
2024-01-24 Running GROMACS efficiently on LUMI workshop

AMD GPU support in GROMACS

Andrey Alekseenko
KTH Royal Institute of Technology & SciLifeLab

andreyal@kth.se

DOI:10.5281/zenodo.10556523

https://doi.org/10.5281/zenodo.10556523

2024-01-24 Running GROMACS efficiently on LUMI workshop

Moore’s law

https://github.com/karlrupp/microprocessor-trend-data

● “Number of transistors
in an integrated circuit
doubles about every
two years”

● Before ~2005:
increasing single-core
performance

● After ~2005: increasing
the number of cores

2

https://github.com/karlrupp/microprocessor-trend-data

2024-01-24 Running GROMACS efficiently on LUMI workshop

Graphics processing units

● GPU: Most common type of accelerator
● Specialized hardware

○ Highly parallel
○ Not self-sufficient

● Separate memory
● Different programming paradigm

3
Figure adapted from the Carpentry GPU Programming lesson; GPU photo by @zelebb on Unsplash

https://carpentries-incubator.github.io/lesson-gpu-programming/gpu_introduction.html
https://unsplash.com/@zelebb
https://unsplash.com/photos/a-close-up-of-a-computer-fan-on-a-wall-D5hXm7eIhi8

2024-01-24 Running GROMACS efficiently on LUMI workshop

LUMI-G node architecture

4

2024-01-24 Running GROMACS efficiently on LUMI workshop

AMD MI250X GPU

● One MI250X GPU has two GCDs
● Each GCD is a logical GPU

GCD specs:

● AMD CDNA2 architecture (gfx90a)
● Peak Engine Clock: 1700 MHz
● Peak FP32 Performance: 90 TFLOPs
● Dedicated Memory Size: 64 GB

5

2024-01-24 Running GROMACS efficiently on LUMI workshop

Bandwidth vs. latency

6

using AMDGPU
using BenchmarkTools

N = 5:12
for n in N
 A = rand(2^n, 2^n);
 A_d = ROCArray(A);
 @btime $A * $A;
 @btime begin
 $A_d * $A_d;
 AMDGPU.synchronize()
 end
end

2024-01-24 Running GROMACS efficiently on LUMI workshop

Homogeneous / heterogeneous acceleration

● Homogeneous: use a single type of hardware
○ Accelerator challenges

■ Porting effort / feature support
■ Scaling

● Heterogeneous: use different hardware together
○ Typically, CPU + GPU
○ Challenges

■ Data movement
■ Latencies
■ Load balancing

7
Figure adapted from the Carpentry GPU Programming lesson; GPU photo by @zelebb on Unsplash

https://carpentries-incubator.github.io/lesson-gpu-programming/gpu_introduction.html
https://unsplash.com/@zelebb
https://unsplash.com/photos/a-close-up-of-a-computer-fan-on-a-wall-D5hXm7eIhi8

2024-01-24 Running GROMACS efficiently on LUMI workshop

GPU scheduling

8

2024-01-24 Running GROMACS efficiently on LUMI workshop

Using GPUs for compute

● Existing software
○ Many HPC and AI codes already support GPUs

● Task-specific frameworks / libraries
○ ML (PyTorch), CV (OpenCV), math (cuBLAS), …

● High-level languages
○ Python (PyCUDA, Numba), Julia (AMDGPU.jl), …

● Directive-based methods
○ OpenMP, OpenACC

● Native GPU code
○ CUDA, HIP, OpenCL, SYCL, Kokkos, …

9

Criteria:

- Effort
- Portability
- Performance
- Openness

2024-01-24 Running GROMACS efficiently on LUMI workshop

GPU frameworks (subjective comparison)

10

Maturity of API / ecosystem +++ / +++ ++ / + +++ / ++ ++ / +
Open standard X X √ √

Single-source model √ √ X √
Modern C++ support √ √ X √

X √√ √ ++

X X √√ √√√

√√√ + √ ++H
W

 s
up

po
rt

2024-01-24 Running GROMACS efficiently on LUMI workshop

Why ?

● Open standard

● Two independent free (libre) implementations
○ Intel oneAPI DPC++

○ AdaptiveCpp (aka hipSYCL)

● Broad hardware support

● Single source, modern C++

● Standardized interoperability with native libraries

11

2024-01-24 Running GROMACS efficiently on LUMI workshop

GPU frameworks in GROMACS 2020

12

Short-range non-bonded (-nb) √ √

Long-range PME (-pme) √ √

Bonded (-bonded) √

Update (-update) √

PME Decomposition

Direct GPU communications √

Graph-based scheduling

Supported GPUs NVIDIA AMD,Intel, NVIDIA

2024-01-24 Running GROMACS efficiently on LUMI workshop

GPU frameworks in GROMACS 2023

13

Short-range non-bonded (-nb) √ √ √

Long-range PME (-pme) √ √ √

Bonded (-bonded) √ √

Update (-update) √ √

PME Decomposition √ X √*

Direct GPU communications √ X √

Graph-based scheduling √ X

Supported GPUs NVIDIA AMD, Apple, Intel, NVIDIA AMD, Intel, NVIDIA

2024-01-24 Running GROMACS efficiently on LUMI workshop

GPU frameworks in GROMACS 2023

14

Short-range non-bonded (-nb) √ √ √

Long-range PME (-pme) √ √ √

Bonded (-bonded) √ √

Update (-update) √ √

PME Decomposition √ X √*

Direct GPU communications √ X √

Graph-based scheduling √ X

Supported GPUs NVIDIA AMD, Apple, Intel, NVIDIA AMD, Intel, NVIDIA

2024-01-24 Running GROMACS efficiently on LUMI workshop

SYCL compared to HIP

● AMD suggests HIP/ROCm stack for their GPUs
○ Used by most other codes targeting AMD GPUs

● SYCL is open, portable, modern
○ Saved developer time: more features, less bugs
○ Two supported implementations: DPC++ and AdaptiveCpp

● GROMACS recommends AdaptiveCpp (hipSYCL) for AMD GPUs
● AdaptiveCpp is built on top of HIP

○ SYCL implementation, developed at Heidelberg University
○ Supports AMD, NVIDIA, Intel GPUs

15

2024-01-24 Running GROMACS efficiently on LUMI workshop

SYCL compared to HIP

● AdaptiveCpp is a layer on top of HIP
○ Same compiler
○ Different runtime / scheduler

● Minimal overhead for bandwidth-bound simulation
● Noticeable overhead for latency-bound simulations (< 50k particles per GPU)

○ To be improved soon
○ Reducing CPU usage (lower -ntomp) can help

16

2024-01-24 Running GROMACS efficiently on LUMI workshop

Latency-bound case

17

● AdaptiveCpp uses extra threads to
submit work to GPU

● Theoretically, allows more flexibility
● In practice, incurs overhead

○ Especially with few CPU cores

● Typically, 7 threads per GPU is fine
● But watch out when

approaching the scaling limit!

2024-01-24 Running GROMACS efficiently on LUMI workshop

LUMI-G node architecture

18

8 GPUs/GCDs per node
8 CCDs per node
GCD ↔ CCD mapping

7 cores per CCD
(+1 reserved core)

Logical GPU is a single hardware GCD

2024-01-24 Running GROMACS efficiently on LUMI workshop

Parallelization overview: single GPU

1 MPI rank:

● 1 GPU
● 1-7 CPU cores

Resource control:

● -ntomp / OMP_NUM_THREADS
● -nb, -pme, -bonded, -update
● -nstlist

19

2024-01-24 Running GROMACS efficiently on LUMI workshop

Parallelization overview: multiple GPUs

20

2024-01-24 Running GROMACS efficiently on LUMI workshop

Parallelization overview: multiple GPUs

Multiple MPI ranks:

● 1 GPU per rank
● 1-7 cores per rank

8 GPUs per node, can use multiple nodes

● Better resource control when allocating full node
● Cray MPI is GPU-aware if you tell it to be

Ranks can share the GPU

21

2024-01-24 Running GROMACS efficiently on LUMI workshop

LUMI-G node architecture

22

Direct GPU comm.

8c/16t per GPU
(1 core reserved)

Manual affinity

