

Carbon footprint analysis of beverage packaging alternatives: a case study for Brazil

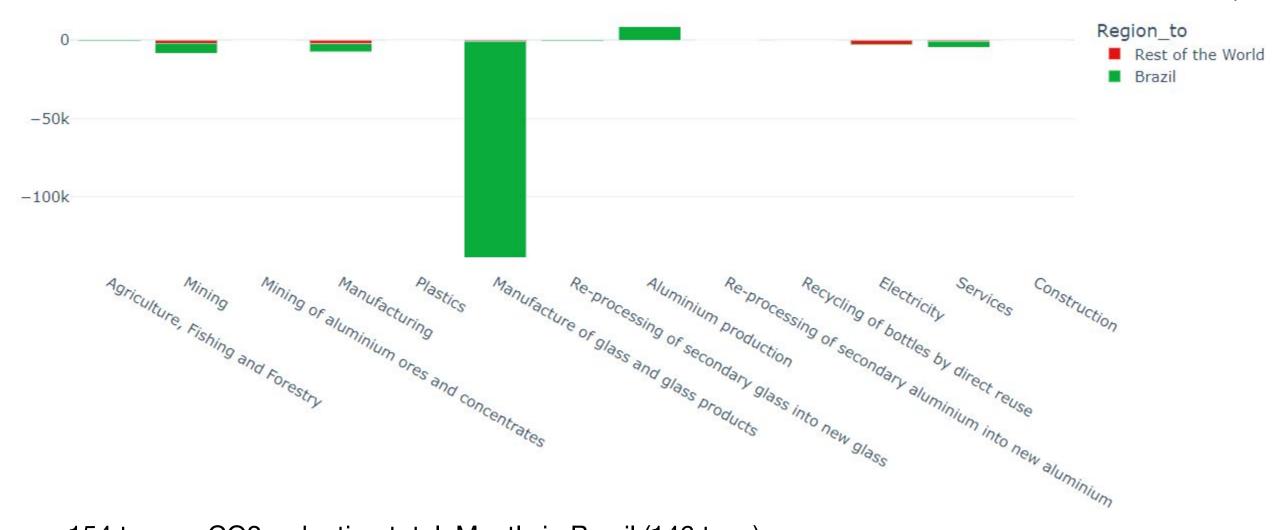
Germán Zamorano (germanzamorano@gmail.com)

Energy Modelling Platform for Latin America and The Caribbean (EMP-LAC)

2024

Context, research question and methodology

- Context: Long neck beer bottles
 present considerable waste
 management challenges worldwide,
 characterized by low recycling rates.
 Improper disposal exacerbates issues
 such as sewer blockages and flooding
 in various Brazilian cities.
- Glass manufacturing is a high energy demanding process.
- Research Question: what is the impact in CO2 emissions of a policy aimed at reducing glass consumption in favour of aluminium cans, for Brazil.
- Methodology: Input-Output-based Life-Cycle Assessment using MARIO, Exiobase database (IOT 2022).



Scenarios

Through Input-Output-based Life-Cycle Assessment using MARIO, the following scenarios were investigated:

Scenario Label	Scenario Description	Key Assumptions
Reduced glass consumption	Substitution of glass consumption for primary and reprocessed aluminium	10% decrease in Manufacture of glass 0.10% increase in reprocessing of secondary aluminium 0.03% increase in primary aluminium. Aluminium packaging requires 7,7 x less materials than glass. 80% of new cans produced in Brazil use recycled aluminium

Results

154 tonnes CO2 reduction total. Mostly in Brazil (146 tons).

Conclusions and Policy Insights

Reduction in carbon emissions stemming from decreased glass consumption, given that Manufacture of glass sector is a high energy-intensive production processes.

The production of aluminium contributed to a rise in carbon emissions. Re-processing of secondary aluminium into new aluminium played a minor role in emissions growth, given its significantly lower energy requirements compared to primary aluminium production.

Transition to aluminium packaging presents opportunities for increased earnings for can collectors.

Policy insights:

Need for enhanced waste management policies: promote selective collection and prevent improper disposal. Raise awareness, and expand collection points for glass waste.

Increased utilization of low-carbon renewable energy sources in packaging production processes to further mitigate emissions.

Thanks for your attention!