
On the Implications of Heterogeneous Memory
Tiering on Spark In-Memory Analytics

Manolis Katsaragakis⋆†, Dimosthenis Masouros⋆, Lazaros Papadopoulos⋆, Francky Catthoor†α, Dimitrios Soudris⋆
⋆Microprocessors and Digital Systems Laboratory, ECE , National Technical University of Athens, Greece

†Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001 Heverlee, Belgium, αIMEC-BE, Leuven, Belgium
⋆{mkatsaragakis, dmasouros, lpapadop, dsoudris}@microlab.ntua.gr

αfrancky.catthoor@esat.kuleuven.be

Abstract—Today, the rise of big data has driven a growing
demand for efficient and scalable computing solutions that can
handle the massive amounts of data generated by modern
applications. To address this challenge, application developers
have embraced the use of novel distributed frameworks, such
as Apache Spark, which enable efficient, in-memory processing
for large amounts of data. Moreover, providers are seeking for
new alternatives to cope with this increasing need for “infinite”
memory resources, that can provide analogous performance
efficiency, while also reducing operational costs. In this direction,
novel multi-tier and disaggregated memory architectures emerge,
which combine heterogeneous memory technologies that trade-
off between performance, cost and energy efficiency. This diptych
of evolution imposes new challenges and open questions on how
to optimally configure software and hardware as a whole, for
maximizing resource efficiency.

In this paper, we examine the implications of heterogeneous
memory tiering on Spark in-memory analytics. Our study consid-
ers a multi-tier heterogeneous DRAM/NVM memory system with
contrasting access latency, bandwidth and energy consumption
capabilities. By using a set of 7 diverse applications from the
HiBench benchmarking suite, we first explore the impact of
these memory configuration setups on their performance and
energy efficiency. Then, we perform a detailed analysis on how
the system’s low-level performance metrics correlate to higher
level metrics of interest (i.e., performance/energy), which aims to
provide deeper insights w.r.t. the relationship between software
and hardware events. Driven by the obtained results, we identify a
set of guidelines derived by deploying Spark in-memory analytics
over heterogeneous memory tiered systems.

Index Terms—Disaggregated computing, in-memory analytics,
Multi-tier architecture, DRAM, Intel Optane DC

I. INTRODUCTION

Over the last years, the growth of applications that han-
dle large datasets is rapidly increasing and becoming more
and more complex. Machine Learning(ML) handling large
datasets [1], data produced on the Edge that need to be pro-
cessed and stored [2], as well as big-data and analytical pro-
cessing applications [3] are just few examples of applications
that generate enormous workloads. Such kind of applications
impose increased requirements in terms of computational and
memory requirements, leading to I/O bottlenecks, performance
degradation and non-sustainable behavior.

This work has been partially funded by EU Horizon program NEPHELE
under grant agreement No 101070487 (https://nephele-project.eu/).

From the application developers’ perspective, the perpet-
ual rise of data produced has led to the adoption of novel
frameworks that enable the parallel processing of huge data
volumes in a distributed manner [4]–[6]. Apache Spark [6]
is one of the most widely used processing engines for large
scale data analytics, offering a new way of computing with its
resilient distributed dataset (RDD), which is stored in memory,
while being computed on the latter, thus, avoiding expensive
intermediate disk writes found in prior big data frameworks,
such as Hadoop [5].

On the other hand, from the providers’ standpoint, the
increasing memory requirements of modern applications along
with the rapid adoption of in-memory analytics frameworks
have highlighted the need for novel system architectures,
which are able to bypass the fixed resource proportionality
of conventional servers, while maintaining performance and
maximizing energy and cost efficiency. To this end, multi-
tier [7]–[9] and disaggregated [10]–[12] memory architectures
have been proposed as new design paradigms, where differ-
ent memory technologies can be leveraged and/or combined
according to the needs of running applications. Such architec-
tures can include conventional DRAM technology and Non
Volatile Memory(NVM) technologies, such as 3D-XPoint,
PCM, 3D DRAM [13] and FeFET [14], which provide trade-
offs between access latency, bandwidth, energy efficiency, data
persistence and other [15]. In fact, such kind of solutions have
been already deployed in various commercial platforms, such
as the SAP HANA [16] database and the Aurora exascale
supercomputer, which employs the DAOS architecture for
storage [17], both taking advantage of the only commercial
NVM technology up to now, i.e., Intel Optane DC Persistent
Memory(DCPM). Moreover, upcoming technologies, such as
Samsung Memory Expander [18] and Compute Express Link
(CXL) [19] aim to further bridge existing performance gaps
and exploit the limits of multi-tier memory disaggregated
platforms, however with the cost of more complex hierarchies.

This simultaneous evolution of the software and hardware
“worlds” imposes new challenges on how to efficiently manage
the deployment of such applications on heterogeneous memory
systems. The co-existence of heterogeneous multi-tier mem-
ory architectures with the in-memory application alternatives
composes an extended set of exploration for efficient deploy-



ment in terms of performance, energy consumption and other
aspects. Thus, an efficient exploration of the alternative config-
urations is required, in order to efficiently deploy application
workloads over multi-tier hybrid memory systems [20]. In-
depth analysis for the sufficient memory tier and technology
selection is crucial, while the Spark internal configuration is
also dominant for the efficacy of the application. The efficient
co-selection of hardware and software parameters can fully
exploit performance potential, minimize overhead and provide
trade-off among hardware and software metrics. However,
such kind of selection and efficient correlation among these
characteristics is not staightforward.

In this work, we present an extensive exploration and
characterization of various in-memory Spark applications and
workloads over heterogeneous multi-tier memory systems. We
present an extended analysis in terms of performance, energy
consumption and scalability for in-memory Spark analytics de-
rived from different application domains, i.e, micro-operations,
machine learning and websearch. Through our experimental
analysis: i) we indicate key aspects that are crucial for the
overall performance/energy of the execution, ii) we provide a
set of guidelines and key takeaways for efficient deployment
over and iii) we indicate current limitations of recent multi-tier
heterogeneous memory systems.

II. RELATED WORK

Several works have been conducted aiming to evaluate
alternative Spark workloads over disaggregated memory sys-
tems. Authors of [21] and [22] focus on the characterization
and exploration of database-related applications over Apache
Spark, while authors of [23] present an analysis of batch
and stream processing workloads from micro-architectural
perspective. Furthermore, research conducted in [24] aims
to investigate similarities and patterns among known Spark
workloads, while authors of [25] investigate the design of
distributed file system over multi-tier storage. Authors of [26]
analyze the performance of Spark applications and propose a
performance autotuning framework.

Moreover, aiming to combine heterogeneous memories over
Spark analytics, authors of [27] integrate persistent memory
technologies as an low-cost alternative to extend capacity of
existing computer clusters. Additionally, in [28] the poten-
tial benefits of Optane DC Persistent Memory (DCPM) for
neuroimaging data processing and storage are investigated.
Furthermore, in [29] authors present and analysis for in-
memory analytical database workloads over Optane DCPM,
while the authors of [30] investigate the impact of data and
object placement on heterogeneous memory configurations
over various in-memory applications. Moreover, in [31] an ex-
ploration of the key-value stores is investigated over persistent
disaggregated memory systems.

Although research has illuminated the potential impact of
in-memory analytics and the integration of various memory
systems, no study to date, to the best of our knowledge,
has provided an in-depth characterization and guidelines for

2x DDR4 32GB DRAM
DIMMs

2x256 Intel Optane
DCPM DIMMs

2x DDR4 32GB DRAM
DIMMs

4x256 Intel Optane
DCPM DIMMs

Physical Socket 1 Physical Socket 2

N
U

M
A

N
O

D
E 

2 
N

U
M

A
N

O
D

E 
0 N

U
M

A
N

O
D

E 1 

Tier 0

Ti
er

 1

Tier 2Ti
er

 3

Fig. 1: Overview of the target multi-tier system architecture
and testbed

Apache Spark in-memory analytics across multi-tier hetero-
geneous memory systems. In contrast to existing literature,
we provide a thorough investigation on the underlying factors
and aspects that drastically affect the overall behavior of Spark
applications over multi-tier heterogeneous memory systems.

III. HARDWARE & SOFTWARE TESTBED

A. Multi-tier Disaggregated Memory System

Since the integration and implementation of disaggregated
memory systems decoupled from the processor in not trivial,
due to absence or existence of complex prototypes [10],
[32], we emulate our disaggregated memory system over a
multi-socket server with heterogeneous DRAM/NVM memory
system. Specifically, our experiments were conducted on a
single node with a 2x20 core Intel Xeon Gold 5218R CPU
@2.10GHz with 4x32GB DDR4 DIMMs and 6×256GB Op-
tane DC NVDIMMs. Aiming to provide alternative access
latency and bandwidth across nodes, we provide asymmetry
between Optane DIMMs over the physical sockets, i.e., we
deploy 2 DIMMs on socket 1 and 4 DIMMs on socket 2.
Last, we configure the Intel Optane DC memory to App Direct
mode with ext4-DAX file system, which allows the PMEM
capacity to be used as byte-addressable persistent memory that
is mapped into the system’s physical address space (SPA) and
directly accessible by applications.

Based on the above hardware configuration, our target
disaggregated multi-tier architecture is illustrated in Figure 1.
From an operating system’s perspective, the available memory
is organized as three distinct, asymmetric NUMA nodes,
where NUMA 0 and NUMA 1 are symmetric to each other
and include the DRAM memory capacity of socket 0 and
socket 1 respectively, whereas NUMA 2 is assymetric and
includes the memory capacity of the NVM memory. We
define four memory access scenarios (henceforth referred to as
different Tiers), that emulate different local (intra-NUMA) and
remote (inter-NUMA) allocation modes, as shown in Figure 1.
Specifically, Tier 0 forms a local allocation mode, where
memory is obtained directly from the same physical socket as
the cores, whereas Tiers 1-3 are considered as remote modes
with heterogeneous memory types each. Traditionally, remote
memory accesses reveal higher latency and lower bandwidth
per operation [33], due to the overhead of network and data



exchange, which is implicitly entailed through our physical
hardware configuration described previously. Moreover, the
imbalance of NVM DIMMs on each socket allows us to
exploit different latency and bandwidth. The idle latency and
bandwidth characteristics of the local and remote memory
access for our experimental setup are shown in Table I.

B. Spark Engine Configuration

We configure the Spark engine to run in a pseudo-
distributed, standalone mode, where both Spark Master and
Spark Executors reside on the same physical machine. Each
computing unit acts independently and is bound with a set of
CPU resources either on NUMA node 0 or NUMA node 1
and memory resources from all the available NUMA regions.
To achieve this, we force Spark executors to be deployed
and access specific compute/memory tiers, by specifying the
cpunodebind and membind flags of Linux’s numactl tool.
By default, in standalone mode, Spark deploys one executor
instance that utilizes all the available cores of the bound
node (40 hyperthreads in our case). Last, we use Hadoop’s
Distributed File System (HDFS) [5] instead of the local file
system to store input and output data of Spark. Both HDFS
and Spark are configured with their default parameters.

C. Examined Spark applications

We utilize a subset of benchmarks derived from HiBench
suite [34]. We study 7 Spark applications derived from the
HiBench benchmark suite [34], which is widely used to eval-
uate Spark applications, listed in Table II. These applications
form representative examples out of three different workload
categories, i.e., micro-operations, machine learning and web
searching. Moreover, we examine a diverse set of input dataset
sizes per application, i.e. tiny, small and large.

IV. CHARACTERIZATION & ANALYSIS

In this section, we provide an extensive profiling and char-
acterization of our examined examined Spark applications over
the different memory configurations considered, as described
in Sec. III. Following a Q&A approach, we debate over
different aspects that form interesting study factors and, based
on our experimental analyses, we provide a set of valuable
insights and outcomes to consider when deploying Spark
analytics over heterogeneous memory configurations.

A. How do the different memory tiers affect the performance
of our examined applications?

First, we examine how allocating memory from different
tiers affects the execution time of applications, by using the

TABLE I: Idle access latency and memory bandwidth per tier

Idle Latency (ns) Bandwidth (GB/s)
Tier 0 77.8 39.3
Tier 1 130.9 31.6
Tier 2 172.1 10.7Ti

er

Tier 3 231.3 0.47

default Spark configuration (1 executor - 40 cores). Figure 2
(top) illustrates the execution time of all the alternative bench-
marks, where the Y axis indicates the execution time and
X axis the corresponding input dataset size, respectively. We
observe that for the majority of the workloads, local execution
provides optimized performance compared to remote execu-
tion, due to the inherent inferior performance of the remote
memory Tiers compared to the local one. Overall, the local
execution (Tier 0) achieves 44.2%, 66.4% and 90.1% better
execution time on average, compared to Tier 1, Tier 2 and
3 remote execution, respectively. However, there exist certain
cases where allocating memory from local and remote nodes
lead to similar execution time (e.g., repartition-tiny, pagerank-
tiny, pagerank-small), which reveals the potential of certain
applications for exploiting remote memory, without sacrificing
performance. Moreover, while most of the applications exhibit
linear or superlinear execution time increment across the
different dataset sizes, als shows an almost constant execution
time regardless of the input workload and the Tier considered.
⋆ Takeaway 1: Performance degradation due to remote

memory highly depends on the nature of each application
and its workload size, with certain combinations revealing
tolerance to the inherent inferior efficiency of remote Tiers.

Next, we also investigate the impact of each memory
technology, i.e., DRAM and Intel Optane DCPM, across the
different tiers. Executions bound with DRAM technology
(Tiers 1 & 2) exhibit almost similar performance, regardless
of the latency and bandwidth overhead due to remote memory
fetching. On the other hand, executions that are bound with
Intel Optane DCPM DIMMs (Tiers 3 & 4) require 76.7% more
execution time, compared to execution bound with DRAM
DIMMs, because accessing Optane DCPM requires higher
access latency and provides limited bandwidth compared to the
latter. Overall, remote memory accesses across different nodes
impose an extra communication overhead due to the physical
distance of the nodes. Thus, an extra latency penalty is added
to the already high access latency of persistent memory,

TABLE II: Examined Spark applications and dataset sizes

Application Abbr. Data size range
(tiny,small,large)

Sorting of text
input data

sort 32KB, 320MB, 3.2GB

Performs shuf-
fle operations

repartition 3.2KB, 3.2MB, 32MB

Alternating
Least Squares

als
100, 1.000, 10.000 (users)
100, 1.000, 10.000 (products)
200, 2.000, 20.000 (ratings)

Naive Bayes
classification

bayes 25.000, 30.000, 100.000 (pages)
10, 100, 100 (classes)

Random forest rf 10, 100, 1.000 (examples)
100, 500, 1.000 (features)

Latent Dirich-
let Allocation

lda
2.000, 5.000, 10.000 (docs)
1.000, 2.000, 3.000 (vocabulary)
10, 20, 30 (topics)

PageRank pagerank 50, 5.000, 500.000 (pages)



Tier 0 Tier 1 Tier 2 Tier 3 Memory Reads Memory Writes Optane DRAM

10

15

Ti
m

e 
(s

ec
)

sort

0

100

200

repartition

15

20

25

als

100

200
bayes

10

20

30

rf

0

500

1000

1500

lda

0

250

500

750

pagerank

0

2

4

6

N
um

be
r 

of
 A

cc
es

se
s 1e8

0.0

2.5

5.0

7.5
1e9

0.0

0.5

1.0
1e9

0.0

0.5

1.0 1e10

0.0

0.5

1.0

1e9

0

2

4

6

1e10

0

2

4
1e10

tin
y

sm
all

lar
ge

0.0

0.1

0.2

En
er

gy
(K

J)

tin
y

sm
all

lar
ge

0

1

2

tin
y

sm
all

lar
ge

0.0

0.2

0.4

tin
y

sm
all

lar
ge

0

1

2

tin
y

sm
all

lar
ge

0.0

0.1

0.2

0.3

tin
y

sm
all

lar
ge

0

5

10

15

tin
y

sm
all

lar
ge

0

5

10

Fig. 2: Execution time for all the different memory tiers (top), number of accesses (reads and writes) to memory (middle) and
DRAM/NVM energy comparison (bottom) for all the different dataset sizes and benchmarks examined.

leading to further performance degradation. Applications with
higher execution requirements, such as repartition, bayes,
lda and pagerank are more sensitive to performance degra-
dation, where up to 96.7% more execution time is observed
on average for all workloads when deployed on Tier 2 and as
the input workload increases, in contrast to sort, als and rf,
where we observe 31.1% degradation on average respectively.

⋆ Takeaway 2: The combination of remote memory access
penalty along with the inherent latency/bandwidth inefficiency
of Optane DCPM compared to DRAM, leads to a dispro-
portional increment on the performance gap between the two
technologies as the time of execution increases.

B. What are the core bottleneck factors for the observed
performance degradation?

NVDIMMs are slower compared to DRAM, thus we focus
on the insights of the degradation of applications bound with
Intel Optane DC. To this end, we monitor the number of read
and write memory accesses over the NVDIMMs by utilizing
Intel’s ipmctl tool. Figure 2 (middle row) illustrates the
respective results. Similar to execution time experiments, as
the number of read/write accesses increases, the performance
drops significantly. In applications such as bayes, lda and
pagerank, where the number of total accesses is an order
of magnitude higher compared to the other benchmarks, we
notice severe degradation both as the input workload increases
and as the application is bound to more distant tiers.

Moreover, in cases where the ratio of write to read accesses
increases, we observe a non-linear degradation on the perfor-
mance of applications. This is due to the asymmetry of read
and write operations on the Intel Optane DCPM in terms of
access latency, which is known to perform worse when write
accesses increase [29]. This is clearly observed for the lda

benchmark under the large workload, whose execution time
skyrockets proportionally to the number of write operations
performed in the Intel Optane DCPM. Similar observations
can be derived for the other benchmarks. Last but not least,
apart from the impact of the high number of accesses on
the target application, increased number of write operations
reduces the lifetime of persistent memory [35], thus in the
long-term further performance degradation may occur due to
potential hardware failures.
⋆ Takeaway 3: Application’s performance is highly affected

by the number of read and write operations on the persistent
memory, with the latter having even more impact by design.

C. Does bandwidth or latency dominate performance?

In addition to the undeniable overhead added by increased
accesses on the NVDIMMs, we aim to investigate further
overheads regarding the utilization of persistent memory as
a remote tier. For this scope, we take advantage of In-
tel’s Memory Bandwidth Allocation(MBA) tool [36] and we
limit the maximum possible bandwidth utilization to different
thresholds. Our experiments were conducted for 1 single
executor with 40 cores. Violin plots in Figure 3 illustrate the

20 40 60 80 100
10

20

30

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

) tiny

20 40 60 80 100
Memory Bandwidth Allocation (%)

20

40

60

80
small

20 40 60 80 100

100

200

large

Fig. 3: Execution time over various memory bandwidth levels
for all benchmarks and tiny,small and large input workloads



2x
speedup

2x
slowdown Infeasible Configuration

5 10 20 40
Cores

1
2

4
8

Ex
ec

ut
or

s

1.07 0.98 1.01 1.00

1.10 1.09 1.11

1.30 1.28

1.35

Tier 0

5 10 20 40
Cores

0.95 0.95 0.96 1.00

1.22 1.25 1.23

1.65 1.73

3.11

Tier 2

(a) sort-small

5 10 20 40
Cores

1
2

4
8

Ex
ec

ut
or

s

1.05 1.05 1.06 1.00

1.22 1.22 1.19

1.25 1.26

1.48

Tier 0

5 10 20 40
Cores

0.92 0.99 0.99 1.00

1.36 1.38 1.32

2.15 2.23

3.88

Tier 2

(b) rf-small

5 10 20 40
Cores

1
2

4
8

Ex
ec

ut
or

s

0.86 0.72 0.72 1.00

0.97 0.83 0.73

0.87 0.66

0.93

Tier 0

5 10 20 40
Cores

0.96 0.62 1.29 1.00

1.01 1.02 1.15

0.95 1.15

1.11

Tier 2

(c) lda-small

5 10 20 40
Cores

1
2

4
8

Ex
ec

ut
or

s

1.10 1.03 1.03 1.00

1.09 1.12 1.17

1.18 1.17

1.44

Tier 0

5 10 20 40
Cores

1.04 1.00 1.01 1.00

1.19 1.25 1.30

1.92 2.11

4.24

Tier 2

(d) pagerank-small

5 10 20 40
Cores

1
2

4
8

Ex
ec

ut
or

s

0.99 0.97 0.98 1.00

1.16 1.10 1.16

1.18 1.24

1.54

Tier 0

5 10 20 40
Cores

1.00 0.97 0.98 1.00

1.23 1.34 1.35

1.93 1.99

3.94

Tier 2

(e) sort-large

5 10 20 40
Cores

1
2

4
8

Ex
ec

ut
or

s

1.07 0.99 1.00 1.00

1.13 1.17 1.16

1.19 1.27

1.62

Tier 0

5 10 20 40
Cores

1.00 1.03 0.96 1.00

1.25 1.24 1.29

2.10 2.12

3.99

Tier 2

(f) rf-large

5 10 20 40
Cores

1
2

4
8

Ex
ec

ut
or

s

1.30 0.78 1.01 1.00

0.77 1.13 0.85

1.13 1.07

1.03

Tier 0

5 10 20 40
Cores

1.37 0.85 0.82 1.00

0.92 1.00 0.76

1.49 0.86

1.32

Tier 2

(g) lda-large

5 10 20 40
Cores

1
2

4
8

Ex
ec

ut
or

s

0.94 0.89 0.96 1.00

0.53 0.57 0.59

0.51 0.61

0.57

Tier 0

5 10 20 40
Cores

0.78 0.98 0.99 1.00

0.59 0.65 0.63

0.59 0.66

0.68

Tier 2

(h) pagerank-large

Fig. 4: Speedup/Slowdown of sort, rf, lda and pagerank applications for all workloads for varying number of cores and
executors. The default configuration is 1 executor with 40 cores.

L2-load-misse
s

L2-loads

LLC-load-misse
s

LLC-loads

branch-instru
ctio

ns

branch-load-misse
s

branch-loads

bus-cy
cles

cpu-cycles

dTLB-load-misse
s

dTLB-loads

dTLB-sto
re-misse

s

dTLB-sto
res

iTLB-load-misse
s

iTLB-loads

instru
ctio

ns

mem-sto
res

Event

als
bayes

lda
pagerank

repartition
rf

sort

Be
nc

hm
ar

k

0.40 0.73 0.47 0.72 0.38 0.57 0.40 0.77 0.62 0.65 0.40 0.71 0.39 0.50 0.30 0.54 0.62

0.77 0.80 0.81 0.79 0.88 0.73 0.88 0.91 0.86 0.77 0.84 0.80 0.84 0.65 0.55 0.92 0.90

0.29 0.42 0.35 0.40 0.35 0.33 0.38 0.70 0.51 0.50 0.28 0.63 0.37 0.47 0.13 0.48 0.63

0.22 0.17 0.21 0.19-0.070.05-0.100.40 0.22 0.23 0.06 0.17 0.23 0.27 0.16 0.22 0.26

0.26 0.43 0.21 0.42 0.43 0.45 0.44 0.61 0.43 0.44 0.53 0.37 0.45 0.12 0.33 0.51 0.56

0.33 0.59 0.42 0.64 0.44 0.58 0.47 0.79 0.63 0.62 0.56 0.49 0.53 0.44 0.55 0.52 0.62

0.49 0.30 0.52 0.38 0.17 0.04 0.10 0.50 0.29 0.42 0.26 0.39 0.19 0.37 0.25 0.16 0.04 0.0

0.2

0.4

0.6

0.8

Fig. 5: Correlation of system-level metrics with execution time

impact of alternative maximum memory bandwidth alloca-
tion percentages(X-axis) on the execution time of the target
applications(Y-axis) for all input workloads, on average. Both
the average execution time and the variance of the distributions
does not change as the bandwidth allocation percentage varies
for all the input workloads, respectively. Thus, our target
applications do not saturate the memory bandwidth, thus it
is not a bottleneck for the application’s performance. We
conclude that the increased access latency to NVDIMMs and
the overhead of remote access overhead is the most dominant
factor for performance degradation.

⋆ Takeaway 4: Performance is highly affected by the access
latency of memory technologies, while memory bandwidth
is not saturated, thus memory access latency and remote
communication are the major bottlenecks.

D. Despite its performance degradation, is persistent remote
memory energy efficient?

Figure 2 (bottom) illustrates a comparison of the average
energy consumption per DRAM(Tier 0) and Intel Optane
DCPM DIMM(Tier 2), over the alternative benchmarks and
workloads, respectively. Even though NVMs provide less
power consumption per access compared to traditional DRAM
technologies, we observe that Optane DIMMs consume higher

energy consumption in total compared to the DRAM DIMMs.
More specifically, DRAM execution provides 63.9% less en-
ergy consumption on average compared to Intel Optane DCPM
execution. This is due to the fact that applications deployed
on the NVDIMMs are utilized for higher amount of time,
thus leading to increased accumulated energy consumption.
Furthermore, we observe that the energy consumption, both
on the DRAM and Intel Optane DCPM DIMMs is inline
to the execution time scaling, as the input workload size
increases. However, there exist workloads, such as sort and
als can scale to larger workloads without significant energy
overhead. Thus they can be considered as candidates for
remote deployment without significant energy penalty.
⋆ Takeaway 5: Energy consumption is inline with the exe-

cution time, however energy over-consumption can be avoided
in some cases.

E. How does software tunable Spark configuration parameters
relate to and affect performance?

Next, we investigate how alternating the execution behavior
of the Spark engine affects the performance of applications, by
examining the performance for different number of executors
and cores per executor. With this analysis, we revisit the
long-standing debate between “fat” and “skinny” executors
for disaggregated memory architectures, which have either
isolated access to the memory or compete for shared re-
sources (e.g., executors requesting memory on a rack-scale
memory disaggregated system [11]). Figure 4 illustrates the
relative speedup/slowdown for a subset of the representative
benchmark under small and large workloads. X-axis indicates
the number of cores per NUMA node and Y-axis shows the
number of corresponding executors. As baseline, we consider
a single executor over 40 cores (bottom-right square). We
observe that sort(Fig. 4a), rf (Fig. 4b) and pagerank



(Fig. 4d) benchmarks provide significant slowdown when they
are bound to the NVM memory tier by getting down to 3.11×
slowdown. The increase of allocated CPU cores per executor
does not necessarily provide performance optimization, due to
contention in the shared resources of the system and especially
the memory bus. Moreover, increased number of executors
leads to extra number of accesses on the persistent memory
DIMMs for executors co-operation, thus leading to perfor-
mance degradation. In contrast to the examined benchmarks,
the lda (Fig. 4c) benchmark is not significantly affected as
the number of cores/executors ranges.

⋆ Takeaway 6: Increased number of executors that compete
over shared memory resources leads to further performance
degradation, with persistent memory being even more suscep-
tible to resource contention.

Moreover, we investigate how alternative combinations of
cores and executors behave over larger amounts of workload.
Figures 4e- 4h illustrate the corresponding speedup/slowdown
for the examined applications under the large workload. For
the sort, rf and lda the qualitative comparison under small
and large workloads is quite similar. However, regarding the
pagerank(Fig. 4h) benchmark, speedup is observed as the
number of executors increases, in contrast to small work-
load(Fig. 4d), where significant slowdown is observed as the
number of executors rises. This is due to the fact that for the
large workload, efficient data partitioning across the executors
and sufficient resource utilization is occurred and executors
are not underutilized. As the input dataset size increases, the
benefits of parallel processing and distribution across multiple
executors become more pronounced, leading to a speedup
in the overall processing time. Similar observations can be
derived for the other benchmarks.

⋆ Takeaway 7: Workload size affects the performance, how-
ever there exist benchmarks who handle better high workloads.

F. Can we somehow obtain a rough estimation of performance
degradation on remote memory tiers?

Last, we investigate the potential of exploiting different
metrics for estimating the performance of applications across
the several tiers. Specifically, we examine two directions
i) how system-level events correlate with execution time
when deployed on local memory and ii) how performance
correlates with the hardware specifications (Communication
Latency/Memory Bandwidth) of each tier. Inspired by prior
research [37], we investigate the relationship between system-
level metrics to higher-level metrics of interest, i.e., execution
time. Towards this direction we evaluate the system-level event
Pearson correlation [38] with execution time, as depicted in
Figure 5. We observe that bayes benchmark has the highest
correlation(near-linear) with almost all system-level metrics,
thus linear prediction models are expected to perform effi-
ciently in execution time prediction over new tiers deployed.
On the contrary, benchmarks such as pagerank, have low
correlation to system-level metrics, thus more complex models
are required for providing efficient time prediction on alterna-
tive tiers. Moreover, Figure 6 indicates the Pearson correlation

1 0 1

sort
repartition

als
bayes

rf
lda

pagerank

Be
nc

hm
ar

k

tiny

1 0 1
Pearson Correlation

small
Latency Bandwidth

1 0 1

large

Fig. 6: Correlation of hardware specs (latency and bandwidth)
with execution time for all applications and workloads

of execution time with bandwidth and latency for each indi-
vidual application and workload, across all tiers. We observe
that the execution time converges to near perfect positive(1)
and negative(-1) correlation for both latency and bandwidth,
respectively. Thus, execution time is highly correlated with
both latency and bandwidth, therefore linear prediction models
are expected to perform efficiently. Overall, we expect that
by combining the hardware-related specifications along with
system-level metrics, we can create accurate predictions of
performance degradation across the different tiers, by using
analytical models and/or Machine Learning techniques.
⋆ Takeaway 8: The inherent latency/bandwidth specifi-

cations and system-level events reveal high correlation with
performance over different tiers, thus, they can be utilized for
prediction of execution time on heterogeneous memory tiers.

G. Discussion and future perspectives

The outcomes of this paper reveal that Spark applications
are highly affected by disaggregated memory architectures,
mainly due to the high latency imposed by remote accesses.
However, there are cases where remote memory can be em-
ployed without any discount in performance, whereas there
is also plenty room for exploration w.r.t. determining the
optimal memory tier per access type, especially in the case
of persistent memory. On top of that, since Spark is designed
to work over distributed nodes, further optimizations can be
performed on the engine itself, to leverage a unified disaggre-
gated memory architecture thus avoiding shuffling operations
and minimize the overhead of remote memory access and scale
across memory tiers. Last, the high correlation among system-
level metrics and execution latency gives promising signs for
employing Machine Learning techniques to effectively predict
the performance of applications across different memory tiers.

V. CONCLUSION

In this work, we conduct an extensive characterization of
Spark in-memory analytics over heterogeneous DRAM/NVM
memory tiering. We investigate the impact of various factors
that affect high-level characteristics, such as performance and
energy consumption. We provide deployment guidelines and
explore effective system and application configurations, while
we denote potential future aspects. The major outcomes of
this work can be exploited by developers who target Spark
analytics over multi-tier heterogeneous memory systems.



REFERENCES

[1] L. Zhou, S. Pan, J. Wang, and A. V. Vasilakos, “Machine learning on big
data: Opportunities and challenges,” Neurocomputing, vol. 237, pp. 350–
361, 2017.

[2] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A. Sid-
diqa, and I. Yaqoob, “Big iot data analytics: architecture, opportunities,
and open research challenges,” ieee access, vol. 5, pp. 5247–5261, 2017.

[3] L. Rodrı́guez-Mazahua, C.-A. Rodrı́guez-Enrı́quez, J. L. Sánchez-
Cervantes, J. Cervantes, J. L. Garcı́a-Alcaraz, and G. Alor-Hernández,
“A general perspective of big data: applications, tools, challenges and
trends,” The Journal of Supercomputing, vol. 72, pp. 3073–3113, 2016.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[5] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST), pp. 1–10, Ieee, 2010.

[6] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, pp. 56–65, 2016.

[7] J. Kim, W. Choe, and J. Ahn, “Exploring the design space of page
management for multi-tiered memory systems,” in 2021 USENIX Annual
Technical Conference, USENIX ATC 2021, July 14-16, 2021 (I. Calciu
and G. Kuenning, eds.), pp. 715–728, USENIX Association, 2021.

[8] Z. Yan, D. Lustig, D. W. Nellans, and A. Bhattacharjee, “Nimble page
management for tiered memory systems,” in Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2019, Providence, RI,
USA, April 13-17, 2019 (I. Bahar, M. Herlihy, E. Witchel, and A. R.
Lebeck, eds.), pp. 331–345, ACM, 2019.

[9] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Peter, “Hemem:
Scalable tiered memory management for big data applications and real
NVM,” in SOSP ’21: ACM SIGOPS 28th Symposium on Operating
Systems Principles, Virtual Event / Koblenz, Germany, October 26-29,
2021 (R. van Renesse and N. Zeldovich, eds.), pp. 392–407, ACM, 2021.

[10] C. Pinto, D. Syrivelis, M. Gazzetti, P. K. Koutsovasilis, A. Reale,
K. Katrinis, and H. P. Hofstee, “Thymesisflow: A software-defined,
HW/SW co-designed interconnect stack for rack-scale memory dis-
aggregation,” in 53rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2020, Athens, Greece, October 17-21, 2020,
pp. 868–880, IEEE, 2020.

[11] K. Katrinis, D. Syrivelis, D. N. Pnevmatikatos, G. Zervas, D. Theodor-
opoulos, I. Koutsopoulos, K. Hasharoni, D. Raho, C. Pinto, F. Espina,
S. López-Buedo, Q. Chen, M. Nemirovsky, D. Roca, H. Klos, and
T. Berends, “Rack-scale disaggregated cloud data centers: The dredbox
project vision,” in 2016 Design, Automation & Test in Europe Confer-
ence & Exhibition, DATE 2016, Dresden, Germany, March 14-18, 2016
(L. Fanucci and J. Teich, eds.), pp. 690–695, IEEE, 2016.

[12] A. Roozbeh, J. M. Soares, G. Q. M. Jr., F. Wuhib, C. Padala, M. Mahloo,
D. Turull, V. Yadhav, and D. Kostic, “Software-defined ”hardware”
infrastructures: A survey on enabling technologies and open research
directions,” IEEE Commun. Surv. Tutorials, vol. 20, no. 3, pp. 2454–
2485, 2018.

[13] A. Belmonte, H. Oh, N. Rassoul, G. Donadio, J. Mitard, H. Dekkers,
R. Delhougne, S. Subhechha, A. Chasin, M. Van Setten, et al.,
“Capacitor-less, long-retention (¿ 400s) dram cell paving the way
towards low-power and high-density monolithic 3d dram,” in 2020 IEEE
International Electron Devices Meeting (IEDM), pp. 28–2, IEEE, 2020.

[14] T. Ali, P. Polakowski, S. Riedel, T. Büttner, T. Kämpfe, M. Rudolph,
B. Pätzold, K. Seidel, D. Löhr, R. Hoffmann, et al., “High endurance fer-
roelectric hafnium oxide-based fefet memory without retention penalty,”
IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3769–3774,
2018.

[15] M. Katsaragakis, L. Papadopoulos, C. Baloukas, and D. Soudris, “Mem-
ory management methodology for application data structure refinement
and placement on heterogeneous dram/nvm systems,” in 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 748–
753, IEEE, 2022.

[16] M. Andrei, C. Lemke, G. Radestock, R. Schulze, C. Thiel, R. Blanco,
A. Meghlan, M. Sharique, S. Seifert, S. Vishnoi, et al., “Sap hana adop-
tion of non-volatile memory,” Proceedings of the VLDB Endowment,
vol. 10, no. 12, pp. 1754–1765, 2017.

[17] “Daos architecture.”

[18] S. Park, H. Kim, K. Kim, J. So, J. Ahn, W. Lee, D. Kim, Y. Kim,
J. Seok, J. Lee, et al., “Scaling of memory performance and capacity
with cxl memory expander,” in 2022 IEEE Hot Chips 34 Symposium
(HCS), pp. 1–27, IEEE Computer Society, 2022.

[19] D. D. Sharma and S. Tavallaei, “Compute express link 2.0 white paper,”
CXL. Retrieved October, vol. 31, p. 2021, 2020.

[20] C. Lin, J. Zhuang, J. Feng, H. Li, X. Zhou, and G. Li, “Adaptive code
learning for spark configuration tuning,” in 2022 IEEE 38th International
Conference on Data Engineering (ICDE), pp. 1995–2007, IEEE, 2022.

[21] T. Chiba and T. Onodera, “Workload characterization and optimization
of tpc-h queries on apache spark,” in 2016 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS),
pp. 112–121, IEEE, 2016.

[22] P. S. Rao and G. Porter, “Is memory disaggregation feasible? a case study
with spark sql,” in Proceedings of the 2016 Symposium on Architectures
for Networking and Communications Systems, pp. 75–80, 2016.

[23] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade, “Micro-
architectural characterization of apache spark on batch and stream
processing workloads,” in 2016 IEEE International Conferences on
Big Data and Cloud Computing (BDCloud), Social Computing
and Networking (SocialCom), Sustainable Computing and Commu-
nications (SustainCom)(BDCloud-SocialCom-SustainCom), pp. 59–66,
IEEE, 2016.

[24] S. J. Jandaghi, A. Bhattacharyya, and C. Amza, “Phase annotated
learning for apache spark: Workload recognition and characterization,”
in 2018 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom), pp. 9–16, IEEE, 2018.

[25] E. Kakoulli and H. Herodotou, “Octopusfs: A distributed file system
with tiered storage management,” in Proceedings of the 2017 acm
international conference on management of data, pp. 65–78, 2017.

[26] D. Nikitopoulou, D. Masouros, S. Xydis, and D. Soudris, “Performance
analysis and auto-tuning for spark in-memory analytics,” in 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 76–
81, IEEE, 2021.

[27] S. Chen, W. Wang, X. Wu, Z. Fan, K. Huang, P. Zhuang, Y. Li, I. Rodero,
M. Parashar, and D. Weng, “Optimizing performance and computing re-
source management of in-memory big data analytics with disaggregated
persistent memory,” in 2019 19th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), pp. 21–30, IEEE,
2019.

[28] V. Hayot-Sasson, S. T. Brown, and T. Glatard, “Performance benefits of
intel® optane™ dc persistent memory for the parallel processing of large
neuroimaging data,” in 2020 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID), pp. 509–518,
IEEE, 2020.

[29] A. Shanbhag, N. Tatbul, D. Cohen, and S. Madden, “Large-scale
in-memory analytics on intel® optane™ dc persistent memory,” in
Proceedings of the 16th International Workshop on Data Management
on New Hardware, pp. 1–8, 2020.

[30] S. Kannan, Y. Ren, and A. Bhattacharjee, “Klocs: Kernel-level object
contexts for heterogeneous memory systems,” in Proceedings of the 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 65–78, 2021.

[31] S.-Y. Tsai, Y. Shan, and Y. Zhang, “Disaggregating persistent memory
and controlling them remotely: An exploration of passive disaggregated
key-value stores,” in Proceedings of the 2020 USENIX Conference on
Usenix Annual Technical Conference, pp. 33–48, 2020.

[32] F. V. Zacarias, R. Nishtala, and P. Carpenter, “Contention-aware appli-
cation performance prediction for disaggregated memory systems,” in
Proceedings of the 17th ACM International Conference on Computing
Frontiers, pp. 49–59, 2020.

[33] K. T. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ran-
ganathan, and T. F. Wenisch, “System-level implications of disag-
gregated memory,” in 18th IEEE International Symposium on High
Performance Computer Architecture, HPCA 2012, New Orleans, LA,
USA, 25-29 February, 2012, pp. 189–200, IEEE Computer Society,
2012.

[34] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench
benchmark suite: Characterization of the mapreduce-based data anal-
ysis,” in 2010 IEEE 26th International conference on data engineering
workshops (ICDEW 2010), pp. 41–51, IEEE, 2010.

[35] S. Akram, “Performance evaluation of intel optane memory for managed
workloads,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 18, no. 3, pp. 1–26, 2021.



[36] “Intel mba tool.”
[37] D. Masouros, S. Xydis, and D. Soudris, “Rusty: Runtime interference-

aware predictive monitoring for modern multi-tenant systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1,
pp. 184–198, 2020.

[38] I. Cohen, Y. Huang, J. Chen, J. Benesty, J. Benesty, J. Chen, Y. Huang,
and I. Cohen, “Pearson correlation coefficient,” Noise reduction in
speech processing, pp. 1–4, 2009.


