
Running molecular dynamics simulations
with GROMACS on LUMI

Authors: Szilárd Páll and Andrey Alekseenko (adapted from

doi:10.6084/m9.figshare.22303477 (https://doi.org/10.6084/m9.figshare.22303477))

Introduction

Learning goals

Get familiar with the GROMACS tools used in the exercises.

Understand common features of the mdrun command line.

Understand key parts of the mdrun log file structure.

Software: GROMACS 2023

The GROMACS simulation engine

GROMACS (https://www.gromacs.org) is a molecular simulation package which comes

with a molecular dynamics simulation engine (mdrun), a set of analysis tools, and
the gmxlib Python API.

GROMACS is highly flexible and can be built in various ways depending on the

target hardware architecture and the parallelization features enabled. The

GROMACS features and dependencies enabled at compile-time are shown in the

version header which is listed by invoking the gmx -version command as well as

at the top of the simulation log outputs. All functionalities of the GROMACS

package, the simulation engine and tools, are provided in the gmx program through

subcommands. The program can have suffixes, e.g. MPI builds are typically

installed as gmx_mpi .

In this tutorial, we will use a version of GROMACS that has already been built on the

LUMI-G cluster, but if you wish to install GROMACS on your own system,

instructions for many different hardware configurations are available at GROMACS

documentation (https://manual.gromacs.org/current/install-guide/index.html).

GROMACS parallelization overview

https://doi.org/10.6084/m9.figshare.22303477
https://www.gromacs.org/
https://manual.gromacs.org/current/install-guide/index.html

Parallelization of MD simulation requires expressing concurrent work (multiple

computations happening at the same time) and exposing it using an implementation

with the help of a parallel programming model. To express concurrency within a

single simulation in GROMACS we can divide the work using data (e.g. spatial

decomposition algorithms), task (e.g. rank specialization for the "separate PME

ranks" feature), or ensemble decomposition. The exposed concurrent work can

then be mapped to various processing units, like CPU cores or GPU accelerators.

GROMACS relies on a hierarchical heterogeneous parallelization using MPI,

OpenMP multi-threading, CUDA/SYCL/OpenCL for asynchronous GPU execution,

and SIMD for low-level CPU and GPU algorithms.

The data parallelism is used for implementing spatial decomposition (that consist of

dividing the simulation system into parts that are as independent as possible) and

takes place across MPI ranks using multi-threading on CPUs and fine-grained

SIMD-style algorithms (Single Instruction Multiple Data). At the same time, task

parallelism is at the heart of the heterogeneous GPU engine and it is also what

enables scaling the PME algorithm efficiently by employing rank specialization

(https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html#separate-pme-

ranks).

MD simulation studies can be classified into two major flavors: those that use a

single (or a few) long trajectory, and those realying on a larger set of trajectories.

Due to the timescale of some biological processes, a single/few very long

trajectories might not be enough (and/or it is inefficient) to sample the

conformational space. Then, an alternative is to use an ensemble of simulations.

A wide range of algorithms, from free energy perturbation to replica exchange to

the accelerated weight histogram method (AWH), rely on (or require) multiple MD

simulations which form an ensemble. An ensemble simulation refers to a set of

simulations, where each individual simulation is referred to as ensemble member

(called "replica" in replica-exchange and walker in AWH). These algorithms provide

a source of concurrent work, which simulation workflows can use to parallelize over,

and require different levels of coupling between the ensemble members. E.g.,

standard free-energy calculations (with a pre-determined simulation length) require

no communication across the ensemble members, whereas replica-exchange and

AWH require exchange of information at regular time intervals. The latter class of

methods is referred to as coupled ensembles. Depending on the frequency of data

exchange, ensembles can be weakly or strongly coupled (with infrequent or

frequent data exchange, resp.). Coupled ensembles are more performance

sensitive, hence more prone to be influenced by imbalance (e.g. member

simulations running with different throughput). The stronger the coupling the more

sensitive the ensemble simulation is to performance bottlenecks.

The mdrun simulation tool

https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html#separate-pme-ranks

In GROMACS, the primary way to run simulations across CPUs and GPUs is to use

the command line program mdrun . The simulation tool mdrun can be invoked as a

subcommand of the main program, e.g. gmx mdrun . The mdrun functionalities
available in a specific build depend on the options GROMACS was configured with

and can be seen in the version header.

The following list contains key performance-related command line options used in

this tutorial:

 -g LOGFILE set a custom name for the log file (default md.log);

 -pin on enable mdrun internal thread affinity setting (might override

externally set affinities). Note on LUMI externally set affinities are

recommended or the LUMI documentation (https://docs.lumi-

supercomputer.eu/runjobs/scheduled-jobs/distribution-binding/);

 -tunepme / -notunepme enable PME task load balancing;

 -nsteps N set the number of simulations steps for the current run to N (N=-1
means infinitely long runs, intended to be combined with -maxh);

 -maxh H stop the simulation after 0.99*H hours;

 -resethway reset performance counters halfway through the run;

 -nb / -pme / -bonded / -update task assignment options used to select tasks to

run on either CPU or GPU.

 -npme N set the number of separate ranks to be used for PME (N=-1 is a

guess)

Note that some performance features require using environment variables; see

examples in exercise 3.2. Documentation for these can be found in the GROMACS

user guide (https://manual.gromacs.org/current/user-guide/environment-variables.html).

For further information on the mdrun simulation tool command line options and

features, see the online documentation (https://manual.gromacs.org/current/onlinehelp/gmx-

mdrun.html).

The mdrun log file

The log file of the mdrun simulation engine contains extensive information about
the GROMACS build, hardware detected at runtime, complete set of simulation

setting, diagnostic output related to the run and its performance, as well as physics

and performance statistics.

https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/distribution-binding/
https://manual.gromacs.org/current/user-guide/environment-variables.html
https://manual.gromacs.org/current/onlinehelp/gmx-mdrun.html

The version header in a GROMACS mdrun log:

The version header contains GROMACS version and the command line used for the

current run (highlighted). It also contains additional information, like where

GROMACS is installed and how it was compiled.

The hardware detection section of the mdrun log:

This section contains the detailed information about the hardware GROMACS is

running on. The first line is a brief summary of the available resources (number of

nodes, CPU cores and GPUs), followed by additional details: CPU architecture, CPU

topology, and the list of the GPUs.

The performance accounting in the mdrun file:

This section is printed at the end of the run. The table contains breakdown of the

total run time per different kinds of activity. One can see the "Wall time" taken by

each activity, as well as its percentage with regard to the total simulation time.

Under the table one can find the absolute simulation performance (ns/day).

Simulation input systems

In the following exercises, we will use two different simulation systems:

large-sized satellite tobacco mosaic virus, STMV

(https://en.wikipedia.org/wiki/Tobacco_virtovirus_1) (~ 1 milion atoms) system solvated in

a box of TIP3P water molecules, using the CHARMM27 force field.

medium-sized aquaporin membrane protein (https://en.wikipedia.org/wiki/Aquaporin), a

tetrameric ion channel (~110000 atoms) embedded in a lipid bilayer and

solvated in a box of TIP3P water using the CHARMM36 force field. We will use

the Accelerated Weight Histogram (AWH) algorithm with 32 walkers.

Both systems have previously been used to benchmark GROMACS heterogeneous

parallelization and acceleration (https://doi.org/10.1063/5.0018516

(https://doi.org/10.1063/5.0018516)).

The simulation input files (including tpr) can be obtained from:

https://en.wikipedia.org/wiki/Tobacco_virtovirus_1
https://en.wikipedia.org/wiki/Aquaporin
https://doi.org/10.1063/5.0018516

Aquaporin (https://a3s.fi/gmx-lumi/aqp-240122.tar.gz)

STMV (https://a3s.fi/gmx-lumi/stmv-240122.tar.gz)

or from the folder /projappl/project_465000934 on LUMI

In exercises 1-3, start with the STMV input, while for exercise 4 Aquaporin. If time

allows, feel free to experiment with the other input too.

1. Running your first jobs on LUMI-G

In this first exercise, we will submit our initial jobs on LUMI-G and explore key

features and peculiarities of the LUMI system, scheduler, and GROMACS' mdrun
simulation tool. As simulation system we use STMV input.

We will start with a basic job submission script (batch script) and successively build

on it to explore how to correctly request resources using the SLURM job scheduler

and to finally arrive to have a script that correctly requests resources on LUMI-G

nodes.

 The LUMI-G hardware partition consists of 2978 nodes with 4 AMD MI250X

GPUs and a single 64 cores AMD EPYC "Trento" CPU. Each MI250X is a multi-

chip module with two GPU dies named "AMD Graphics Compute Die" (GCD).

For further details on the LUMI architecture, see the LUMI documentation

(https://docs.lumi-supercomputer.eu/hardware/lumig/) or how to use GROMACS on LUMI

(https://docs.csc.fi/apps/gromacs/).

Learning goals

Know how to submit GROMACS jobs.

Get familiar with common SLURM scheduling and mdrun command line

options.

Get familiar with the mdrun console and log outputs.

Bonus: Understand the impact of using multiple CPU cores/threads on

parts of the MD computation.

The GROMACS log file Before starting, take a look at the introduction on

the GROMACS mdrun simulation tool
(https://hackmd.io/qvLmXFLCQGScOHhdjS5uQw#The-mdrun-simulation-tool) and at the

description of log files.

https://a3s.fi/gmx-lumi/aqp-240122.tar.gz
https://a3s.fi/gmx-lumi/stmv-240122.tar.gz
https://docs.lumi-supercomputer.eu/hardware/lumig/
https://docs.csc.fi/apps/gromacs/

Exercise 1.1: Launching a first GROMACS simulation on LUMI-G

Now, we will launch a first test simulation on LUMI-G. Make sure you have copied

the necessary topol.tpr file into a working directory of your choice under

 /scratch/project_465000934 (this is also where your output files will end up, so

it's good to keep it organized!), and then create a batch file (with suffix .sh) with

the following content:

#!/bin/bash
#SBATCH --partition=small-g # partition to use
#SBATCH --account=project_465000934 # project for billing
#SBATCH --reservation=gromacs_wednesday # workshop reservation
#SBATCH --time=00:10:00 # maximum execution time of
#SBATCH --nodes=1 # we use 1 node
#SBATCH --ntasks-per-node=1 # 1 MPI rank
#SBATCH --cpus-per-task=1 # 1 CPU core

module use /appl/local/csc/modulefiles
module load gromacs/2023.3-gpu

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx_mpi mdrun \
 -g ex1.1_${SLURM_NTASKS}x${OMP_NUM_THREADS}_jID${SLURM_JOB_ID} \
 -nsteps -1 -maxh 0.017 -resethway -notunepme

Note the four benchmarking flags used above (-nsteps , -maxh , -resethway and
 -[no]tunepome) are described in the introduction

(https://hackmd.io/qvLmXFLCQGScOHhdjS5uQw#The-mdrun-simulation-tool).We use time limited

runs here by passing -maxh 0.017 which sets the run time limit in hours (~one
minute); we do that as the simulation throughput significantly changes and we want

to avoid either very long wait time or unreliable benchmark measurements due to

just a few seconds of runtime.

Submit the job (use the sbatch command) and wait until it finishes.

Take a look at log file (.log) and find the hardware detection and

performance table. What are the resources detected and used?

Now try to enable multithreading. To do that, we need to request multiple CPU

cores. Edit the job script, change the number of CPU cores and submit a new job.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

 SBATCH arguments provided in the job script header can also be passed on

the command line (e.g. sbatch --cpus-per-task N) overriding the setting in

the job script header. Doing so can allow varying submission parameters

without having to edit the job script.

#!/bin/bash
#SBATCH --partition=small-g # partition to use
#SBATCH --account=project_465000934 # project for billing
#SBATCH --reservation=gromacs_wednesday # reservation for 24 January
#SBATCH --time=00:10:00 # maximum execution time of
#SBATCH --nodes=1 # we run on 1 node
#SBATCH --ntasks-per-node=1 # 1 MPI rank
#SBATCH --cpus-per-task=... # number cpus-per-task

module use /appl/local/csc/modulefiles
module load gromacs/2023.3-gpu

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx_mpi mdrun \
 -g ex1.1_${SLURM_NTASKS}x${OMP_NUM_THREADS}_jID${SLURM_JOB_ID} \
 -nsteps -1 -maxh 0.017 -resethway -notunepme

Compare the log file hardware detection and performance table of the two

above runs. What has changed in terms of resources detected and used? Is

there anything still missing?

LUMI-G has relatively few CPUs cores per GPU, so making the best use of these is

important and can have a strong impact on performance. We will explore this

further in Exercise 1.3.

Exercise 1.2: Launching a simple GROMACS GPU run

Note in the log files of previous exercise that GPUs are not detected. Now we learn

how to request GPUs. Use the job script below to submit a job using one GPU.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

#!/bin/bash
#SBATCH --partition=small-g # partition to use
#SBATCH --account=project_465000934 # project for billing
#SBATCH --reservation=gromacs_wednesday # reservation for 24 January
#SBATCH --time=00:10:00 # maximum execution time of
#SBATCH --nodes=1 # we run on 1 node
#SBATCH --ntasks-per-node=1 # 1 MPI rank
#SBATCH --cpus-per-task=7 # number cpus-per-task
#SBATCH --gpus-per-node=1 # New line! Get 1 GPU device

module use /appl/local/csc/modulefiles
module load gromacs/2023.3-gpu

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx_mpi mdrun \
 -g ex1.2_${SLURM_NTASKS}x${OMP_NUM_THREADS}_jID${SLURM_JOB_ID} \
 -nsteps -1 -maxh 0.017 -resethway -notunepme

Look at the log file hardware detection and performance table: what are the

resources detected and used?

Compare the log file of Ex 1.1 and 1.2. Has the performance changed?

Bonus Exercise 1.3: Explore the use of CPUs and OpenMP multi-
threading

In this exercise, we will use only the CPUs of the LUMI-G nodes to explore how the

different computational tasks perform with OpenMP multi-threading. Use the job

script below to submit a job using only CPUs. Note that you have to fill in a value for

 --cpu-per-task .

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

#!/bin/bash
#SBATCH --partition=small-g # partition to use
#SBATCH --account=project_465000934 # project for billing
#SBATCH --reservation=gromacs_wednesday # reservation for 24 January
#SBATCH --time=00:10:00 # maximum execution time of
#SBATCH --nodes=1 # we run on 1 node
#SBATCH --ntasks-per-node=1 # 1 MPI rank
#SBATCH --cpus-per-task=... # number cpus-per-task

module use /appl/local/csc/modulefiles
module load gromacs/2023.3-gpu

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx_mpi mdrun \
 -g ex1.3_${SLURM_NTASKS}x${OMP_NUM_THREADS}_jID${SLURM_JOB_ID} \
 -nsteps -1 -maxh 0.017 -resethway -notunepme

Modify the script varying the number of CPU cores used (--cpus-per-task)
and submit runs with each new setting.

Look at the mdrun log file output (the files will be named

 ex1.3_1xN_jIDXXXXXX.log).

How does the absolute performance (ns/day) change when increasing the

number of cores used?

How does the wall-time of various computations change with the thread

count (e.g. "Force", "PME mesh", "Update" tasks)?

Help with the solution

Sample log files for the exercise session.:

ex 1.1 (https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-

1.1/STMV)

ex 1.2 (https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-

1.2/STMV)

ex 1.3 (https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-

1.3/STMV)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-1.1/STMV
https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-1.2/STMV
https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-1.3/STMV

2. GPU accelerated simulations

Learning goals

Understand how the GROMACS heterogeneous parallelization allows

moving tasks between CPU and GPU and how that impacts performance.

Understand the difference between force-offload and GPU-resident

modes.

Advanced: Explore the effects of load balancing.

The GROMACS MD engine uses heterogeneous parallelization which can flexibly

utilize both CPU and GPU resources. As discussed in the lecture, there are two

offload modes:

In the force offload mode, some or all forces are computed on the GPU, but are

transferred to the CPU every iteration for integration;

In the GPU-resident mode, the integration happens on the GPU allowing the

simulation state to reside on the GPU for tens or hundreds of iterations. Further

details can be found in the GROMACS users guide

(https://manual.gromacs.org/current/user-guide/mdrun-performance.html#running-mdrun-with-

gpus) and DOI:10.1063/5.0018516 (https://aip.scitation.org/doi/full/10.1063/5.0018516).

In the following exercises, we will learn how moving tasks between the CPU and

GPU impacts performance. As simulation system we use the STMV input.

We will be using LUMI-G GPU nodes for submitting single-GPU device jobs (hence

using one of the eight in the full compute node); for further details on the

architecture and usage see the GPU nodes - LUMI-G (https://docs.lumi-

supercomputer.eu/hardware/lumig/).

Exercise 2.1: GPU offloading force computations

The tasks corresponding to the computation of bonded, short and long-range non-

bonded forces can be offloaded to a GPU in GROMACS. The assignment of these

tasks is controlled by the following mdrun command line options:

(short-range) nonbonded: -nb ASSIGNMENT

particle mesh Ewald: -pme ASSIGNMENT

bonded: -bonded ASSIGNMENT

The possible " ASSIGNMENT " values are cpu , gpu , or auto .

https://manual.gromacs.org/current/user-guide/mdrun-performance.html#running-mdrun-with-gpus
https://aip.scitation.org/doi/full/10.1063/5.0018516
https://docs.lumi-supercomputer.eu/hardware/lumig/

We use one GPU with CPU cores (an eighth of the node) in a simulation and assess

how the performance changes with offloading different force calculations. As a

baseline, launch a run first with assigning all tasks to the CPU (as below).

#!/bin/bash
#SBATCH --partition=small-g # partition to use
#SBATCH --account=project_465000934 # project for billing
#SBATCH --reservation=gromacs_thursday # reservation for 25 January
#SBATCH --time=00:10:00 # maximum execution time of
#SBATCH --nodes=1 # we run on 1 node
#SBATCH --gpus-per-node=1 # we use 1 GPU device
#SBATCH --ntasks-per-node=1 # 1 MPI rank
#SBATCH --cpus-per-task=7 # number cpus-per-task

module use /appl/local/csc/modulefiles
module load gromacs/2023.3-gpu

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx_mpi mdrun \
 -nb cpu -pme cpu -bonded cpu -update cpu \
 -g ex2.1_${SLURM_NTASKS}x${OMP_NUM_THREADS}_jID${SLURM_JOB_ID} \
 -nsteps -1 -maxh 0.017 -resethway -notunepme

Next submit jobs by incrementally offloading various force tasks (non-bonded

 -nb , PME -pme , bonded -bonded) to the GPU.

How does the performance (ns/day) change with offloading more tasks?

Look at the performance table in the log and observe how the fraction wall-

time spent in the tasks left on the CPU change.

Note that the log file performance report will only contain timings of tasks

executed on the CPU, not those offloaded to the GPU, as well as timings of the

CPU time spent launching GPU work as well as waiting for GPU results.

Exercise 2.2: GPU-resident mode

Continuing from the previous exercise, we will now explore using the GPU-resident

mode.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

#!/bin/bash
#SBATCH --partition=small-g # partition to use
#SBATCH --account=project_465000934 # project for billing
#SBATCH --reservation=gromacs_thursday # reservation for 25 January
#SBATCH --time=00:10:00 # maximum execution time of
#SBATCH --nodes=1 # we run on 1 node
#SBATCH --gpus-per-node=1 # we use 1 GPU device
#SBATCH --ntasks-per-node=1 # 1 MPI rank
#SBATCH --cpus-per-task=7 # number cpus-per-task

module use /appl/local/csc/modulefiles
module load gromacs/2023.3-gpu

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx_mpi mdrun \
 -nb gpu -pme gpu -bonded gpu -update gpu \
 -g ex2.2_${SLURM_NTASKS}x${OMP_NUM_THREADS}_jID${SLURM_JOB_ID} \
 -nsteps -1 -maxh 0.017 -resethway -notunepme

Submit a fully offloaded GPU-resident job using the -update gpu option (as
above).

Since we moved most computation to the GPU, the CPU cores are left unused.

The GROMACS heterogeneous engine allows moving work back to the CPU.

Now, let's try to utilize CPU cores for potential performance benefits. First, try

moving the PME tasks back to the CPU, then the bonded tasks.

How does the GPU-resident mode perform compared to the best

performing force-offload run from ex 2.1?

How did the performance change when force tasks were moved back to the

CPU?

Bonus: Enable (PME) task load balancing by replacing -notunepme with -
tunepme . Assign the PME task to the CPU and GPU and observe how the

performance changes compared to the earlier similar run without load

balancing.

Bonus: The frequency of neighbor search (nstlist) is a free parameter
and can impact performance. Observe the default in the log files, try other

values (e.g. double and triple) and observe how the performance changes.

help with the results

Sample log files for the exercise session.:

ex 2.1 (https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-

2.1/STMV)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-2.1/STMV

ex 2.2 (https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-

2.2/STMV)

3. Scaling GROMACS across multiple GPUs

Learning goals

Understand how task- and domain decomposition is used in the mdrun
simulation engine.

Explore the multi-GPU strong scaling of GROMACS simulations and the

effect of using different decomposition and communication schemes.

In these exercises, we will explore the use of multiple GPUs to improve the

simulation performance. As simulation system we use the satellite tobacco mosaic

virus, STMV.

Exercise 3.1: Separate PME rank

In the previous exercise series, we have learnt how to offload some tasks from CPU

to GPU: short-range nonbonded, PME and bonded forces, update and constraints.

When scaling across two GPU devices, the same approach can be applied.

MPI ranks coordinate their work by exchanging data over a special protocol

and, unlike OpenMP threads, can run on different nodes in the cluster. Each

MPI rank can only use one GPU, but different MPI ranks can use different GPUs

(or the same one).

With two MPI ranks, mdrun can do non-bonded, bonded, and integration tasks on

the first rank and PME on the second rank. This is a basic version of run mode

called separate PME rank. Furthermore, each task can be run either on CPU or GPU.

When running on CPU, the work can be distributed across multiple OpenMP threads

within a rank; when running on GPU, the task is automatically mapped to the GPU's

compute resources.

Try running on two GPUs using two ranks, one particle-particle (PP) and one PME:

https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-2.2/STMV

#!/bin/bash
#SBATCH --partition=small-g # partition to use
#SBATCH --account=project_465000934 # project for billing
#SBATCH --reservation=gromacs_thursday # reservation for 25 January
#SBATCH --time=00:10:00 # maximum execution time of
#SBATCH --nodes=1 # we run on 1 node
#SBATCH --gpus-per-node=.. # fill in number of GPU dev
#SBATCH --ntasks-per-node=... # fill in number of MPI rank
#SBATCH --cpus-per-task=7 # number cpus-per-task

export OMP_NUM_THREADS=${SLURM_CPUS_PER_TASK}

srun gmx_mpi mdrun -npme 1 \
 -nb gpu -pme gpu -bonded gpu -update gpu \
 -g ex3.1_${SLURM_NTASKS}x${OMP_NUM_THREADS}_jID${S
 -nsteps -1 -maxh 0.017 -resethway -notunepme

Try changing which tasks are offloaded to GPUs and CPUs by varying -bonded
and -update flags (keeping -nb gpu -pme gpu).

Look at the absolute performance in the log files. Note that the

communication overhead when using two GPUs outweighs the gains.

Advanced: Compare log files for GPU-resident run with Ex. 2.2. How many

times is "Wait GPU state copy" called in each case (compared to the total

number of steps)?

Exercise 3.2: Separate PME rank with direct GPU communication.

By default, GROMACS uses staged communication: data is copied from GPU to CPU

on one rank, then sent between CPUs, and finally copied to the target GPU. On

LUMI, it is more efficient to use direct GPU communication (also called "GPU-

aware"). This is achieved by setting the following environment variables:

export MPICH_GPU_SUPPORT_ENABLED=1
export GMX_ENABLE_DIRECT_GPU_COMM=1
export GMX_FORCE_GPU_AWARE_MPI=1

Add these three variables to the script from Exercise 3.1 (before calling srun)
and repeat the runs of the previous exercise, but now with GPU-direct

communication enabled.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Look at how the absolute performance change in the log files.

Advanced: Compare the performance counters in log files in this and

previous exercise. What do you observe? (Hint: check "Send X to PME" and

"Wait GPU state copy").

Exercise 3.3: Domain-decomposition with a separate PME rank

Distributing tasks between GPUs only allows limited parallelism. If we wish to scale

to more than two GPUs, domain decomposition should be employed.

Recall from the lecture that the domain decomposition allows spatially

decomposing simulation data into domains. Most interactions in molecular

dynamics are short-range, and thus suitable for the domain decomposition

approach. However, long-range electrostatic interactions are less amenable to

decomposition and therefore require some special handling. Typically, when

scaling over N ranks (1 GPU per rank, N > 2), we use one rank to compute long-

range electrostatics (PME) for the whole system and use domain

decomposition to distribute the other tasks (short-range non-bonded, bonded,

integration) between the remaining N-1 ranks.

Now we try running on 4, 6, 8 ranks (including one separate PME rank) by changing

the values in the script below (ensure that the values of --gpus-per-node and --
ntasks-per-node are equal). To dedicate one rank for PME we use the option -
npme 1 .

Recall from the lecture on LUMI architecture that there is an intricate

interconnection between CPUs and GPUs. To make sure the code runs

optimally, always use lumi-affinity.sh script and srun --cpu-
bind=${CPU_BIND} ./select_gpu invocation to optimally pin CPU and GPU

tasks to the devices.

#!/bin/bash
#SBATCH --partition=small-g # partition to use
#SBATCH --account=project_465000934 # project for billing
#SBATCH --reservation=gromacs_thursday # reservation for 25 January
#SBATCH --exclusive # new! to reserve the whole
#SBATCH --time=00:10:00 # maximum execution time of
#SBATCH --nodes=1 # we run on 1 node
#SBATCH --gpus-per-node=.. # fill in number of GPU dev
#SBATCH --ntasks-per-node=... # fill in number of MPI rank

module use /appl/local/csc/modulefiles
module load gromacs/2023.3-gpu
source ${GMXBIN}/lumi-affinity.sh # new! script to configure L

export OMP_NUM_THREADS=7

export MPICH_GPU_SUPPORT_ENABLED=1
export GMX_ENABLE_DIRECT_GPU_COMM=1
export GMX_FORCE_GPU_AWARE_MPI=1

srun --cpu-bind=${CPU_BIND} ./select_gpu \
 gmx_mpi mdrun -npme 1 -nb gpu -pme gpu -bonded gpu -update gpu
 -g ex3.3_${SLURM_NTASKS}x${OMP_NUM_THREADS}_jID$
 -nsteps -1 -maxh 0.017 -resethway -notunepme

⚠ The script above uses --exclusive flag, reserving the whole node. This is

necessary to be able to set CPU and GPU affinities and it makes performance

measurements from short runs more predictable. However, exclusive reservations

should not be used for long runs unless you are using all eight GPUs.

Look at the absolute performance in the log files.

How does absolute performance scale with increasing number of GPUs?

Bonus: In Exercise 3.2, the performance gains were limited because there

is not enough PME work to offset the overhead of extra communication. Try

running on two GPUs (--gpus-per-node=2) with three ranks (--ntasks-
per-node=3) so that one GPU does PP work, and the other does PP+PME.

How does the performance compare to Exercise 3.2?

Bonus: The frequency of domain decomposition and neighbor search

(nstlist) is a free parameter and can impact performance. Observe the

default in the log files; try other values (e.g. double and triple) and observe

how the performance changes.

Help with the solution

Sample log files for the exercise session.:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

ex 3.1 (https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-

3.1/STMV)

ex 3.2 (https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-

3.2/STMV)

ex 3.3 (https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-

3.3/STMV)

4. Ensemble parallelization across multiple GPUs

Learning goals

Understand how to set up and run ensemble simulations with -multidir .

Understand the tradeoffs between simulation and aggregate ensemble

throughput and how it relates to hardware utilization efficiency.

Advanced: Explore the impact of task mapping on aggregate throughput.

The mdrun simulation engine provides the multi-simulation feature to run various
types of ensemble simulations. For details of how to set up an ensemble simulation

see the GROMACS user guide section on multi-simulations

(https://manual.gromacs.org/current/user-guide/mdrun-features.html#running-multi-simulations).

In this exercise we will learn how to run ensemble simulations using mdrun multi-
simulation feature. We will explore how to optimize ensemble performance and

efficiency, and learn about tradeoffs between simulation throughput, aggregate

throughput and how these relate to hardware utilization efficiency of heterogeneous

hardware and GPU accelerators.

The example system uses a strongly coupled ensemble setup based on multi-

walker AWH. The AWH setup is flexible in terms of ensemble size and can employ

up to 32 members.

To run multi-simulations the mdrun option -multidir can be used. Note that the -
multidir feature requires one input directory per ensemble member which should
contain simulation input (tpr) file and where outputs will be written. The directory

structure for -multidir runs is provided in the input tarball.

Exercise 4.1: Ensemble runs with -multidir

When the simulation system is relatively small, it may not be able to fully saturate

modern HPC GPUs. In such cases, we can achieve better hardware utilization by

assigning multiple ensemble members to a GPU. By doing so we provide more

(independent) work to each GPU, which can significantly improve aggregate

simulation throughput and allows making more efficient use of GPU hardware.

https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-3.1/STMV
https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-3.2/STMV
https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-3.3/STMV
https://manual.gromacs.org/current/user-guide/mdrun-features.html#running-multi-simulations

To explore this, we will use a fixed amount of hardware resources and vary the

ensemble size. Starting with the GPU-resident setup from Exercise 2.2 we will run

multi-GPU ensemble runs on all eight GPUs of a single LUMI-G node.

#!/bin/bash
#SBATCH --partition=small-g # partition to use
#SBATCH --account=project_465000934 # project for billing
#SBATCH --reservation=gromacs_thursday # reservation for 25 January
#SBATCH --exclusive # new! to reserve the whole
#SBATCH --time=00:10:00 # maximum execution time of
#SBATCH --nodes=1 # we run on 1 node
#SBATCH --gpus-per-node=8 # the number of GPU devices
#SBATCH --ntasks-per-node=.. # fill in the number of MPI

module use /appl/local/csc/modulefiles
module load gromacs/2023.3-gpu
source ${GMXBIN}/lumi-affinity.sh #

export OMP_NUM_THREADS=... # fill in the number of threads
num_multi=... # change ensemble size

Change "??" in -multidir flag below to the ensemble size
srun --cpu-bind=${CPU_BIND} ./select_gpu \
 gmx_mpi mdrun -multidir sim_{01..??} \
 -nb gpu -pme gpu -bonded gpu -update gpu \
 -g ex4.1_${SLURM_NNODES}N_multi${num_multi}_jID${SLURM_JOB_ID} \
 -nsteps -1 -maxh 0.017 -resethway -notunepme

As a baseline, launch one simulation per GPU, hence an 8-way ensemble on

one LUMI-G node.

Next, submit jobs with multiple (2,3 and 4) simulations per GPU on one LUMI-G

node.

How does the performance (ns/day) of each ensemble member simulation

change as you increase the number of simulations per GPU?

How does the aggregate performance per node change as you increase the

number of simulations per GPU?

Bonus: log in to the compute node and observe the GPU utilization (using

the rocm-smi tool) during the ensemble runs with lowest/highest

aggregate performance.

Try: srun --interactive --pty --jobid=<jobid> $SHELL , and once

on the compute node, rocm-smi -u

Alternatively, run rocm-smi directly: srun --interactive --pty --
jobid=<jobid> rocm-smi -u

replace <jobid> with the actual Slurm job ID of your job

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Exercise 4.2: Trading efficiency for higher simulation throughput

In some cases, we want to increase the (non-aggregate) performance of the

ensemble, e.g. if we need to sample longer. In such cases, we might have to trade

performance for efficiency.

In this exercise, we will combine what we have learnt in the exercises 3.x and 4.1.

We will assign an increasing amount of GPU resources to each ensemble member to

improve simulation performance. To do that, we will use a fixed 16-way ensemble

and run it varying the amount of compute resources.

#!/bin/bash
#SBATCH --partition=small-g # partition to use
#SBATCH --account=project_465000934 # project for billing
#SBATCH --reservation=gromacs_thursday # reservation for 25 January
#SBATCH --exclusive # new! to reserve the whole
#SBATCH --time=00:10:00 # maximum execution time of
#SBATCH --nodes=... # fill in the number of node
#SBATCH --gpus-per-node=8 # the number of GPU devices
#SBATCH --ntasks-per-node=.. # fill in the number of MPI

module use /appl/local/csc/modulefiles
module load gromacs/2023.3-gpu
source ${GMXBIN}/lumi-affinity.sh

export OMP_NUM_THREADS=... # fill in the number of OpenMP

export MPICH_GPU_SUPPORT_ENABLED=1
export GMX_ENABLE_DIRECT_GPU_COMM=1
export GMX_FORCE_GPU_AWARE_MPI=1

num_multi=16 # ensemble size

set -npme to 0 or 1
srun --cpu-bind=${CPU_BIND} ./select_gpu \
 gmx_mpi mdrun -multidir sim_{01..16} \
 -npme ... \
 -nb gpu -pme gpu -bonded gpu -update gpu \
 -g ex4.2_${SLURM_NNODES}N_multi${num_multi}_jID${SLURM_JOB_ID} \
 -nsteps -1 -maxh 0.017 -resethway -notunepme

As a baseline, we will use the single-node case, that is 16-way ensemble with 2

simulations per GPU (or a half-GPU per ensemble member) on a single LUMI-G

node. Run this setup or you can reuse this result from the previous exercise.

Next, submit jobs with increasing the amount of GPU resources assigned to

each ensemble member, by increasing the total number of nodes used from 1 to

2, and 4.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Note that as mentioned earlier, this is a small simulation system and therefore

its scaling is limited, hence it is not useful to try to use more than 2-4

GPUs/simulation.

How does the performance (ns/day) of each ensemble member simulation

change as you increase the number of nodes/GPUs used?

How does the aggregate performance per node change as you increase the

number of nodes/GPUs used?

Bonus: observe the GPU utilization using rocm-smi during the 1- and 4-

node ensemble runs. On LUMI you can do so by launching watch rocm-
smi in a job that "overlaps" with an existing job running as described in the

LUMI docs (https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/interactive/#using-

srun-to-check-running-jobs) or in the Exercise 4.1.

Advanced Exercise 4.3: Exploring task mapping for ensemble runs

In previous exercises, we used the fully GPU-offloaded GPU-resident mode, hence

the CPU was left mostly idle except for the small amount of AWH and bonded

computation which is not offloadable. As we explored in Exercise 2.2, exploiting the

heterogeneous nature of the GROMACS engine, we can shift more work to the CPU

cores that are otherwise left mostly idle.

Starting with the setup from the previous exercise, explore mapping some lighter-

weight compute tasks to the CPU, e.g. -bonded or -update .

As a baseline, we will use the fully GPU-offloaded runs from the previous

exercise.

Submit jobs with -bonded cpu and/or -update cpu

Bonus: repeat the same for a larger simulation system, like STMV.

Compare the log file when different tasks are GPU-offloaded. How do per-

simulation and per-node aggregate performance change?

Bonus: Look at the STMV log files. Do a STMV and aquaporin show the

same behavior?

help with the results

Sample log files for the exercise session.:

ex 4.1 (https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-4.1)

ex 4.2 (https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-

4.2)

https://docs.lumi-supercomputer.eu/runjobs/scheduled-jobs/interactive/#using-srun-to-check-running-jobs
https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-4.1
https://github.com/Lumi-supercomputer/gromacs-on-lumi-workshop/tree/main/Exercise-4.2

License This material is shared under CC BY-SA 4.0 license.

DOI:10.5281/zenodo.10556522 (https://zenodo.org/doi/10.5281/zenodo.10556522)

https://zenodo.org/doi/10.5281/zenodo.10556522

