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Why performance matters?
● Improved time-to-solution: get your results faster

– wait less for your results
– use your compute-hours effectively!

● Energy efficiency
– faster time-to-solution on fixed hardware (num CPUs/GPU)

 ⇒ (typically) best energy-to-solution
– faster time-to-solution on more hardware 

 ⇒ not always best energy-to-solution
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Why tuning performance matters:
GPU parallelization modes

Benchmark system: GluCL ion channel (144k atoms)

Hardware: 
● AMD R3900X CPU
● NVIDIA 2080 SUPER GPU
● PCIe 3.0 interconnect (slow)

● Best performance:

– with few cores/GPU: offload 
everything

– from 3-4 cores/GPU: bondeds on CPU
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Why tuning performance matters:
GPU parallelization modes

Benchmark system: GluCL ion channel (144k atoms)

Hardware: 
● AMD R3900X CPU
● NVIDIA 2080 SUPER GPU
● PCIe 3.0 interconnect (slow)

● Best performance:

– with few cores/GPU: offload 
everything

– from 3-4 cores/GPU: bondeds on CPU

RNase: 24k 
atoms

GluCL: 144k 
atoms
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What influences performance?
● GROMACS version: use a recent release!

● Simulation setup:
– system size
– system settings (cutoff, long-range interactions, constraints, vsites, etc.)

● check the documentation!
– runtime options

● Compilers/libraries
– some matter a lot: SYCL runtime, FFT library (GPU if offloaded)
– other little (for simulation)

● Hardware: CPU/GPU/network
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Reproducibility/repeatability
● Extensive reporting to fully document hardware, software & environment

– Executable path + working dir
– command line used
– hardware used
– MD simulation options (based on the MDP options)
– env var-based features issue notes on their activation
– algorihms used and their parameters
– runtime/state
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GROMACS version output
● Available through

– gmx -v
– every log file 

● Allows identifying exact setup:
– GROMACS version
– build configuration
– compilers/flags
– libraries used
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Hardware detection information
● Lists hardware details across all 

nodes in a simulation

(if detection allows)
● On LUMI GPUs are “hidden” 

from MPI ranks (other than the 
one device the rank is assigned)

LUMI hardware detection: 1 node, 7 cores, 1 GPU
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Hardware detection information
● Lists hardware details across all 

nodes in a simulation

(if detection allows)
● On LUMI GPUs are “hidden” 

from MPI ranks other than the 
one the device is assigned to

LUMI hardweare detection: 4 node, 4x56 cores, 4x8 GPUs 
(incorrectly reported as 4x1 because of ROCR_VISIBLE_DEVICES)
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Hardware detection information
● Lists hardware details across all 

nodes in a simulation

(if detection allows)
● On LUMI GPUs are “hidden” 

from MPI ranks other than the 
one the device is assigned to

CSC Mahti hardware detection: 1 node, 128 cores, 4 GPUs
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Task assignment report

● Reporting of task mapping
– reported only for one node 

(of the first rank)
● Showing:

– which tasks are offloaded 
–  PP and PME task to GPU ID 

mapping

Note that currently this can 
“break” due to 
ROCR_VISIBLE_DEVICES or 
equivalent

CSC Mahti task assignment report:

LUMI  task assignment report
Note: this too is slighly misleading due to the “hidden” devices 
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Domain decomposition report
Total rank count

DD cell size limits
determines decomposition limits
nstlist=400!

Dynamic load balancing not 
supported in GPU resident mode

Maximum decomposition 
setup possible (nstlist=400!)

Current PP/PME 
decomposition selected
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Domain decomposition report: different nstlist
Total rank count

DD cell size limits
determines decomposition limits
nstlist=100!

Dynamic load balancing not 
supported in GPU resident mode

Maximum decomposition 
setup possible (nstlist=100!)

Current PP/PME 
decomposition selected
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Pair interaction / Verlet algorithm setup

nstlist=100 (automatically chosen)

nstlist=400
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GROMACS performance table
● Displayed at the end of the run
● Timings of CPU activities

– computation
– communication
– launch of GPU operations
– waiting for data from GPU 

● Final simulation performance

PP work

PME work
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GROMACS performance
table: multi-GPU run

PP 
work

PME 
work

● Displayed at the end of the run
● Timings of CPU activities

– computation
– communication
– launch of GPU operations
– waiting for data from GPU 

● Final simulation performance
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Assessing performance summary
● Acceptable vs reasonable performance / scaling
● Rough scaling guide

– CPUs: hundreds of atoms / core
– GPUs: tens of thousands of atoms / GPU
– Assuming: “vanilla” MD setup and a high-performance interconnect

● Find reference data online and compare!
– e.g. benchmark of similar simulation system on similar hardware

● Scaling: check if it scales do not just aassume
– re-check with new input don’t just reuse settings
– re-check if machine setup changes
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Tuning performance: where to start?
● GROMACS version: use a recent release!

● Simulation setup:
– system size
– system settings (cutoff, long-range interactions, constraints, vsites, etc.)

● check the documentation!
– runtime options: reduce frequency of I/O and CPU-based algorithms (t/p coupling, comm motion removal)

● Compilers/libraries
– some matter a lot: SYCL runtime, FFT library (GPU if offloaded)
– other little (for simulation)

● Hardware: CPU/GPU/network
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Tuning performance: what to do next?
● Check for features unsupported on GPUs/with GPU-resident mode

– e.g. non “md” integrator, vsites, 
● Make sure correct binding/affinities are used

– suspicious sign: CPU tasks are taking unusually long
● Test offload modes:

– prefer GPU-resident mode on modern hardware
● Use direct GPU comm

– use a GPU-aware MPI
– check for update groups (topology order issue: hydrogen directly after the heavy atom)

● Consider tunables:
– nstlist
– PP-PME balance, PP to PME GPU ratio
– MPI ranks per GPU
– OpenMP threads/rank
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Anatomy of pair interaction kernel throughput

1.5 3 6 12 24 48 96 192 384 768 1536 3072
1

10

GTX 1080 RTX 2080
RTX 2080 SUPER Quadro GP100
Quadro P6000 Tesla V100
Vega FE Radeon Mi50
i9 7920X 24T R9-3900X 24T
Xeon Gold 6148 40T

system size (x1000 atoms)

ke
rn

el 
tim

e p
er

 at
om

 (n
s)

CPUs 
insensitive
to input size to
100s atoms/core
cache effects at
large inputs

GPUs very 
sensitive
to input size:
fixed overheads
kernel startup
SM load 
imabanlce

Strong scaling 
regime:
where most of 
our efforts go!

Benchmark “show-
off” regime:

This is where the` 
“free lunch” from 
new hardware 
comes in full effect



Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

PP-PME load balancing
● Task load balancing: 

– shift work from long- to short-range electrostatics
– increase cutoff while decreasing grid spacing

● Used with:
– MPMD : PP – PME ranks
– non-bonded offload: CPU-GPU
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GROMACS CPU-GPU balancing in practice

● Time consecutive cut-off settings, pick fastest
– need to adjust PME grid  discrete steps⇒

● Robust:
– discard first timings
– re-try if fluctuation is noticed

● Weaknesses:
– (Computational tradeoff)
– Static load balance: bias-prone by initial machine state, CPU/GPU clock ramp-up or thorttle

step   40: timed with pme grid 100 100 100, cutoff 0.900: 1671.1 M-cycles
step   80: timed with pme grid 84 84 84, cutoff 1.050: 1440.8 M-cycles
step  120: timed with pme grid 72 72 72, cutoff 1.225: 1879.7 M-cycles
step  160: timed with pme grid 96 96 96, cutoff 0.919: 1551.3 M-cycles
step  200: timed with pme grid 84 84 84, cutoff 1.050: 1440.7 M-cycles
step  240: timed with pme grid 80 80 80, cutoff 1.102: 1539.1 M-cycles
              optimal pme grid 84 84 84, cutoff 1.050
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Further resources
● GROMACS documentation:

– Getting good performance from mdrun
https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html#getting-
good-performance-from-mdrun

– Performance checklist: 
https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html#perfor
mance-checklist

● S. Páll, et. al (2020). Heterogeneous Parallelization and Acceleration of Molecular Dynamics 
Simulations in GROMACS. J. Chem. Phys. 153, 134110 (2020); 
https://doi.org/10.1063/5.0018516

● Maximizing GROMACS Throughput with Multiple Simulations per GPU Using MPS and MIG  
https://developer.nvidia.com/blog/maximizing-gromacs-throughput-with-multiple-simulati
ons-per-gpu-using-mps-and-mig

● Post your questions on the GROMACS users’ forum: https://gromacs.bioexcel.eu

https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html#getting-good-performance-from-mdrun
https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html#getting-good-performance-from-mdrun
https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html#performance-checklist
https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html#performance-checklist
https://doi.org/10.1063/5.0018516
https://developer.nvidia.com/blog/maximizing-gromacs-throughput-with-multiple-simulations-per-gpu-using-mps-and-mig
https://developer.nvidia.com/blog/maximizing-gromacs-throughput-with-multiple-simulations-per-gpu-using-mps-and-mig
https://gromacs.bioexcel.eu/
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Performance vs search frequency
● nstlist free parameter

– accuracy-based list buffering given the verlet-
buffer-tolerance mdp parameter

● Dual pair list allows increasing nstlist to 
much larger values
– automated Verlet buffer is needed

(does not work with verlet-buffer-tolerance=-1)
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