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Metabolic pathways are fundamental maps in biochemistry that
detail how molecules are transformed through various reactions.
Metabolomics refers to the large-scale study of small molecules. High-
throughput, untargeted, mass spectrometry-based metabolomics
experiments typically depend on libraries for structural annotation,
which is necessary for pathway analysis. However, only a small frac-
tion of spectra can be matched to known structures in these libraries
and only a portion of annotated metabolites can be associated with
specific pathways, considering that numerous pathways are yet to be
discovered. The complexity of metabolic pathways, where a single
compound can play a part in multiple pathways, poses an additional
challenge. This study introduces a different concept: mass spec-
tra distribution, which is the empirical distribution of the intensities
times their associated m/z values. Analysis of COVID-19 and mouse
brain datasets shows that by estimating the differences of the point
estimations of these distributions, it becomes possible to infer the
metabolic directions and magnitudes without requiring knowledge of
the exact chemical structures of these compounds and their related
pathways. The overall metabolic vector map, named as vectome,
has the potential to bypass the current bottleneck and provide fresh
insights into metabolomics studies. This brief report thus provides a
mathematical framing for a classic biological concept.
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Metabolic pathways consist of enzyme-mediated biochem-1

ical reactions that are commonly categorized into two2

main processes within a living organism: biosynthesis (known3

as anabolism) and breakdown (known as catabolism) of4

molecules. Since the discovery of zymase by Buchner and Rapp5

in 1897 (1) and urea cycle by Krebs and Henseleit in 19326

(2), a vast body of metabolic pathway knowledge has grown7

over the last centuries, especially aided by the development8

of analytical techniques such as chromatography, NMR and9

mass spectrometry. Despite that, many metabolic pathways10

are still undiscovered or poorly understood. High-throughput11

mass spectrometry experiments can collect thousands of mass12

spectra in just minutes, giving mass spectrometry a unique13

advantage compared to other analytical methods. The frag-14

mentation pattern of a molecule, or the mass spectrum, can15

provide valuable structural information about the molecule.16

However, annotation of these spectra is typically restricted to17

compounds for which reference spectra are present in libraries18

or databases (3–6). Only a small fraction of spectra can be19

accurately assigned precise chemical structures in nontargeted20

tandem mass spectrometry studies, a prerequisite for pathway21

analysis (7, 8). Another challenge arises from the complexity22

of metabolic pathways, where one compound can be part of23

several pathways. The change in the amount of certain com-24

pounds cannot conclusively determine the metabolic direction25

of a specific pathway. For example, glucose can be catabo-26

lized through glycolysis to produce ATP, or it can be stored 27

as glycogen, or converted to fat. Therefore, an decrease in 28

glucose levels could be due to increased glycolysis, glycogen 29

synthesis, or fat synthesis. Integrating with transcriptomics 30

and/or proteomics can provide a more holistic understanding 31

of metabolism, however, their complexity still make it difficult 32

to clearly interpret the results. Recent developments of in 33

silico methods in class assignment of nontargeted mass spec- 34

trometry data can achieve very high prediction performance 35

(6, 9–18). The classification of metabolites is based on chem- 36

ical characteristics, such as their substructures or chemical 37

groups. While this approach can provide useful information 38

about the chemical properties of metabolites, they may not 39

directly reflect their interactions within the cell. Moreover, the 40

total amount of certain classes of metabolites may remain rel- 41

atively constant within groups, even if individual compounds 42

within these classes differ. 43

The purpose of this brief report is to introduce a different 44

approach to quantitatively infer the metabolic directions and 45

magnitudes of metabolites of interest without knowing their 46

exact chemical structures and related specific pathways. Classi- 47

cal view of metabolism mainly focuses on individual reactions, 48

so the metabolic directions are anabolic or catabolic. If we 49

consider the combinations of them, then, two new metabolic 50

directions arises, i.e., centrabolic and duobolic. The concept, 51

metabolic vector, offers a more accessible and biologically 52

explainable framework, with the potential to significantly ad- 53

vance our understanding of metabolic pathways. 54

Significance Statement

Metabolic pathways are integral to the complex network of
biochemical reactions that sustain life. While current view of
metabolism mainly focuses on individual reactions, achieving a
comprehensive understanding of metabolic dynamics remains
a daunting task due to the complexities associated with identify-
ing metabolites and delineating their pathways. In this work, we
introduce an approach that employs mass-weighted intensity
distributions. Our findings demonstrate that by calculating the
differences in these distributions’ moments, we can infer the
overarching metabolic directions and magnitudes of metabo-
lites of interest, circumventing the need for precise information
about their structures and the specific pathways they participate
in. By broadening our focus from isolated reactions to a holis-
tic view of pathways, we have established two new metabolic
directions.
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Table 1. Descriptive statistics of the mass spectra distributions of Ding et al.’s HILIC-MS dataset

Age Sex H-L msd Comparisons S_Diff_H-L S_Diff_H-L_CI S_Diff_msd S_Diff_msd_CI
3 weeks Male 649.82 564.73 3w:Female-Male 0.00 (-0.06,0.05) 0.00 (-0.06,0.06)
59 weeks Male 580.80 524.53 Male:3w-59w 0.11 (0.06,0.17) 0.07 (0.01,0.13)
3 weeks Female 647.80 565.22 59w:Female-Male 0.03 (-0.02,0.08) 0.01 (-0.04,0.07)
59 weeks Female 600.23 531.98 Female:3w-59w 0.08 (0.02,0.13) 0.06 (0.00,0.10)

Mass spectra distributions were computed for each sample and then pooled for each group. The location and scale estimations of mass spectra
distributions were then performed on each group. To determine the uncertainty associated with the differences in location and scale estimations
between groups, a bootstrap method was applied. Bootstrap resampling involves generating multiple random samples with replacement from the
original dataset. In this study, 1000 bootstrap iterations were performed. For each iteration, the location and scale estimations were recalculated for
each group. The bootstrap results were used to estimate the 95% confidence intervals of the differences between the location and scale estimates of
the groups. The first section is in units of 103. The second sections are in units of 105. The differences and confidence intervals were standardized
by the average of the estimates of each group. Only the positive mode is shown here, while the negative mode can be found in the SI Dataset S1.

Definitions55

The data generated from mass spectroscopy experiments usu-56

ally consist of two main components: the mass-to-charge ratio57

(m/z) and its corresponding intensity. The m/z value repre-58

sents the mass of the ion (when the charge is +1), while the59

intensity is a measure of the relative abundance of ions present60

at that specific m/z value in the mass spectrum. Let C1,n61

represent the first column, which includes the m/z data, and62

C2,n represent the second column, which includes the corre-63

sponding intensity. The mass spectra distribution of sample64

A of n molecules of interest is defined as the empirical distri-65

bution of C1,n,AC2,n,A. The location estimate of C1,n,AC2,n,A66

is denoted as L̂n,A. As the mass spectra distribution repre-67

sents the concentrations of molecules of interest in the sample,68

weighted by their respective masses, in the same study, if69

sample B contains more low-weight molecules compared to70

sample A, it is considered that sample B exhibits a catabolic71

direction compared to sample A with regards to n molecules72

of interest, the location estimate L̂n,B is expected to decrease,73

i.e., L̂n,A > L̂n,B . Conversely, sample A exhibits an anabolic74

direction compared to sample B. This provides a mathematical75

definition for two classic metabolic directions. The absolute76

difference of L̂n,A and L̂n,B is the magnitude of this change.77

This magnitude can be further standardized by dividing it78

by 1
2 (L̂n,A + L̂n,B). Combing this magnitude with the direc-79

tion, it is called a metabolic vector of sample A and B of n80

molecules of interest with regards to location. Then, further81

consider a scale estimate of C1,n,AC2,n,A, denoted as Ŝn,A. If82

Ŝn,A > Ŝn,B , i.e., there is a significant decrease in the scale83

estimates, the metabolic direction of sample B is considered84

centrabolic compared to sample A for n molecules of inter-85

est. Conversely, sample A is considered duobolic compared86

to sample B for n molecules of interest. This mathematical87

approach reveals two new metabolic directions, which have88

clear biological significance. If the metabolic direction of a89

sample of n molecules of interest is centrabolic compared to90

that of another sample of the same n molecules of interest,91

it indicates that for low molecular weight compounds, the92

related pathways are generally anabolic, while for high molec-93

ular weight compounds, the related pathways are generally94

catabolic. This is often a typical hallmark of certain diseases95

or stresses (Table 1). |Ŝn,A − Ŝn,B | is the magnitude of this96

change, which can be further standardized by dividing it by97
1
2 (Ŝn,A + Ŝn,B). Combing this magnitude with the direction, it98

is called a metabolic vector of sample A and B of n molecules of99

interest with regards to scale. Analogously, higher-order stan-100

dardized moments of the mass spectra distribution of sample101

A of n molecules of interest, can be denoted as ˆkSMn,A. How- 102

ever, their biological significance is much weaker. For example, 103

Pearson mode skewness is based on the difference between the 104

mean and mode. In a metabolomics dataset, most compounds 105

are trace amounts, meaning the mode should always be close 106

to zero. Therefore, if the skewness increases, the location 107

estimates should also increase in most cases. Similar logic can 108

be deduced for the relation of kurtosis and scale. Due to the 109

extreme heterogeneity of mass spectra data, robust statistics 110

are recommended. In this brief report, Hodges-Lehmann esti- 111

mator (H-L) (19) and median standard deviation (msd) (20) 112

are used. The overall picture of metabolic vectors of different 113

classes is named as vectome (Table 2). 114

Results 115

Here, two metabolomics studies are used as examples. 116

The study by Yang et al. compares the plasma metabolome 117

of ordinary convalescent patients with antibodies (CA), con- 118

valescents with rapidly faded antibodies (CO), and healthy 119

subjects (H) (21). For both CA and CO, purine-related 120

metabolism significantly towards anabolism and duobolism 121

compared to the healthy volunteers (Table 2), aligned with a 122

previous study that showed purine metabolism is significantly 123

up-regulated after SARS-CoV-2 infection (22). Acylcarnitine- 124

related pathways exhibit a significant inclination towards 125

catabolism and centrabolism (Table 2). This conclusion, which 126

does not require knowledge of individual compounds within 127

the acylcarnitine class, was also emphasized by Yang et al. 128

(21). It was observed that long-chain acylcarnitines were gen- 129

erally lower in both convalescent groups, while medium-chain 130

acylcarnitines displayed the opposite pattern (21). Bile acid- 131

related pathways leaned towards anabolism and duobolism 132

in CA group, while bile acids have been reported to be im- 133

munomodulatory (23, 24). Organooxygen compounds-related 134

pathways leaned towards catabolism in both convalescent 135

groups. The only accurately annotated compound in this 136

class is kynurenine. This aligns with a previous study that 137

found the kynurenine pathway, which is the primary catabolic 138

pathway of tryptophan, is significantly up-regulated in COVID- 139

19 patients (25, 26). For both CA and CO, metabolism related 140

to carbohydrates significantly shifts towards anabolism and 141

duabolism compared to that of healthy volunteers (Table 2). 142

This might be due to the dysregulated glucose metabolism 143

(27, 28). Because the mass spectra distribution is the product 144

of the concentration of the molecules and their mass, if the 145

mass shrinks to half during a reaction but the concentration 146

doubles, the location of the mass spectra distribution should 147

generally remain the same. In addition, many intermediates in 148
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Table 2. Significant vectome of Yang et al.’s UHPLC-MS dataset

Compound Class Group H-L msd Comparisons S_Diff_H-L S_Diff_H-L_CI S_Diff_msd S_Diff_msd_CI
Acyl carnitines H 114.84 77.80 H-CA 0.21 (0.00,0.39) 0.23 (0.11,0.58)
Acyl carnitines CO 80.53 50.96 H-CO 0.35 (0.18,0.51) 0.42 (0.26,0.71)
Acyl carnitines CA 93.45 61.75 CA-CO 0.15 (-0.06,0.36) 0.19 (-0.11,0.38)
Bile acids H 199.18 126.28 H-CA -0.32 (-0.69,0.07) -0.35 (-0.93,-0.06)
Bile acids CO 191.41 121.93 H-CO 0.04 (-0.25,0.32) 0.04 (-0.33,0.37)
Bile acids CA 274.23 179.94 CA-CO 0.36 (-0.06,0.72) 0.38 (0.02,0.98)
Carbohydrates H 655.31 417.37 H-CA -0.16 (-0.32,-0.02) -0.24 (-0.64,-0.24)
Carbohydrates CO 763.06 505.87 H-CO -0.15 (-0.27,-0.03) -0.19 (-0.54,-0.24)
Carbohydrates CA 769.85 530.34 CA-CO 0.01 (-0.13,0.15) 0.05 (-0.13,0.26)
Organooxygen compounds H 599.02 187.32 H-CA 0.23 (0.05,0.43) 0.10 (-0.30,0.42)
Organooxygen compounds CO 400.79 172.39 H-CO 0.40 (0.24,0.60) 0.08 (-0.23,0.36)
Organooxygen compounds CA 477.35 169.76 CA-CO 0.17 (-0.01,0.37) -0.02 (-0.31,0.34)
Purines H 633.40 355.87 H-CA -0.45 (-0.83,-0.15) -0.62 (-1.06,-0.30)
Purines CO 1430.75 1035.89 H-CO -0.77 (-1.17,-0.42) -0.98 (-1.31,-0.58)
Purines CA 996.70 678.51 CA-CO -0.36 (-0.72,0.01) -0.42 (-0.70,0.02)

Note: The computations were performed in the same manner as in Table 1, except that the metabolites of interest were not from the entire dataset,
but subsets corresponding to compound classes. Only the compound classes having at least one significant change between groups are listed; others
can be found in the SI Dataset S1.

the glycolytic pathway have higher molecular weights than glu-149

cose, e.g., glucose-6-phosphate. Therefore, the breakdown of150

glucose (C6H12O6) into two molecules of pyruvate (C3H4O3)151

theoretically should increase the location of the mass spectra152

distribution. This is a limitation of metabolic vectors as they153

can only accurately reflect the directions of chemical reactions154

that have two or more distinct major compounds as substrates155

or products.156

Ding et al. created a comprehensive metabolome atlas for157

the wild-type mouse brain (29). Table 1 shows the result158

of using hydrophilic interaction chromatography (HILIC) to159

seperate compounds, mainly for amines. During the aging160

process, in HILIC datasets, mouse brain metabolism generally161

shifts towards catabolism and centrabolism. This supports162

their conclusion that the structural degradation of brain matter163

becomes more pronounced in older age groups, accompanied164

by increased protein breakdown and elevated levels of amino165

acids, dipeptides, and tripeptides (29).166

Methods167

Data and Software Availability168

All data are included in the brief report and SI Dataset S1.169

All codes have been deposited in GitHub.170
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