
Assessing and tuning GROMACS performance
on heterogeneous systems

Szilárd Páll
pszilard@kth.se

GROMACS on LUMI Workshop
January 25, 2024

mailto:pszilard@kth.se

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Why performance matters?
● Improved time-to-solution: get your results faster

– wait less for your results
– use your compute-hours effectively!

● Energy efficiency
– faster time-to-solution on fixed hardware (num CPUs/GPU)

 ⇒ (typically) best energy-to-solution
– faster time-to-solution on more hardware

 ⇒ not always best energy-to-solution

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Why tuning performance matters:
GPU parallelization modes

Benchmark system: GluCL ion channel (144k atoms)

Hardware:
● AMD R3900X CPU
● NVIDIA 2080 SUPER GPU
● PCIe 3.0 interconnect (slow)

● Best performance:

– with few cores/GPU: offload
everything

– from 3-4 cores/GPU: bondeds on CPU

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Why tuning performance matters:
GPU parallelization modes

Benchmark system: GluCL ion channel (144k atoms)

Hardware:
● AMD R3900X CPU
● NVIDIA 2080 SUPER GPU
● PCIe 3.0 interconnect (slow)

● Best performance:

– with few cores/GPU: offload
everything

– from 3-4 cores/GPU: bondeds on CPU

RNase: 24k
atoms

GluCL: 144k
atoms

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

What influences performance?
● GROMACS version: use a recent release!

● Simulation setup:
– system size
– system settings (cutoff, long-range interactions, constraints, vsites, etc.)

● check the documentation!
– runtime options

● Compilers/libraries
– some matter a lot: SYCL runtime, FFT library (GPU if offloaded)
– other little (for simulation)

● Hardware: CPU/GPU/network

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Reproducibility/repeatability
● Extensive reporting to fully document hardware, software & environment

– Executable path + working dir
– command line used
– hardware used
– MD simulation options (based on the MDP options)
– env var-based features issue notes on their activation
– algorihms used and their parameters
– runtime/state

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

GROMACS version output
● Available through

– gmx -v
– every log file

● Allows identifying exact setup:
– GROMACS version
– build configuration
– compilers/flags
– libraries used

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Hardware detection information
● Lists hardware details across all

nodes in a simulation

(if detection allows)
● On LUMI GPUs are “hidden”

from MPI ranks (other than the
one device the rank is assigned)

LUMI hardware detection: 1 node, 7 cores, 1 GPU

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Hardware detection information
● Lists hardware details across all

nodes in a simulation

(if detection allows)
● On LUMI GPUs are “hidden”

from MPI ranks other than the
one the device is assigned to

LUMI hardweare detection: 4 node, 4x56 cores, 4x8 GPUs
(incorrectly reported as 4x1 because of ROCR_VISIBLE_DEVICES)

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Hardware detection information
● Lists hardware details across all

nodes in a simulation

(if detection allows)
● On LUMI GPUs are “hidden”

from MPI ranks other than the
one the device is assigned to

CSC Mahti hardware detection: 1 node, 128 cores, 4 GPUs

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Task assignment report

● Reporting of task mapping
– reported only for one node

(of the first rank)
● Showing:

– which tasks are offloaded
– PP and PME task to GPU ID

mapping

Note that currently this can
“break” due to
ROCR_VISIBLE_DEVICES or
equivalent

CSC Mahti task assignment report:

LUMI task assignment report
Note: this too is slighly misleading due to the “hidden” devices

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Domain decomposition report
Total rank count

DD cell size limits
determines decomposition limits
nstlist=400!

Dynamic load balancing not
supported in GPU resident mode

Maximum decomposition
setup possible (nstlist=400!)

Current PP/PME
decomposition selected

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Domain decomposition report: different nstlist
Total rank count

DD cell size limits
determines decomposition limits
nstlist=100!

Dynamic load balancing not
supported in GPU resident mode

Maximum decomposition
setup possible (nstlist=100!)

Current PP/PME
decomposition selected

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Pair interaction / Verlet algorithm setup

nstlist=100 (automatically chosen)

nstlist=400

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

GROMACS performance table
● Displayed at the end of the run
● Timings of CPU activities

– computation
– communication
– launch of GPU operations
– waiting for data from GPU

● Final simulation performance

PP work

PME work

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

GROMACS performance
table: multi-GPU run

PP
work

PME
work

● Displayed at the end of the run
● Timings of CPU activities

– computation
– communication
– launch of GPU operations
– waiting for data from GPU

● Final simulation performance

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Assessing performance summary
● Acceptable vs reasonable performance / scaling
● Rough scaling guide

– CPUs: hundreds of atoms / core
– GPUs: tens of thousands of atoms / GPU
– Assuming: “vanilla” MD setup and a high-performance interconnect

● Find reference data online and compare!
– e.g. benchmark of similar simulation system on similar hardware

● Scaling: check if it scales do not just aassume
– re-check with new input don’t just reuse settings
– re-check if machine setup changes

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Tuning performance: where to start?
● GROMACS version: use a recent release!

● Simulation setup:
– system size
– system settings (cutoff, long-range interactions, constraints, vsites, etc.)

● check the documentation!
– runtime options: reduce frequency of I/O and CPU-based algorithms (t/p coupling, comm motion removal)

● Compilers/libraries
– some matter a lot: SYCL runtime, FFT library (GPU if offloaded)
– other little (for simulation)

● Hardware: CPU/GPU/network

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Tuning performance: what to do next?
● Check for features unsupported on GPUs/with GPU-resident mode

– e.g. non “md” integrator, vsites,
● Make sure correct binding/affinities are used

– suspicious sign: CPU tasks are taking unusually long
● Test offload modes:

– prefer GPU-resident mode on modern hardware
● Use direct GPU comm

– use a GPU-aware MPI
– check for update groups (topology order issue: hydrogen directly after the heavy atom)

● Consider tunables:
– nstlist
– PP-PME balance, PP to PME GPU ratio
– MPI ranks per GPU
– OpenMP threads/rank

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Anatomy of pair interaction kernel throughput

1.5 3 6 12 24 48 96 192 384 768 1536 3072
1

10

GTX 1080 RTX 2080
RTX 2080 SUPER Quadro GP100
Quadro P6000 Tesla V100
Vega FE Radeon Mi50
i9 7920X 24T R9-3900X 24T
Xeon Gold 6148 40T

system size (x1000 atoms)

ke
rn

el
tim

e p
er

 at
om

 (n
s)

CPUs
insensitive
to input size to
100s atoms/core
cache effects at
large inputs

GPUs very
sensitive
to input size:
fixed overheads
kernel startup
SM load
imabanlce

Strong scaling
regime:
where most of
our efforts go!

Benchmark “show-
off” regime:

This is where the`
“free lunch” from
new hardware
comes in full effect

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

PP-PME load balancing
● Task load balancing:

– shift work from long- to short-range electrostatics
– increase cutoff while decreasing grid spacing

● Used with:
– MPMD : PP – PME ranks
– non-bonded offload: CPU-GPU

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
cut-off (nm)

0

2

4

6

8

10

w
al

l-t
im

e
(m

s)

CPU force total
CPU Bonded
CPU PME mesh
GPU nonbonded
Total step

The load balancer
will pick this cut-off

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

GROMACS CPU-GPU balancing in practice

● Time consecutive cut-off settings, pick fastest
– need to adjust PME grid discrete steps⇒

● Robust:
– discard first timings
– re-try if fluctuation is noticed

● Weaknesses:
– (Computational tradeoff)
– Static load balance: bias-prone by initial machine state, CPU/GPU clock ramp-up or thorttle

step 40: timed with pme grid 100 100 100, cutoff 0.900: 1671.1 M-cycles
step 80: timed with pme grid 84 84 84, cutoff 1.050: 1440.8 M-cycles
step 120: timed with pme grid 72 72 72, cutoff 1.225: 1879.7 M-cycles
step 160: timed with pme grid 96 96 96, cutoff 0.919: 1551.3 M-cycles
step 200: timed with pme grid 84 84 84, cutoff 1.050: 1440.7 M-cycles
step 240: timed with pme grid 80 80 80, cutoff 1.102: 1539.1 M-cycles
 optimal pme grid 84 84 84, cutoff 1.050

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Further resources
● GROMACS documentation:

– Getting good performance from mdrun
https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html#getting-
good-performance-from-mdrun

– Performance checklist:
https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html#perfor
mance-checklist

● S. Páll, et. al (2020). Heterogeneous Parallelization and Acceleration of Molecular Dynamics
Simulations in GROMACS. J. Chem. Phys. 153, 134110 (2020);
https://doi.org/10.1063/5.0018516

● Maximizing GROMACS Throughput with Multiple Simulations per GPU Using MPS and MIG
https://developer.nvidia.com/blog/maximizing-gromacs-throughput-with-multiple-simulati
ons-per-gpu-using-mps-and-mig

● Post your questions on the GROMACS users’ forum: https://gromacs.bioexcel.eu

https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html#getting-good-performance-from-mdrun
https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html#getting-good-performance-from-mdrun
https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html#performance-checklist
https://manual.gromacs.org/documentation/current/user-guide/mdrun-performance.html#performance-checklist
https://doi.org/10.1063/5.0018516
https://developer.nvidia.com/blog/maximizing-gromacs-throughput-with-multiple-simulations-per-gpu-using-mps-and-mig
https://developer.nvidia.com/blog/maximizing-gromacs-throughput-with-multiple-simulations-per-gpu-using-mps-and-mig
https://gromacs.bioexcel.eu/

Shared under CC BY-SA 4.0. DOI: 10.5281/zenodo.10556523

Performance vs search frequency
● nstlist free parameter

– accuracy-based list buffering given the verlet-
buffer-tolerance mdp parameter

● Dual pair list allows increasing nstlist to
much larger values
– automated Verlet buffer is needed

(does not work with verlet-buffer-tolerance=-1)

8 10 15 20 25 40 50 75 100 150 200
50

55

60

65

70

75

80

85

90

28R single pair list
56R single pair list
28R dual pair list
56R dual pair list

pair search frequency (MD steps)

pe
rfo

rm
an

ce
 (n

s/
da

y)

Effect of nstlist on simulation performance
with single / dual pair list

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

