
How to run on LUMI
Rasmus Kronberg | Running GROMACS efficiently on LUMI workshop 2024

Introduction

• When you login to LUMI, you end up on one of the shared login nodes
• Intended for management tasks, e.g. compiling software, preparing and
submitting jobs, moving data and light pre‐/post‐processing tasks

• Do not run heavy tasks on the login nodes, these will be killed without
warning!

• ssh <username>@lumi.csc.fi
• …or open “Login node shell” at www.lumi.csc.fi

www.lumi.csc.fi

Slurm

• LUMI uses the Slurm resource management system for scheduling
batch jobs

• Available partitions (i.e. groups of nodes with similar resources/limits):
• Allocatable by node (exclusive access)

• standard (LUMI‐C)
• standard-g (LUMI‐G)

• Allocatable by resources (shared access)
• small , debug (LUMI‐C)

• small-g , dev-g (LUMI‐G)

• largemem (LUMI‐D)

Submitting batch jobs

• Use sbatch job.sh to submit batch jobs

• job.sh is your batch job script containing resource requests and
commands to run

• By default, stdout and stderr are directed to a file slurm-<jobid>.out

• Use squeue --me to list your submitted jobs

• Please submit jobs from your project’s /scratch directory!

Simple batch job script for GROMACS
#!/bin/bash
#SBATCH --partition=small-g # Partition name
#SBATCH --account=project_465000934 # Project for billing
#SBATCH --reservation=gromacs_wednesday # Reservation name
#SBATCH --time=00:10:00 # Run time (d-hh:mm:ss)
#SBATCH --nodes=1 # Total number of nodes
#SBATCH --gpus-per-node=1 # Number of GPUs per node
#SBATCH --ntasks-per-node=1 # Total number of MPI tasks per node
#SBATCH --cpus-per-task=7 # Number of threads per task

module use /appl/local/csc/modulefiles # We use CSC's local module tree
module load gromacs/2023.3-gpu # and load GROMACS version 2023.3

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK} # Set number of OpenMP threads

srun gmx_mpi mdrun ... # Launch application

• Note! srun is the only parallel launcher available on LUMI

Improving multi‐GPU performance: Architecture recap

• Compute nodes use non‐uniform memory access (NUMA) design
• 4 NUMA domains per CPU containing 2 CCDs with 8 cores each
• Memory in the local NUMA node can be accessed faster
• GPUs linked to specific NUMA nodes on LUMI‐G
• If we have exclusive access to a node, we can use Slurm to bind tasks to

resources for optimal performance
• Requires #SBATCH --exclusive or run in standard-g partition
• Important! Do not use unless your job is really utilizing all the reserved
resources!

CPU–GPU links

• LUMI‐G has “low‐noise” mode activated
• One CPU core is reserved for the OS to reduce jitter
• For a more balanced layout, first core of each CCD is disabled,
so only 56 cores are available for GPU jobs (7 cores per GCD)!

Binding tasks to resources

• Slurm uses hexadecimal masks for custom selection of which CPU cores
tasks should bind to

• Bits are ordered from right to left
• Each task needs a mask

• Example: Single mask for 7 cores out of 8 (disabling core number 0)

76543210 # core numbers
11111110 # binary mask (0 = exclude, 1 = include)
fe # hexadecimal value

• This would be the correct mask for CCD 0

Binding tasks to resources

• CCD 1:
• Binary mask: 1111111000000000 (16 bits)
• Hexadecimal value: fe00

• CCD 2:
• Binary mask: 111111100000000000000000 (24 bits)
• Hexadecimal value: fe0000

• …and so on, yielding the complete mask:
srun --cpu-bind=mask_cpu:fe,fe00,\ # cores 1-7, 9-15

fe0000,fe000000,\ # cores 17-23, 25-31
fe00000000,fe0000000000,\ # cores 33-39, 41-47
fe000000000000,fe00000000000000 # cores 49-55, 57-63

Multi‐GPU runs

• Remember that there’s no direct correspondence between CCD order
and GCD numbering:

GCD 0 GCD 1 GCD 2 GCD 3 GCD 4 GCD 5 GCD 6 GCD 7

Cores 49–55 57–63 17–23 25–31 1–7 9–15 33–39 41–47

• To account for this, we expose a single GCD to each task and reorder
the CPU mask so that the task and GCD IDs match

• Note! the lowest task ID on each node is mapped to the first mask
specified in the list (see next slide)

• To enable GPU‐aware MPI, add export MPICH_GPU_SUPPORT_ENABLED=1

A complete example for GROMACS (full GPU node)
#!/bin/bash
#SBATCH --partition=standard-g
#SBATCH --account=<project>
#SBATCH --time=00:10:00
#SBATCH --nodes=1
#SBATCH --gpus-per-node=8
#SBATCH --ntasks-per-node=8

export OMP_NUM_THREADS=7
export MPICH_GPU_SUPPORT_ENABLED=1
export GMX_ENABLE_DIRECT_GPU_COMM=1
export GMX_FORCE_GPU_AWARE_MPI=1

cat << EOF > select_gpu
#!/bin/bash
export ROCR_VISIBLE_DEVICES=\$SLURM_LOCALID
exec \$*
EOF

chmod +x ./select_gpu

CPU_BIND="mask_cpu:fe000000000000,fe00000000000000"
CPU_BIND="${CPU_BIND},fe0000,fe000000"
CPU_BIND="${CPU_BIND},fe,fe00"
CPU_BIND="${CPU_BIND},fe00000000,fe0000000000"

srun --cpu-bind=${CPU_BIND} ./select_gpu gmx_mpi ...

• Note! if requesting more tasks than
GCDs, one needs to ensure that
ROCR_VISIBLE_DEVICES is not
assigned a too large value

• To keep the exercise job scripts simple,
most of this magic is hidden in a script
lumi-affinity.sh that we source

• However, it’s important to remember
that these steps are very important for
optimal multi‐GPU performance

Monitoring GPU utilization

• It is not possible to ssh to compute nodes on LUMI
• You can, however, start an interactive shell on a compute node where
you have a job running using srun :

srun --interactive --pty --jobid=<jobid> $SHELL

• rocm-smi -u can then be used to monitor the GPU use

• Alternatively, replace $SHELL with rocm-smi -u to avoid having to
start a shell on the compute node in the first place

Take‐home messages

• Due to LUMI’s CPU–GPU linking and low‐noise mode, a custom
binding is important to maximize performance of multi‐GPU runs

• Requires an exclusive job allocation, so ensure that your system is large
enough to utilize all resources!

• Alternatively, run multiple independent simulations that share the
allocated resources (e.g. GROMACS -multidir)

• Slurm uses hexadecimal bitmasks to bind tasks to resources
• A bit cumbersome, so use the ready‐made templates!

• See:
• GROMACS batch script templates: docs.csc.fi/apps/gromacs/
• Running jobs on LUMI: docs.lumi-supercomputer.eu/runjobs/

docs.csc.fi/apps/gromacs/
docs.lumi-supercomputer.eu/runjobs/

