DOI:10.5281/zenodo.10556523

AMD GPU support in GROMACS

Andrey Alekseenko
KTH Royal Institute of Technology & SciLifeLab
andreyal@kth.se

FAST. FLEXIBLE. FREE.

S
oioexcel GROMACS

2024-01-24 Running GROMACS efficiently on LUMI workshop

https://doi.org/10.5281/zenodo.10556523

Moore’s law

2024-01-24

“Number of transistors

50 Years of Microprocessor Trend Data

i ' ! ' N
in an integrated circuit 10" | ol g = rransistors
: i oh thousands
doubles about every 10° B V. S ')
” 5| afaal Single-Thread
two years i i S *° - Per?ormance
S5 e3P TR (SpecINT x 10%)
Before ~2005: 10*F R ol WM 1
_ _ o ok o ::ﬁ.c‘iﬂ !*ﬂ.i ;.:-I:I Frequency (MHz)
increasing single-core 2 e pitaT i Zon pereg | Typical Power
performance or s i‘ﬂ & T A& ""; >4%es ¥ (Walls)
. » "WV Yy MRS Y¥| Number of
After ~2005: increasing "0 [.+ ws L. w7 |e8g® " +*|Logial Cores
ol 2 Iv" o 'V' g i |
the number of cores Lol S i i i |
1970 1980 1990 2000 2010 2020

Year
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

https://github.com/karlrupp/microprocessor-trend-data
2

Running GROMACS efficiently on LUMI workshop

https://github.com/karlrupp/microprocessor-trend-data

Graphics processing units
60-600 GB/s

e GPU: Most common type of accelerator CPU Host memory
e Specialized hardware

o Highly parallel

o Not self-sufficient
e Separate memory o0l Expross
e Different programming paradigm 8-60GBis W

Device

150-600 GB/s

GPU Device memory

Figure adapted from the Carpentry GPU Programming lesson; GPU photo by @zelebb on Unsplash
3

2024-01-24 Running GROMACS efficiently on LUMI workshop

https://carpentries-incubator.github.io/lesson-gpu-programming/gpu_introduction.html
https://unsplash.com/@zelebb
https://unsplash.com/photos/a-close-up-of-a-computer-fan-on-a-wall-D5hXm7eIhi8

LUMI-G node architecture

Qut to network Qut to network

NIC
(hsnO)

NUMA 1 NUMA 3

8 cores, 16 threads L3

(56-63, 120-127)

e[Al —

|/l
i

NUMA O NUMA 2

Out to network Out to network

2024-01-24 Running GROMACS efficiently on LUMI workshop

AMD MI250X GPU

e One MI250X GPU has two GCDs
e Each GCD is a logical GPU

GCD specs:

AMD CDNAZ2 architecture (gfx90a)
Peak Engine Clock: 1700 MHz

Peak FP32 Performance: 90 TFLOPs
Dedicated Memory Size: 64 GB

2024-01-24 Running GROMACS efficiently on LUMI workshop

Bandwidth vs. latency

NxN matrix multiplication
AMD Trento CPU vs. AMD MI250X GPU (LUMI)

julia

100000

AMDGPU
BenchmarkTools
10000
N
n N
g 1000 A rand n n
2 A_d ROCArray(A
= @btime SA A
100 @btime
A_d A_d
10’//////' AMDGPU . synchronize

50 100 500 1000

Matrix size (N)

= 56 CPU cores = 1 GPU

2024-01-24 Running GROMACS efficiently on LUMI workshop

Homogeneous / heterogeneous acceleration

e Homogeneous: use a single type of hardware

o Accelerator challenges 60600 GBS
m Porting effort / feature support
- Scaling CPU Host memory

e Heterogeneous: use different hardware together
o Typically, CPU + GPU
O Cha”enges PCI| Express
8-60 GB/s

m Data movement e i
m Latencies 150-600 GB/s
u Load balanCing GPU Device memory

Figure adapted from the Carpentry GPU Programming lesson; GPU photo by @zelebb on Unsplash
7

2024-01-24 Running GROMACS efficiently on LUMI workshop

https://carpentries-incubator.github.io/lesson-gpu-programming/gpu_introduction.html
https://unsplash.com/@zelebb
https://unsplash.com/photos/a-close-up-of-a-computer-fan-on-a-wall-D5hXm7eIhi8

GPU scheduling

Pair-search &

.
MPI comm: domain-decomposition ‘ MPI comm:
receive non- every 10-250 steps ' send non-
................................. o D T e B S NN GRSl - | A R P R G e L
H ' H
: ' MD step ‘ -
. . .
; A o0 ' £1100AA30 FFT ' £ & conshain :
' y: comm ; yyyyiiiicomm = ¥ i comm E
! Domain Pair Wait |} | o Integration :
TRl b fed " T hececeds -~ — FH - p— ~ —
decomp. [| search PME mesh F Rkt gl A local £ Constraints
ol ; % L. w
= < © w
28 |88 8 3
a|ls 5 g
~ c
X s [=]
Local List |l __"lI g |~ |Rolling| | Clear
SHTONAM: [Hatitiaia e pruning E ROR-8 Wm Local non-bonded F prune buffers >
Non-local ‘ Non-local
siream (high priorty) ~~ " TTTTTTTTTTI 1| Bonded F non-bonded F =

Average CPU-GPU overlap:
70-90% per step

2024-01-24 Running GROMACS efficiently on LUMI workshop

Using GPUs for compute

2024-01-24

Existing software

o Many HPC and Al codes already support GPUs
Task-specific frameworks / libraries

o ML (PyTorch), CV (OpenCV), math (cuBLAS), ...
High-level languages

o Python (PyCUDA, Numba), Julia (AMDGPU.jl), ...
Directive-based methods

o OpenMP, OpenACC

Native GPU code
o CUDA, HIP, OpenCL, SYCL, Kokkos, ...

Running GROMACS efficiently on LUMI workshop

Criteria:

- Effort

- Portability

- Performance
- Openness

GPU frameworks (subjective comparison)

o

/7 "a
NVIDIA. OpenCL @CL“
CUDA
Maturity of APl / ecosystem Fb ++ [/ + +++ [++ ++ /[+
Open standard X X \ v

Single-source model \ \ X v

Modern C++ support \ v X v
- AMDZ\ X W v *
o
QL
5 |nte|® X X W VW
=
T @2 W + v ++

NVIDIA.

2024-01-24 Running GROMACS efficiently on LUMI workshop

Why (GYCL?

e Open standard

e Two independent free (libre) implementations
o Intel oneAPI DPC++ 1

AdaptiveC
o AdaptiveCpp (aka hipSYCL) oneAPI &_p/_pp

e Broad hardware support
e Single source, modern C++

e Standardized interoperability with native libraries

2024-01-24 Running GROMACS efficiently on LUMI workshop

1

GPU frameworks in GROMACS 2020
X

NVIDIA. OTaenEIi @CLW
cupA
Short-range non-bonded (-nb) \ v
Long-range PME (-pme) \ v
Bonded (-bonded) \
Update (-update) \
PME Decomposition
Direct GPU communications \
Graph-based scheduling
Supported GPUs NVIDIA AMD,Intel, NVIDIA

2024-01-24 Running GROMACS efficiently on LUMI workshop

12

GPU frameworks in GROMACS 2023
X

NVIDIA. OTaenEIi @CLW
cupA

Short-range non-bonded (-nb) \ v v
Long-range PME (-pme) \ N \

Bonded (-bonded) \ \

Update (-update) N, \

PME Decomposition \ X *

Direct GPU communications \ X V
Graph-based scheduling \ X

Supported GPUs NVIDIA AMD, Apple, Intel, NVIDIA AMD, Intel, NVIDIA

13
2024-01-24 Running GROMACS efficiently on LUMI workshop

GPU frameworks in GROMACS 2023

< 4 A
oenCL GycL
NVIDIA OpenCL
CUDA
Short-range non-bonded (-nb) \ v v
Long-range PME (-pme) \ \ \
Bonded (-bonded) \ \
Update (-update) \ \
PME Decomposition \ X *
Direct GPU communications \ X \
Graph-based scheduling \ X
Supported GPUs NVIDIA AMD, Apple, Intel, NVIDIA %MD, Intel, NV|D|y

14
2024-01-24 Running GROMACS efficiently on LUMI workshop

SYCL compared to HIP

2024-01-24

AMD suggests HIP/ROCm stack for their GPUs
o Used by most other codes targeting AMD GPUs

SYCL is open, portable, modern

o Saved developer time: more features, less bugs
o Two supported implementations: DPC++ and AdaptiveCpp

GROMACS recommends AdaptiveCpp (hipSYCL) for AMD GPUs
AdaptiveCpp is built on top of HIP

o SYCL implementation, developed at Heidelberg University
o Supports AMD, NVIDIA, Intel GPUs

Running GROMACS efficiently on LUMI workshop

15

SYCL compared to HIP

2024-01-24

AdaptiveCpp is a layer on top of HIP

o Same compiler
o Different runtime / scheduler

Minimal overhead for bandwidth-bound simulation

Noticeable overhead for latency-bound simulations (< 50k particles per GPU)
o To be improved soon
o Reducing CPU usage (lower -ntomp) can help

Running GROMACS efficiently on LUMI workshop

16

Latency-bound case

e AdaptiveCpp uses extra threads to
submit work to GPU
e Theoretically, allows more flexibility

e In practice, incurs overhead
o Especially with few CPU cores

e Typically, 7 threads per GPU is fine
e But watch out when
approaching the scaling limit!

CPU overheads: ntomp=7 / ntomp=5
8 GPUs, RF-only water box, GPU-aware MPI, fully GPU-resident, -nstlist 300

1.05

0.95

Relative performance

0.90
L N
S

® S
§§ S $§
S $ $
® S $

©
S
&S

Particles per GPU

17

2024-01-24 Running GROMACS efficiently on LUMI workshop

LUMI-G node architecture

8 GPUs/GCDs per node
8 CCDs per node
GCD < CCD mapping

1111

’ 8 cores, 16 threads
{ Gruo (48-55, 112-119)

L3

kI

7 cores per CCD
(+1 reserved core)

Logical GPU is a single hardware GCD

18
2024-01-24 Running GROMACS efficiently on LUMI workshop

Parallelization overview: single GPU

Pair-search &
1 MPI rank domain-decomposition

: MD step
o 1GPU ;
. T ' 2 n
® 1 '7 CP U cores CPU !.. L) PME mesh E e L Integration
(OpenMP) search o5 Constraints

Local List | Rolling| | clear
GPU }Stream oo Local non-bonded F piine —‘buﬁers —

e -ntomp / OMP_NUM_THREADS
e -nb, -pme, -bonded, -update
e -nstlist

Y

H2D
pair list

H2D local x
D2H local F, E

Resource control:

19
2024-01-24 Running GROMACS efficiently on LUMI workshop

Parallelization overview: multiple GPUs

P

GPU

p Local
‘Stiearn

Pt comm:
fecaive non- 3
local x

Pair-search &
domain-decomposition
every 10-250 steps

Ao

MD step

x
K]
8
2
]
T

AddbzoFFT

1 PME mesh F M

H2D nonlocal x

& consbraint
¥ comn

D2H nonlocal F
D2H local F, E

—
e e
by nonocai kemel

Roling| | cear
Local non-bonded F

'

CPU

MP1 comm:
receive non-
local x.

Pair-search &
domain-decomposition

Aoeiconn

1 send
! localF.

H2D

pair list

H
E every 10-250 steps
H
'

MD step

'
: H
——'- PME mesh F w

H2D nonlocal x

D2H nonlocal F

e peenped
by nonocad kemel

i)

D2H local . E

Rolling| | clear
Local non-bonded F

GPU

A

- G
Siéarn

Non-local
/ Sirea (tigh prioriy)

every 10-250 steps

Non-local | Non-local
i (igh proiiy) == FH non-bonded F |
Average CPU-GPU overlap:
70-90% per step
. Pair-search &
wercon | domain-decomposition [-

H2D
pair list

H2D local x

H2D nonlocal x

i & constraint
omm

PME mesh F M

D2H nonlocal F
D2H local . E

.

e e
by nonocal kemel

Roling| | clear
Local non-bonded F

Non-local

de

non-bonded F

Average CPU-GPU overlap:
70-90% per step

CPU

GPU

~

Non-local Non-local]
Siream (high priority) non-bonded F |
Average CPU-GPU overlap,
70-90% per step
. Pair-search &
pioummr § domain-decomposition 4 e com
receive non- o every 10-250 steps o Ssodion:
H local -
'

Locs
‘Stieam

H2D

pair list

H2D local x

H2D nonlocal x

el
=
m
3
3
2
=
B
g
o
Q
S
a2
S2/g
285

D2H nonlocal F

e peenped
by non-ocal kemel

Non-local

Non-local
siream (high priority)

non-bonded F

D2H local . E

Local non-bonded F m‘:?

J

Average CPU-GPU overlap:

70-90% per step

2024-01-24

Running GROMACS efficiently on LUMI workshop

20

Parallelization overview: multiple GPUs

Multiple MPI ranks:

e 1 GPU per rank
e 1-7 cores per rank

8 GPUs per node, can use multiple nodes

e Better resource control when allocating full node
e Cray MPI is GPU-aware if you tell it to be

Ranks can share the GPU

2024-01-24 Running GROMACS efficiently on LUMI workshop

21

LUMI-G node architecture

Qut to network Qut to network

Direct GPU comm.

NIC
(hsnO)
NUMA 1 NUMA 3
y_
8 cores, 16 threads
Py (56:63,120127) L3 ‘

¥~ 8c/16t per GPU
(1 core reserved)

e
[y d

Manual affinity

/\

Out to network Out to network 22

2024-01-24 Running GROMACS efficiently on LUMI workshop

