,

we must design a lightweight, practical, and scalable solution

capable of real-time operation at Base Stations (BSs) with

negligible energy impact.
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Fig. 3: Processing time of a TB as a function of its size for different
SNR values and MCS index 15. We evaluate a HA, two different
implementations of the software decoder (SW 1 and 2), and two
configurations of the second software decoder (SW 2a and 2b).

V. AN EFFICIENT OFFLOADING STRATEGY

We propose a practical and efficient energy-aware offloading

strategy for vRANs. We rely on the insights from our experi-

mental campaign and we exploit the structure of the problem

described in §IV to devise an efficient solution.

Minimizing the use of HAs can bring important energy

savings. However, an excessive use of CPUs may induce

throughput loss as they are a magnitude slower than energy-

consuming HAs (see Fig. 1). To get additional insights, we

implemented an O-RAN-compliant O-Cloud platform com-

prised of an NVIDIA GPU V100 as HA and up to 16 Intel

CPU cores for signal processing; see §VII for more details.

Fig. 3 shows the processing time γ(αi, di) of a TB di with

different TB sizes and SNR values, for 3GPP MCS index

15 [32]. The “SW” plots show the latency incurred by different

implementations of a software processor on the same CPU

(αi = 0), and the “HA” plot that by the GPU HA (αi = 1).

We observe a key structural difference between software

and HA processing. The processing time of a CPU is highly

dependent on li (TB size), while such dependency practically

vanishes in the case of the HA. This structure holds even

across different software implementations. Similar behavior

can be observed for energy consumption as it is proportional

to relative processor busy time. Based on these observations,

we propose an intuitive strategy by which small TBs are

processed in software, to avoid an early saturation of the CPU.

Conversely, as the processing time of the HA is not sensible

to the bit size of the TB, large TBs are offloaded. To this

end, we define lth as the TB size threshold or bit threshold

that delimits two operational regions. When li < lth, di is

processed in software, otherwise the HA is used.

In order to evaluate the impact of lth on the performance of

the network, we set up a scenario with up to 10 BSs sharing

our O-Cloud experimental platform with 4 Intel CPU cores

dedicated to software processing and the NVIDIA GPU V100

as HA. We assume (for now) that the workload generated by

all the BSs is independent and identically distributed (i.i.d),

which implies that the lth is common to all the BSs and
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Fig. 4: Ratio of successfully processed TBs (left) and power con-
sumption (right) for low (top) and high (bottom) traffic loads.

simplifies analysis. We will relax these assumptions later. In

this way, each BS handles the traffic of 3 homogeneous users,

which generate data following a Poisson process with mean 70
Mb/s, and we simulate a Rayleigh wireless channel model with

a random mobility pattern with 20 Km/h velocity [33]. We

assess two scenarios: a high-load scenario with 10 BSs, and a

low-load scenario with 2 BSs. For each scenario, we evaluate

30 different values of lth during 0.5s and for 10 independent

runs. Fig. 4 depicts the mean and the 10th and 90th percentiles

of the system reliability ζ (left) and the power consumption

(right) for both low-load (top) and high-load (bottom).

We observe in the top part of Fig. 4 that, when lth < 75·103,

the ratio of processed TBs (ζ) is maximum. This means that

only the TBs with a smaller size than the selected lth are

processed using software and the rest of them are offloaded

into the HA. For higher values of the bit threshold lth > 75·103

the CPU gets saturated and some TBs are dropped (ζ < 1).

On the other hand, the more we use the CPU (higher values of

lth), the higher the energy savings. In that case, as the system

is not saturated, we are solving Problem 1 and the optimal

point (energy saving maximization without data losses) is

around lth = 75 · 103. In the bottom part of Fig. 4 we can

observe that the higher traffic saturates the O-Cloud, i.e.,

ζ < 1∀lth. In this case, we need to solve Problem 2, and

find the configuration that maximizes ζ. In that case, the

optimal configuration is around lth = 25 · 103. Note that due

to the higher performance of this configuration, the energy

consumption is also maximized.

From these experiments, we can extract an important con-

clusion. The optimal value of lth depends on the traffic con-

ditions. In consequence, we need to devise a strategy to find

the optimal bit threshold of each BS depending on the system

state in terms of traffic conditions. This strategy needs to be

learned for each specific deployment, as it also depends on

the hardware in the O-Cloud and the software implementation

of the decoders (see Fig. 3). Thus, the learned strategy can

be deployed at the near-real-time RIC, providing different

configurations according to traffic variations.

Nevertheless, this problem is still very challenging to solve

in a centralized way for several reasons. The O-Cloud work-

load is not only defined by the load of TBs (number of TBs

per second), but also by the parameters c, m, and l of each TB,

which have an impact on the processing time. Second, as the

O-Cloud is common for all the BSs considered in the problem,

we face a collaborative problem in which the decisions of each

agent (BS offloading configuration) affect all the others. For

example, a poor action by one BS may saturate the CPU,

increasing energy consumption or even causing throughput

loss in some other BS sharing the O-Cloud. Third, the number

of BSs can be arbitrarily high, especially in highly populated

areas. Moreover, we consider the case where the BSs can be

switched off and on dynamically, which is a popular feature

in 5G [34]. This defines state and action spaces with changing

dimensionality over time. For these reasons, we next formulate

the problem as a Multi-Agent Contextual Bandit, and propose

a practical algorithm using ideas from mean field theory.

VI. MULTI-AGENT FORMULATION

A. Background: Markov Games

A Markov game is defined by the tuple Γ =
⟨N ,S,A,R,P⟩, where N is the set of players or agents, S is

the state space, A is the action space, R is the set of reward

functions, and P is the set of transition probability functions.

Let Nt ⊆ N denote the set of Nt agents active by decision

period t. Thus, the state observation of each agent n is given by

ont ∈ Sn, and the system state by st = (o1t . . . o
Nt

t ) ∈ S . The

joint action of all agents is denoted by at = (a1t . . . a
Nt

t ) ∈ A.

At decision period t, each agent selects the actions based on a

deterministic policy πn : Sn 7→ An. We let π = (π1 . . . πNt)
define the joint policy. In our particular case, the transition

probabilities do not depend on the selected actions, i.e.,

Pn
t (st,at) = Pn

t (st) as we consider a contextual bandit for-

mulation. Thus, the state transition is given by ont+1 ∼ Pn
t (st),

where Pn
t ∈ P : S × S 7→ [0, 1].

Then, at the end of each decision period t, the agents receive

a reward rnt (st,at) ∼ Rn
t (st,at), where Rn

t ∈ R : S × A 7→
R. We can then write the performance objective of agent n

with policy πn as an expectation:

Jn(πn | π−n) =

∫

S

ρ(s) rn(s, π(s)) ds = Es∼ρ[r
n(s, π(s))],

(1)

where ρ(s) is the stationary state distribution and π−n is the

set of all policies except the one of agent n.

B. Multi-Agent Contextual Bandit

Let us now particularize the above Markov game formu-

lation for our case. As detailed in §V, the bit threshold rule

operates at each TTI granularity. However, the configuration

of this threshold does not need to be done at each TTI. In fact,

in the standard O-RAN architecture, the xApps in the near-RT

RIC make decisions every 100 ms. To be standard compliant,

we adopt this time granularity to configure the bit threshold

as a function of traffic load variations.

Thus, we make decisions at each decision period t, which

comprises a set of TTIs Kt. We associate each BS b ∈ B with

one learning agent n ∈ N . Hence, we denote T n
t = {T b

k | k ∈
Kt} as the set of TBs generated by the BS b corresponding

the learning agent n during the decision period t.



The state observation ont ∈ Sn for agent n aims to

characterize the traffic conditions of the TBs generated by its

associated BS. Hence, we define the state ont = Φ(T n
t , D)

as the 3-dimensional histogram of the TB’s features, i.e.,

MCS, SNR, and size, where D is the number of bins of this

histogram in each dimension. Finally, the action selected by

agent n determines the bit threshold of its associated BS, i.e.,

ant ∈ An = [lmin, lmax] ∀n ∈ Nt, where lmin and lmax are the

minimum and maximum TB size values.
We now let Et(st,at) denote the energy consumed by the

O-Cloud platform (considering both the CPU resources and

the hardware accelerator) during period t. We also (re-)define

the ratio of successfully processed TBs of the O-Cloud as

ζt(st,at). Note that both Et and ζt depend on the global state

and the joint actions taken, indicating that both the input traffic

and the offloading strategy of all the BSs have a joint impact

on the performance metrics of the system. Now, using the

definition of expectation in eq. (1), we can define the following

constrained decision-making problem:

min
π

Es∼ρ [E(s, π(s))] (2)

s.t. Es∼ρ [ζ(s, π(s))] ≥ 1− ϵ.

We approximate this constrained problem with an uncon-

strained one by defining the following reward function:

rt(st,at) = − (Et(st,at) + λ (1− ζt(st,at))) , (3)

where λ is a constant that weights the penalty incurred when

failing the constraint and the minus sign converts a cost into a

reward to be maximized. Using this reward function in eq. (1),

we define the optimal policy for agent n as

πn
∗ = argmin

πn

Jn(πn | π−n). (4)

At this point, we would like to remark two practical con-

siderations. First, the decision periods defined in this section

are several orders of magnitude higher than the TTI (time slot

k defined in §IV). Thus, the effect of at−1 on rt(st,at) is

negligible and therefore each decision period is independent of

each other. For that reason, instead of formulating the problem

as a multi-agent reinforcement learning (where actions affect

future states and rewards), we do it as a multi-agent contextual

bandit. This formulation simplifies the problem, allowing us

to design a lighter and more effective solution.
Second, the action ant = πn(ont ) used by the agent n during

the decision period t is computed based on the distribution of

the incoming traffic characterized by the observation ont . Due

to the nature of the system, the distribution of the incoming

traffic during the decision period t is unknown at the beginning

of this decision period. For that reason, we use the observation

of the previous decision period t − 1 to make decisions at t,

assuming that traffic distribution changes slower than the time

granularity of the decision periods.

C. Mean Field Multi-Agent Solution

A common approach in multi-agent learning is to use

the centralized training with decentralized execution frame-

work [20], [35] to let actor-critic policy gradient methods

include information about other agents. The critic of agent n

approximates its reward function and is denoted by Rn(s,a |
θnR), where θnR are the weights of its function approximator.

The loss of the critic is given by

L(θnR) = Est∼ρ,at∼π′,rt

[

(Rn(st,at | θ
n
R)− rt(st,at))

2
]

(5)

where the expectation considers that the states st follow ρ,

the actions are selected with policy π′ that can deviate from

π (off-policy learning), and the reward samples are noisy.

We denote the actor of agent n as πn(on | θnπ), where θnπ
are the parameters of the policy. The actors are updated by

applying the chain rule to the performance objective defined

in eq. (1) with respect to the actor parameters [36]:

∇θn
π
Jn(πn | π−n) ≈ (6)

Est∼ρ

[

∇anRn(st,at | θ
n
R) |an=πn(on

t
|θn

π
) ∇θn

π
πn(ont | θnπ)

]

.

Note that the critic needs information about all the agents as

st and that at includes the observations and actions of the Nt

active agents at decision period t. This limits the scalability of

this approach as the critic’s complexity increases exponentially

with the number of learning agents. Hence, this approach is

typically limited to a small number of agents. In our case, we

face an additional challenge as the number of active agents

changes over time. This limits the applicability of standard

function approximators such as feed-forward neural networks

that have a fixed input dimensionality.

In order to tackle these challenges, we adopt ideas from

Mean Field Theory [37], [21]. To this end, we assume that

the interactions within the population of active agents are

approximated by the interaction between a single agent and the

average effect of the overall population. Hence, the interactions

between each agent and a virtual agent approximating the rest

of the agents are mutually reinforced. In this way, the optimal

policy of an agent is updated based on the behavior of the

overall population, while the population of agents is updated

based on the individual policies.

To this end, we define the mean field critic as

R̄n(ont , a
n
t , ō

−n
t , ā−n

t | θnR), where ō−n
t is the mean field ap-

proximation of the observations of all the agents except n; and,

similarly, ā−n
t is the mean field approximation of the actions

of all the agents except n. Specifically, we define ō
−n
t =

Φ(T −n
t , Do), where T −n

t =
⋃

n′ ̸=n∈Nt
T n′

t ; and ā
−n
t =

Φ(a−n
t , Da), where a

−n
t = (a1t . . . a

n−1
t , an+1

t . . . aNt

t ). More-

over, we expand the input of the actor to include the mean

field approximation of the observation of the rest of the

agents, i.e., π̄n(ont , ō
−n
t | θnπ), which show better empirical

performance. Note that the dimensionality of the input of the

mean field critic does not depend on the number of agents,

which improves scalability and allows a variable number of

learning agents over time. Now, we can redefine eq. (5) as:

L(θnR) = (7)

Est∼ρ,at∼π′,rt

[

(

R̄n(ont , a
n
t , ō

−n
t , ā−n

t | θnR)− rt(st,at)
)2
]



Algorithm 1 ECORAN-P

1: Inputs: Batch size Z, Do, Da

2: Initialize: Reply buffer Dn = ∅, θn
R

, and θnπ ∀n ∈ N
3: for t = 1 . . . T do
4: Observe the system state st = (o1

t
. . . o

Nt

t
)

5: Compute mean field approx. ō−n

t
= Φ(T −n

t
, Do);

6: Compute the actions an
t
= π̄n(on

t
, ō

−n

t
| θnπ ) ∀n ∈ Nt

7: Use at during t and observe the reward rt
8: Compute mean field approx. ā−n

t
= Φ(a−n

t
, Da) ∀n ∈ Nt

9: Store ⟨on
t
, ō

−n

t
, an

t
, ā

−n

t
, st, rt⟩ in Dn ∀n ∈ Nt

10: for n = 1 . . . Nt do
11: Sample Z experiences ⟨on, ō−n, an, ā−n, st, r⟩ from Dn

12: Update θn
R

by minimizing the critic loss

L(θn
R
) = 1

Z

∑

i

(

R̄n(on
i
, an

i
, ō

−n

i
, ā

−n

i
| θn

R
)− ri

)

2

13: Update θnπ by applying the sampled policy gradient
∇θn

π
J(πn) ≈ 1

Z

∑

i
∇θn

π
π̄n(on

i
, ō

−n

i
| θnπ )·

∇an R̄n(on
i
, an, ō

−n

i
, ā−n | θn

R
), where

an = π̄n(on
i
, ō

−n

i
| θnπ ) and

ā
−n = Φ({π̄n

′

(on
′

i
, ō

−n
′

i
| θn

′

π ) | n′ ̸= n}, Da)
14: end for
15: end for

and (6) as:

∇θn
π
Jn(πn | π−n) ≈ (8)

Est∼ρ

[

∇anR̄n(ont , a
n
t , ō

−n
t , ā−n

t | θnR)∇θn
π
π̄n(ont , ō

−n
t | θnπ)

]

,

where

an = π̄n(ont , ō
−n
t | θnπ), (9)

ā
−n
t = Φ({π̄n′

(on
′

t , ō−n′

t | θn
′

π ) | n′ ̸= n ∈ Nt}, D
a). (10)

The pseudo-code of our solution is shown in Algorithm 1.

VII. EXPERIMENTAL EVALUATION

Our experimental platform consists of a general-purpose

server with an Intel Xeon Gold 6240R CPU with 16 cores ded-

icated to signal processing tasks and an NVIDIA GPU V100.

The O-Cloud’s Accelerator Abstraction Layer (AAL) [38]

is implemented using Intel DPDK BBDev. To process 5G

signals, we use a publicly available software library from

Intel (Intel FlexRAN [39]) and a proprietary driver for the

GPU. The Near-RT RIC comprises an Intel i7-8750H CPU @

2.20GHz and 8 Gb of RAM.

We have integrated ECORAN in our real O-RAN platform.

In particular, ECORAN-P is hosted in the Near-RT RIC as a

xApp and computes the bit threshold for each BS. On the other

hand, ECORAN-P is implemented into each BS and enforces

this bit threshold offloading policy at the TB level. Fig. 5

shows a scheme of our experimental platform.

To emulate real 5G processing workloads, we collected

traces from real base stations in Madrid, Spain, during April

2022 using an open-source tool called Falcon [40]. Note that

no personal information has been collected. Based on these

traces, we emulate the workload generated by two types of

BS, as shown in Fig. 6. The left plot depicts the empirical

distribution of the size of each TB generated; the center plot

illustrates the dynamics of the rate of TBs; and the right plot

depicts the SNR distribution of both BSs. In this way, we

emulate two distinct BSs, a BS with a single-yet-demanding
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Fig. 5: Scheme of our experimental platform. Each BS has connected
a set of mobile users that generate traffic load. All the BS exchange
information with the near RT-RIC. Every t, the BSs send their
observations o

n
t and receive their respective action a

n
t . For each TB,
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Fig. 6: Characterization of the incoming traffic to each of the BS
types considered in the evaluation.

user (Type 1) and a BS with 10 lightly-loaded users (Type 2),

with realistic network demand and mobility patterns.

In the rest of this section, we combine these two types of

BSs to generate heterogeneous traffic loads for our experi-

ments. In particular, in the settings with 6, 12, 36, 48, 60 active

BS, there are 5, 10, 30, 40, 50 BSs of Type 1, respectively,

and the rest of Type 2. Although we assess two types of

BS, the instantaneous load of individual BSs is very bursty

due to the trace-based mobility patterns and demands we

emulate. Consequently, each BS requires individual offloading

strategies. Moreover, this traffic generation method allows us

to compare different solutions fairly.

In the following, we detailed the implementation of EC-

ORAN. Both actor and critic have a similar neural network

architecture with two 3D-convolutional layers with 8 and 1
cells, respectively, and a kernel of size 3. Then, connected

to the convolutional layers, there are 2 fully-connected layers

of 256 units per layer. The output of the actor and critic are

activated with sigmoid and linear functions, respectively. Fig. 7

shows the architecture of one learning agent. Note that only

the data represented with 3-dimensional matrices is fed into

the 3D convolutional layers, while the rest of the data (vector

representation) is fed into the critic’s fully connected layers.

The noise used for exploration follows an Ornstein-Ulhenbeck

process with parameters θnoise = 0.15 and σnoise = 0.15,

generating temporally correlated values around 0 [41].

Since all the learning agents share the same goal, we con-

sider the particular case in which the reward signal is common

and the weights of the neural networks are shared across all

the agents, which is a common practice in similar settings [21],

[42], [43], [44]. We configure the algorithm with a batch size

of 64 samples and D = Da = Do = 5. We empirically found
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Fig. 7: Scheme of the architecture of learning agent n.

that λ = 2 is large enough to avoid solutions that violate the

reliability constraint.The minimum and maximum values of

the TB size (lmin = 32 bits, lmax = 286976 bits) are given by

the 3GPP standard organization [32].

A. Convergence Evaluation

To evaluate the convergence of ECORAN, we consider a

scenario with 36, 48, and 60 BSs (i.e., learning agents). This

is in line with current large-scale deployments implemented by

mobile operators [9]. Fig. 8 shows the evolution of the reward

during the training phase. While the complexity of typical

multi-agent methods (e.g., [20], [45]) grows exponentially with

the number of agents, we show in Fig. 8 that our solution does

not show such a dependency. The reason is twofold. First, we

share neural network weights across agents, and therefore the

weight updates of each agent benefit all others. Second, for

every t, we generate as many experience tuples (see line 11

of Algorithm 1) as the number of learning agents. A larger

amount of data benefits the learning rate (off-policy learning).

These two aspects compensate for the increase in complexity

to coordinate a larger number of agents.

B. Comparison with other methods

We now compare ECORAN with a number of benchmarks:

• Dedicated HAs. This is the industry’s standard approach,

where each BS offloads every TB to a dedicated HA to

guarantee reliability. We emulate as many HAs as BSs.

• Always Offload. BSs offload all their TBs to a shared HA.

All the remaining benchmarks rely on an O-Cloud with two

shared processing resources: a HA and a CPU pool.

• Minimum Waiting Time (MWT). For each TB, the BS

selects the computing resource that minimizes the total

waiting time, i.e., ai = argmina γ(a, di) + q(a, di). This is

a common approach in queuing theory aimed at minimizing

latency. Note that, to evaluate this strategy, the processing

times given by γ(·) should be known in advance, which

is not possible in a real system. Hence, we use a dataset

compiling processing times for all possible cases and then

we simulate the system based on these pre-known times.

• ECORAN-MF. This approach uses ECORAN without the

mean field approximation, i.e., ō−n
t and ā

−n
t are not avail-

able. Thus, each agent becomes an independent learner that

only uses its own observations and actions for learning.
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Fig. 8: Reward of the system during the training period for 36,
48, and 60 learning agents. The mean and 10

th, and 90
th percentiles

(colored shade) of 10 independent runs are shown.

• ECORANCLDE. This is ECORAN with a Centralized Learn-

ing Decentralized Execution (CLDE) approach [20], [45]

instead of the mean field approximation. This approach does

not support a changing number of agents during learning

or execution. We circumvent this challenge heuristically by

overdimensioning the algorithm to the maximum number of

agents in our training and evaluation, and filling with zeros

the observations and actions of the agents that are not active.

We train ECORAN (and its variants) for a general scenario

with a changing number of BSs (up to 60). Note that due to

the integration of the mean field approximation in our solution,

the number of learning agents can vary during both training

and execution. After training, we evaluate the same instance

of our algorithm in several scenarios with a different number

of active BSs. In this way, we also assess the ability of our

approach to adapt to any trivial deployment.

Fig. 9 shows the energy cost (left), the percentage of bits

that are timely decoded (center), and the share of TBs that are

offloaded to a HA (right). Moreover, Table I details the energy

savings of each approach compared to using dedicated HAs

(the industry standard), and the target reliability gap.

“Always Offload” is one of the strategies with the highest

energy consumption. However, because the HA is shared

across all the BSs and the CPU resources are not exploited, this

strategy is not able to meet the reliability target during high-

load scenarios, which is a hard requirement in our system. In

the case of “MWT”, the computing resource with the lowest

total waiting time is selected. During low-load scenarios (i.e., 6

and 12 BSs) this strategy frequently selects the HA (86% and

90%, respectively, on average), which consumes substantial

energy. Moreover, such a strategy leads to saturating the HA

resource, which is fatal for high-load scenarios as the CPU

is often forced to process large TBs, which renders poor

reliability, up to 12% below the target value. Conversely,

we can observe that, like when using dedicated HAs, only

ECORAN and ECORAN-MF meet the target reliability in all

of the scenarios. However, compared to using dedicated HAs,

ECORAN achieves so with up to 41% energy savings.

Let us discuss why ECORANCLDE and ECORAN-MF obtain

suboptimal solutions. The former minimizes energy consump-

tion but violates the reliability target in high-load scenarios,

and the latter meets the constraint but consumes more energy

with lower traffic loads. In ECORAN-MF, both actor and critic
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Fig. 9: Performance comparison. Energy consumption in Joules per Mb (left), bit reliability or percentage of correctly decoded bits (center),
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th percentiles.

TABLE I: Performance comparison. Energy savings per bit com-
puted w.r.t dedicated HA (industry standard). The reliability gap
shows the percentage of extra reliability needed to meet industry-
grade reliability, i.e., 99.999%

Energy Savings (%) Reliability gap (%)

Approach
# BSs

6 12 36 60 6 12 36 60

ECORAN 41.23 40.51 30.96 31.00 0 0 0 0
ECORANCLDE 40.03 39.69 38.75 -38.94 0 0 2.01 62.02
ECORAN-MF 31.03 31.48 31.02 30.92 0 0 0 0
MWT 6.97 5.91 12.75 17.74 0 0 0.08 12.96
Always Offload 0 0 1.95 10.99 0 0 5.23 28.72

ignore the information about other agents because the mean

field approximations are not available. Thus, the agents cannot

distinguish whether the number of active BSs (learning agents)

is low (small workloads) or high (large workloads). Therefore,

they are unable to learn the relationship between the reward

signal (which is common to all agents) and the actual system

state. Conversely, the critic in ECORANCLDE has a global

view of the system at the cost of extra complexity (larger

neural network size). Although it can potentially learn the

relationship between the global state and the reward during

centralized learning, the actor only sees local observations,

limiting adaptability during decentralized execution. In con-

trast, the mean field strategy adopted in ECORAN allows

the algorithm to have a global view of the system without

compromising complexity and scalability as both the global

state and the global action are characterized by vectors of fixed

dimensionality independent of the number of active agents.

C. System Validation

We now evaluate the practicality of our solution. We have

two requirements for the xApp hosting ECORAN-P in the

near-RT RIC: (i) the execution time needs to be faster than

the time granularity of 100 ms of the system update; and (ii)

produce a negligible energy footprint. Note that a heavy model

can be either too slow to operate in real-time or can offset the

energy savings if deployed in energy-hungry hardware.

Table II (left) shows the time and energy burden of

ECORAN-P executed in the near-RT RIC described in

Sec. VII. We consider the worst-case scenario with 60 agents

for execution and a model update (actor and critic) for training.

We observe an execution time shorter than 1 ms with a

negligible energy burden. Conversely, although the training

task is more demanding in terms of time and energy, it is

TABLE II: Average time and energy burden of ECORAN-P executed
in the near-RT RIC with an Intel i7-8750H CPU (left). Percentage of
the energy consumed by ECORAN-P over the total energy (O-Cloud
plus near-RT RIC) for different traffic settings in the O-Cloud (right).

Time (ms) Energy (J) Traffic Load % of Energy

Execution 0.572 0.008 Low 3.203 %
Training 46.267 2.312 High 0.390 %

only performed temporarily and can even be executed in the

background on another machine if needed (off-policy training).

Table II (right) shows the percentage of energy consumed

by ECORAN-P over the total energy consumed by the near-RT

RIC and the O-Cloud together. For that, we consider a worst-

case scenario in which, apart from the action computation,

ECORAN-P is trained during 30 s (convergence time in Fig. 8)

every hour. Moreover, we consider low (6 BSs) and high (60

BSs) traffic loads, as the energy consumption of the O-Cloud is

highly dependent on the load. We measure an energy footprint

of 3.2% in the worst case and below 1% when the O-Cloud

has a medium or high load. This validates the practicality of

our solution, which operates in a real O-RAN system meeting

its time constraints and providing real energy savings.

VIII. CONCLUSIONS

In this work, we addressed the energy consumption problem

present in new generation virtualized networks. To address this

problem, we first conducted a series of experiments using our

O-RAN platform. Then, based on the insights provided by

the gathered data, we propose an efficient strategy that relies

on opportunistic offloading in HAs. As the offloading strategy

needs to be configured individually for each BS sharing the O-

Cloud, we face a collaborative multi-agent problem. We pro-

pose ECORAN, a multi-agent contextual bandit algorithm that

uses ideas from mean field theory to improve its scalability.

Our experiments showed a fast convergence even with a large

number of active learning agents, and up to 40% in energy

savings while meeting the reliability target with respect to the

current standard adopted by the telecom industry.
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