
Solution of a One-Dimensional Viscous Burgers’
Equation Using a Physics-Informed Neural Network

and a Gaussian Quadrature Method
Eduardo F. Miranda

eduardofurlanm@gmail.com

Abstract—This work compares the solutions of a one-
dimensional viscous Burgers’ equation of a test problem using
a Physics Informed Neural Network (PINN) and a numerical
Gaussian Quadrature Method (GQM) method. The Burgers’
equation is a partial differential equation (PDE) with derivatives
in both space and time, which is commonly solved by a numerical
method. However, recent works have proposed the solution by
means of Artificial Neural Networks (ANNs). Since the number
of sample/collocation points (in space and time) required for an
efficient training of the ANN would be too high, PINNs were
proposed to allow the use of less sample points by embedding
the related equation of physics into the simulation. This work
compares the solutions of the one-dimensional viscosity Burgers’
equation for a test problem obtained by the PINN and by the GQM
methods. Accuracy and required processing time of the solutions,
both executed in the LNCC Santos Dumont supercomputer, are
also presented.

I. INTRODUCTION

Many simulations are mathematically modeled by partial
differential equations (PDEs), which have derivatives in space
and time. However, the coefficients of these derivatives are
unknowns, and the PDEs are usually solved by a numerical
method, like the Finite Difference Method (FDM) or the
numerical Gaussian Quadrature Method (GQM). Recent works
proposed to solve PDEs using Artificial Neural Networks
(ANN), which are Machine Learning (ML) algorithms. The
universal approximation theorem states that a neural network
can approximate any continuous function, provided the network
has a sufficient number of hidden layer and that employs non-
linear activation functions. This approach requires to know
a large set of sample points in space and time in order to
perform the training of the neural network, and such sample
points are named Collocation Points (CPs). Since the required
number of CPs would be too high, Physics Informed Neural
Networks (PINNs) were proposed to allow the use of less CPs
by including in the ANN the underlying physical laws related
to the simulation.

This work compares the solutions of the viscous Burgers
equation, a PDE with derivatives in both space and time, for a
test problem, by a PINN and a GQM. This equation models
the velocity of a viscous fluid, being a particular case of
the Burgers equation for fluid mechanics. The corresponding
PINN and GQM solutions1 are compared in terms of accuracy
and processing time, both executed in the Santos Dumont

1The code is available at https://github.com/efurlanm/421/tree/main/project

supercomputer. Tests were executed in a Bull B710 processing
node of the supercomputer Santos Dumont of the LNCC
(National Laboratory of Scientific Computing). It has two
Intel Xeon E5-2695v2 Ivy Bridge 2.4 GHz 12-core processors
(total of 24 cores), and 64 GB of main memory.

The solution of PDEs by PINNs is relatively recent and
acquiring knowledge in such approach may be useful for
solving PDEs in some specific modules of numerical models
used at CPTEC/INPE for weather and climate forecast.

II. MATERIAL AND METHODS

Raissi et al. (2019) [1] published an article about PINNs,
which has 4152 citations. That work defines PINNs as ANNs
trained to solve supervised learning tasks, but complying
to physical laws, usually described by nonlinear PDEs. It
also describes the use of ANNs to solve PDEs and obtain
physics-informed surrogates of the physical model that are
fully differentiable in all coordinates and free parameters.
PINNs form a new class of data-efficient universal function
approximators, which can be effectively trained using small
datasets, and which may encode any underlying physical law.

Unlike standard numerical methods, the PINN solution
can be obtained without specifying the spatial or temporal
domain discretization. The training data is randomly sampled
from simulations using synthetic data obtained using a known
equation, or randomly generated, or even from observational
data. This sampled data contains points in the space and time
domain called collocation points (CPs). Except for the randomly
generate data, provided that a sufficient number of CPs is
available, a standard ANN may solve the PDE, otherwise a
PINN would be required. A PINN uses a specific loss function
in the training phase that embeds the applicable physical law
and is calculated from the set of CPs and, eventually, also the
ICs and BCs [2].

PINNs can be considered neural networks for supervised
learning problems, as proposed here. However, PINNs can
also be used as agents for reinforcement learning (RL) [2].
The most common PINN architectures are Multi-layer Percep-
trons (MLPs), Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs). Newer architectures are
Auto-Encoder (AE), Deep Belief Network (DBN), Generative
Adversarial Network (GAN) and Bayesian Deep Learning
(BDL) [2].

1

https://github.com/efurlanm/421/tree/main/project

The proposed test case requires the solution of a particular
one-dimensional viscous Burger equation with Dirichlet bound-
ary condition (BC) and initial condition (IC), which estimates
the velocity field 𝑢 along time (Equation 1). Training data
for the PINN is given by a set of CPs corresponding to the
velocity field in different times are randomly generated within
the considered domain.

In the train phase, the network then estimates a solution
𝑢(𝑡, 𝑥). The function employed by the PINN 𝑓 (𝑡, 𝑥) (Equa-
tion 2) is derived from the known viscous Burgers equation, and
allows to calculate the loss function. In the following equations,
𝑢 is the velocity, the coefficient (100𝜋)−1 is the kinematic
viscosity, and the subscripts denote partial differentiation in
time and space, respectively, as 𝑢𝑡 (which denotes 𝑑𝑢

𝑑𝑡
), 𝑢𝑥

(which denotes 𝑑𝑢
𝑑𝑥

), and 𝑢𝑥𝑥 (which denotes 𝑑2𝑢
𝑑𝑥2).

𝑢𝑡 + 𝑢𝑢𝑥 − (100𝜋)−1𝑢𝑥𝑥 = 0, 𝑥 ∈ [−1, 1], 𝑡 ∈ [0, 1], (1)
𝑢(0, 𝑥) = −𝑠𝑒𝑛(𝜋𝑥), (IC)
𝑢(𝑡,−1) = 𝑢(𝑡, 1) = 0. (BC)

The viscous Burguers equation is employed to evaluate the
error 𝑓 of the solution 𝑢(𝑡, 𝑥) estimated by the PINN, as shown
in Equation 2.

𝑓 := 𝑢𝑡 + 𝑢𝑢𝑥 − (100𝜋)−1𝑢𝑥𝑥 (2)

In this work, the PINN loss function to be minimized is given
by the mean squared error (Equation 3) of two components,
𝑀𝑆𝐸𝑢, which embeds the error considering ICs and BCs, and
𝑀𝑆𝐸 𝑓 , which embeds the errors considering the set of CPs,
where 𝑡 is the time step, and 𝑥 is the one-dimension coordinate.

𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑢 + 𝑀𝑆𝐸 𝑓 (3)

where

𝑀𝑆𝐸𝑢 =
1
𝑁𝑢

𝑁𝑢∑︁
𝑖=1

|𝑢(𝑡𝑖 , 𝑥𝑖) − 𝑢𝑖 |2 (IC and BC)

and

𝑀𝑆𝐸 𝑓 =
1

𝑁𝐶𝑃

𝑁𝐶𝑃∑︁
𝑖=1

| 𝑓 (𝑡𝑖 , 𝑥𝑖) |2 (CP)

A. Numerical GQM Implementation of the Test Problem

A Fortran 90 implementation of the GQM method was used
to generate the full dataset of the velocity field, which was
taken as reference solution in the comparison with the PINN
solution. The GQM dataset has 100 time steps in the interval
[0, 99] and 256 one-dimensional grid points in the interval [-1,
1], defining a velocity field 𝑢(𝑥, 𝑡) subjected to the ICs and
BCs shown in Equation 1.

The GQM method is an iterative numerical algorithm that
approximates the definite integral of a function as a weighted
sum of the function values at specified points within the domain
of integration [3]. The order of quadrature rule was set to 8.
The loops corresponding to the compute-intensive part of the
code were parallelized with the OpenMP 3.1 library using the

!$OMP PARALLEL DO$ directive, since there is no data dependency
between loop iterations. The F90 code was compiled with
GNU 4.8.5 setting the -O3 optimization flag. The code was
also executed using CPU cores with 1, 4, 8, 16 and 24 OpenMP
threads.

B. PINN Implementation of the Test Problem

The particular architecture of the PINN implemented in
this work is a feed-forward MLP with a 2-neuron input layer,
eight 20-neuron hidden layers, and a single-neuron output
layer. The loss function is the Mean Square Error (MSE). The
minimization of the loss function is performed by an opti-
mization method like the widespread Limited-memory BFGS
(L-BFGS) algorithm, a quasi-Newton method that approximates
the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS). All
hidden layers employ the hyperbolic tangent as the activation
function.

The PINN implementation was based on the work of Raissi
et al. (2019) [1] and uses the TensorFlow2 1.15 library and
the Python 3.7 interpreter. Code snippets of the TensorFlow
library are shown in Listing 1 and Listing 2. Note that the
snippets do not show the implementation of the BCs, ICs and
other details. The code was also executed using CPU cores
Tests with 1, 4, 8, 16 and 24 OpenMP threads.

Listing 1. Code snippet that implements 𝑢(𝑡 , 𝑥)

def u(t, x):
u = neural_net(tf.concat([t, x], 1), weights, biases)
return u

Listing 2. Code snippet that implements 𝑓 (𝑡 , 𝑥)

def f(t, x):
u = u(t, x)
u_t = tf.gradients(u, t)[0]
u_x = tf.gradients(u, x)[0]
u_xx = tf.gradients(u_x, x)[0]
f = u_t + u*u_x - (0.01/tf.pi)*u_xx
return f

III. RESULTS

The PINN solution 𝑢(𝑡, 𝑥) is shown in Fig. 1, with the time 𝑡

in the horizontal axis and the spatial coordinate 𝑥 in the vertical
axis. The red marks in the boundaries of the graph represent
the 100 randomly assigned points (BC+IC) used for training.
The 10,000 CPs randomly generated are not shown. The color
scale refers to the velocity 𝑢(𝑥, 𝑡). The dashed vertical lines
refer to 2 specific snapshots (𝑡 = 0.25 and 𝑡 = 0.75). Fig. 2
shows the superimposed solutions for PINN and GQM for
these 2 snapshots, which are quite equivalent.

Table I shows the processing times for the PINN and GQM
solutions. PINN time is splitted into training time (Train) and
prediction time (Predict). The singe-thread runtime of the GQM
implementation was taken as reference. In all cases, the GQM
implementation achieved the best performance, i.e. required

2http://www.tensorflow.org

2

http://www.tensorflow.org

Fig. 1. PINN solution for the velocity 𝑢(𝑡 , 𝑥) . The horizontal axis denotes
time 𝑡 , and the vertical axis, the coordinate 𝑥. The red marks in the boundaries
of the graph represent the 100 randomly assigned points (BC+IC) used for
training. The color scale refers to the velocity. The dashed vertical lines refer
to 2 snapshots (𝑡 = 0.25 and 𝑡 = 0.75).

Fig. 2. Superimposed solutions for PINN and GQM for the 𝑡 = 0.25 and
𝑡 = 0.75 snapshots. PINN solution is labeled as Prediction, in orange), and
GQM solution is labeled as Exact, in blue).

less processing times, presented better speedups and parallel
efficiencies, even if considering only the PINN prediction time.

IV. CONCLUSIONS

This work compares the solutions of a one-dimensional
viscous Burgers’ equation of a test problem using a Physics
Informed Neural Network (PINN) and a numerical Gaussian
Quadrature Method (GQM) method. The Burgers’ equation is a
partial differential equation (PDE) with derivatives in both space
and time, which is commonly solved by a numerical method,
as the GQM. A comparison of the accuracy and required
processing time of both solutions executed in the LNCC Santos
Dumont supercomputer is also presented for different number
of OpenMP threads using CPU cores. The GQM presented
much lower processing times, and better speedups and parallel
efficiencies. As future work, it is intended to exploit other
PINN architectures and numerical methods, as well as taking
advantage of GPU use, mainly for the PINN.

TABLE I
PROCESSING TIMES, SPEEDUPS AND PARALLEL EFFICIENCIES FOR THE
PINN AND GQM SOLUTIONS FOR DIFFERENT NUMBERS OF OPENMP

THREADS. THE GQM SINGLE-THREAD EXECUTION TIME WAS TAKEN AS A
REFERENCE, HIGHLIGHTED IN BLUE. BEST VALUES ARE HIGHLIGHTED IN

RED.

Number of OpenMP threads
Profiling 1 4 8 16 24

Processing time (seconds)
GQM 0.02 0.01 0.00 0.00 0.00
Train 30.33 22.14 21.69 22.56 23.21
Predict 0.10 0.05 0.03 0.03 0.03

Speedup
GQM 1.00 3.11 5.39 7.43 9.77
Train 0.00 0.00 0.00 0.00 0.00
Predict 0.20 0.43 0.63 0.71 0.73

Parallel efficiency
GQM 1.00 0.78 0.67 0.46 0.41
Train 0.00 0.00 0.00 0.00 0.00
Predict 0.20 0.11 0.08 0.04 0.03

Threads

Pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

0

0.025

0.05

0.075

0.1

1 4 8 16 24

GQM Train Predict

Fig. 3. Processing times (seconds) in function of number of OpenMP threads
for the GQM and PINN implementations. "Train" refer to the PINN training
phase, while "Predict" refers to the PINN test/prediction phase (for convenience,
times above 0.1 seconds are not shown).

3

Threads

Sp
ee
du
p

0

5

10

15

20

1 4 8 16 24

GQM

Train

Predict

Linear

Fig. 4. Speedups in function of the number of OpenMP threads for the
GQM and PINN implementations. The dotted line indicates the linear speedup.
"Train" refer to the PINN training phase, while "Predict" refers to the PINN
test/prediction phase.

Threads

E
ff
ic
ie
nc
y

0.0

0.3

0.5

0.8

1.0

1 4 8 16 24

GQM Train Predict

Fig. 5. Parallel efficiencies in function of the number of OpenMP threads
for the GQM and PINN implementations. "Train" refer to the PINN training
phase, while "Predict" refers to the PINN test/prediction phase.

REFERENCES

[1] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,” Journal of
Computational physics, vol. 378, pp. 686–707, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021999118307125

[2] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi,
and F. Piccialli, “Scientific Machine Learning Through Physics-
Informed Neural Networks: Where we are and What’s Next,”
arXiv preprint arXiv:2201.05624, 2022. [Online]. Available: https:
//arxiv.org/abs/2201.05624

[3] J. Burkardt, “Investigating Uncertain Parameters in the Burgers Equation,”
2013. [Online]. Available: https://people.sc.fsu.edu/~jburkardt/presentatio
ns/presentations.html

4

https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://arxiv.org/abs/2201.05624
https://arxiv.org/abs/2201.05624
https://people.sc.fsu.edu/~jburkardt/presentations/presentations.html
https://people.sc.fsu.edu/~jburkardt/presentations/presentations.html

	Introduction
	Material and methods
	Numerical GQM Implementation of the Test Problem
	PINN Implementation of the Test Problem

	Results
	Conclusions
	References

