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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

https://github.com/karlrupp/microprocessor-trend-data
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Graphics processing units
60-600 GB/s

e GPU: Most common type of accelerator CPU Host memory
e Specialized hardware

o Highly parallel

o Not self-sufficient
e Separate memory o0l Expross
e Different programming paradigm 8-60GBis W

Device

150-600 GB/s

GPU Device memory

Figure adapted from the Carpentry GPU Programming lesson; GPU photo by @zelebb on Unsplash
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https://carpentries-incubator.github.io/lesson-gpu-programming/gpu_introduction.html
https://unsplash.com/@zelebb
https://unsplash.com/photos/a-close-up-of-a-computer-fan-on-a-wall-D5hXm7eIhi8

LUMI-G node architecture
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AMD MI250X GPU

e One MI250X GPU has two GCDs
e Each GCD is a logical GPU

GCD specs:

AMD CDNAZ2 architecture (gfx90a)
Peak Engine Clock: 1700 MHz

Peak FP32 Performance: 90 TFLOPs
Dedicated Memory Size: 64 GB
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Bandwidth vs. latency

NxN matrix multiplication
AMD Trento CPU vs. AMD MI250X GPU (LUMI)
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Homogeneous / heterogeneous acceleration

e Homogeneous: use a single type of hardware

o Accelerator challenges 60600 GBS
m Porting effort / feature support
- Scaling CPU Host memory

e Heterogeneous: use different hardware together
o Typically, CPU + GPU
O Cha”enges PCI| Express
8-60 GB/s

m Data movement e i
m Latencies 150-600 GB/s
u Load balanCing GPU Device memory

Figure adapted from the Carpentry GPU Programming lesson; GPU photo by @zelebb on Unsplash
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https://carpentries-incubator.github.io/lesson-gpu-programming/gpu_introduction.html
https://unsplash.com/@zelebb
https://unsplash.com/photos/a-close-up-of-a-computer-fan-on-a-wall-D5hXm7eIhi8

GPU scheduling
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Using GPUs for compute
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Existing software

o Many HPC and Al codes already support GPUs
Task-specific frameworks / libraries

o ML (PyTorch), CV (OpenCV), math (cuBLAS), ...
High-level languages

o Python (PyCUDA, Numba), Julia (AMDGPU.jl), ...
Directive-based methods

o OpenMP, OpenACC

Native GPU code
o CUDA, HIP, OpenCL, SYCL, Kokkos, ...
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Criteria:

- Effort

- Portability

- Performance
- Openness



GPU frameworks (subjective comparison)
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Why (GYCL?

e Open standard

e Two independent free (libre) implementations
o Intel oneAPI DPC++ 1

AdaptiveC
o AdaptiveCpp (aka hipSYCL)  oneAPI &_p/_pp

e Broad hardware support
e Single source, modern C++

e Standardized interoperability with native libraries
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GPU frameworks in GROMACS 2020
X

NVIDIA. OTaenEIi @CLW
cupA
Short-range non-bonded (-nb) \ v
Long-range PME (-pme) \ v
Bonded (-bonded) \
Update (-update) \
PME Decomposition
Direct GPU communications \
Graph-based scheduling
Supported GPUs NVIDIA AMD,Intel, NVIDIA
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GPU frameworks in GROMACS 2023
X
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cupA
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Direct GPU communications \ X V
Graph-based scheduling \ X

Supported GPUs NVIDIA AMD, Apple, Intel, NVIDIA  AMD, Intel, NVIDIA
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GPU frameworks in GROMACS 2023
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SYCL compared to HIP
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AMD suggests HIP/ROCm stack for their GPUs
o Used by most other codes targeting AMD GPUs

SYCL is open, portable, modern

o Saved developer time: more features, less bugs
o  Two supported implementations: DPC++ and AdaptiveCpp

GROMACS recommends AdaptiveCpp (hipSYCL) for AMD GPUs
AdaptiveCpp is built on top of HIP

o SYCL implementation, developed at Heidelberg University
o  Supports AMD, NVIDIA, Intel GPUs

Running GROMACS efficiently on LUMI workshop
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SYCL compared to HIP
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AdaptiveCpp is a layer on top of HIP

o Same compiler
o Different runtime / scheduler

Minimal overhead for bandwidth-bound simulation

Noticeable overhead for latency-bound simulations (< 50k particles per GPU)
o To be improved soon
o Reducing CPU usage (lower -ntomp) can help

Running GROMACS efficiently on LUMI workshop
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Latency-bound case

e AdaptiveCpp uses extra threads to
submit work to GPU
e Theoretically, allows more flexibility

e In practice, incurs overhead
o Especially with few CPU cores

e Typically, 7 threads per GPU is fine
e But watch out when
approaching the scaling limit!

CPU overheads: ntomp=7 / ntomp=5
8 GPUs, RF-only water box, GPU-aware MPI, fully GPU-resident, -nstlist 300
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LUMI-G node architecture

8 GPUs/GCDs per node
8 CCDs per node
GCD < CCD mapping

1111

’ 8 cores, 16 threads
{ Gruo (48-55, 112-119)

L3

kI

7 cores per CCD
(+1 reserved core)

Logical GPU is a single hardware GCD
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Parallelization overview: single GPU
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: MD step
o 1GPU ;
. T ' 2 n
® 1 '7 CP U cores CPU !.. L ) PME mesh E e L Integration
(OpenMP) search o5 Constraints

Local List | Rolling| | clear
GPU }Stream oo Local non-bonded F piine —‘buﬁers —

e -ntomp / OMP_NUM_THREADS
e -nb, -pme, -bonded, -update
e -nstlist

Y

H2D
pair list

H2D local x
D2H local F, E

Resource control:

19
2024-01-24 Running GROMACS efficiently on LUMI workshop



Parallelization overview: multiple GPUs
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Parallelization overview: multiple GPUs

Multiple MPI ranks:

e 1 GPU per rank
e 1-7 cores per rank

8 GPUs per node, can use multiple nodes

e Better resource control when allocating full node
e Cray MPI is GPU-aware if you tell it to be

Ranks can share the GPU
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LUMI-G node architecture
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