
Data-Driven Parameter Discovery of a
One-Dimensional Burgers’ Equation Using a

Physics-Informed Neural Network
1st Eduardo F. Miranda

Applied Computing (CAP)
National Institute for Space Research

São José dos Campos, Brazil
efurlanm@gmail.com

2nd Leonardo B. L. Santos
Applied Computing (CAP)

National Institute for Space Research
São José dos Campos, Brazil

santoslbl@gmail.com

3rd Stephan Stephany
Applied Computing (CAP)

National Institute for Space Research
São José dos Campos, Brazil

stephan.stephany@inpe.br

Abstract—This work demonstrates the use of a Physics-
Informed Neural Network (PINN) trained to solve supervised
learning tasks respecting the law of physics described by the
one-dimensional Burgers partial differential equation (PDE), and
focuses on the problem of data-driven PDE parameter discovery.
The Burgers’ equation is one PDE with derivatives in space and
time that is commonly solved by a numerical method. However,
recent work proposes the use of PINN to solve, as a new class of
data-efficient universal function approximators, which naturally
encode any underlying physical laws as prior information. As
the number of sample points required for efficient Deep Natural
Network (DNN) training would be very high, PINN was proposed,
allowing the use of a smaller number of sample points, and
incorporating the related physical equation in the simulation.
This work evaluates the discovery of parameters of the Burgers’
equation through the use of PINN, for different hyperparameters
and dataset sizes, seeking the best adjustment. The relative errors
and processing times obtained are presented, running on the
LNCC’s Santos Dumont supercomputer.

I. INTRODUCTION

Many simulations are mathematically modeled by Partial
Differential Equations (PDEs), which have derivatives in space
and time. However, the coefficients of these derivatives are
unknowns, and the PDEs are usually solved by a numerical
method, like the finite difference method. Recent works
proposed to solve PDEs using Deep Neural Networks (DNN),
which are machine learning algorithms. The universal approxi-
mation theorem states that a neural network can approximate
any continuous function, as long as the network has a sufficient
number of hidden layers and employs nonlinear activation
functions. This approach requires knowledge of a large set of
sample points in space and time domain (called Collocation
Points - CPs) to train the DNN, which can be obtained either
by observation, or if the model is known, it can be generated
by numerical methods. As the required number of CPs would
be very high, Physics-Informed Neural Networks (PINNs) were
proposed and allow the use of a smaller number of CPs as they
include the underlying physical laws related to the simulation
in the DNN.

PINNs can be used in direct problems (inference or solution),
where the PDE and parameters are known and we want to obtain

the simulation result, and in inverse problems (identification or
discovery) where we have the dataset and want to obtain the
PDE parameters. A work by Chevallier et al. [1] describes a
speedup of 7 using DNN to obtain parameters in the Longwave
Radiative Transfer model from ECMWF (European Center for
Medium-Range Weather Forecasts), showing the importance
of using DNN to obtain parametric representation in numerical
modeling of various atmospheric processes. Krasnopolsky et al.
[2] also cites speedups between 10 to 105 using DNN in the
parametrization of physical models in oceanic and atmospheric
numerical models. Furthermore, there is also the possibility of
using PINN in cases where the model (or the PDE that describes
it) is known, to reduce the size of the dataset necessary to train
the DNN, thus increasing efficiency, or in cases where there is
noise in the sample and we want the underlying physical law
to help deal with it.

This work evaluates data-driven parameter discovery of the
one-dimensional Burgers’ equation, a PDE with derivatives
in space and time, obtained through PINN, for different
hyperparameters and dataset sizes. The work seeks to answer
the question “what is the ideal combination of hyperparameters
and dataset size, for this specific problem?”, in order to seek
the best model for the expected result.

The PINN discovery is evaluated in terms of accuracy and
DNN training processing time, executed on the Santos Dumont
supercomputer (SDumont) at the National Scientific Computing
Laboratory (LNCC). The tests were carried out on a Bull
Sequana X1120 processing node with two 2.1 GHz 24-core
Intel Xeon Gold 6252 Skylake processors (totaling 48 cores),
384 GB of main RAM, and four Nvidia Volta V100 GPUs.
Only one GPU is used in this work. All data and codes used
in this manuscript are publicly available on GitHub at https:
//github.com/efurlanm/425/.

The discovery of EDPs by PINNs is relatively recent and
the acquisition of knowledge in this approach can be useful
for application in some specific modules of numerical models
used at CPTEC/INPE for weather and climate prediction.

1

https://github.com/efurlanm/425/
https://github.com/efurlanm/425/

II. MATERIAL AND METHODS

Raissi et al. [3] published an article about PINNs, which has
7217 citations (December 2023). That work defines PINNs as
DNNs trained to solve supervised learning tasks, but complying
to physical laws, usually described by nonlinear PDEs. It
also describes the use of DNNs to solve PDEs and obtain
physics-informed surrogates of the physical model that are
fully differentiable in all coordinates and free parameters.
PINNs form a new class of data-efficient universal function
approximators, which can be effectively trained using small
datasets, and which may encode any underlying physical law.

DNN training data can be randomly sampled from observa-
tional data, or through simulations using synthetic data from a
numerical model. Except for synthetically generated data, as
long as a sufficient number of CPs are available, a standard
DNN can solve the PDE, otherwise a PINN would be required.
A PINN uses a specific loss function incorporating PDE and
parameters, in such a way that during the training phase using
the set of CPs, the applicable physical law is incorporated [4].

PINNs can be considered neural networks for supervised
learning problems, as proposed here. However, PINNs can
also be used as agents for Reinforcement Learning (RL) [4].
The most common PINN architectures are Multi-layer Percep-
trons (MLPs), Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs). Newer architectures are
Auto-Encoder (AE), Deep Belief Network (DBN), Generative
Adversarial Network (GAN) and Bayesian Deep Learning
(BDL) [4]. This work uses the MLP architecture.

The proposed test problem requires the parameters discovery
of a particular one-dimensional Burgers’ equation, which
estimates the speed field 𝑢 along time (Equation 1). Training
data for the PINN is given by a set of CPs corresponding to
the position field in different times are randomly generated
within the considered domain.

In the train phase, the neural network then estimates a
solution 𝑢(𝑡, 𝑥). The function employed by the PINN, 𝑓 (𝑡, 𝑥)
(Equation 2), is derived from the known Burgers’ equation,
and allows to calculate the loss function. The parameters of the
differential operator that we want to obtain are transformed into
PINN parameters. In the following equations, the differential
operator parameter _1 (or 𝑢) is the speed of fluid at the
indicated spatial and temporal coordinates, the differential
operator parameter _2 (or a) is the kinematic viscosity of
fluid, and the subscripts denote partial differentiation in time
and space, respectively, as 𝑢𝑡 (which denotes 𝑑𝑢

𝑑𝑡
), 𝑢𝑥 (which

denotes 𝑑𝑢
𝑑𝑥

), and 𝑢𝑥𝑥 (which denotes 𝑑2𝑢
𝑑𝑥2).

𝑢𝑡 + _1𝑢𝑥 − _2𝑢𝑥𝑥 = 0, 𝑥 ∈ [−1, 1], 𝑡 ∈ [0, 1] (1)

The Burgers’ equation is employed to evaluate the error 𝑓

of the solution 𝑢(𝑡, 𝑥) estimated by the PINN, as shown in
Equation 2.

𝑓 := 𝑢𝑡 + _1𝑢𝑥 − _2𝑢𝑥𝑥 (2)

In this work, the PINN loss function to be minimized is given
by the mean squared error (Equation 3) of two components,
𝑀𝑆𝐸𝑢, which embeds the training data on 𝑢(𝑡, 𝑥), and 𝑀𝑆𝐸 𝑓 ,
which embeds the structure imposed by Equation 1, where 𝑡

is the time step, and 𝑥 is the one-dimension coordinate. The
neural network parameters, along with the differential operator
parameters _1 and _2, can be learned by minimizing the MSE.

𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑢 + 𝑀𝑆𝐸 𝑓 (3)

where

𝑀𝑆𝐸𝑢 =
1
𝑁

𝑁∑︁
𝑖=1

|𝑢(𝑡𝑖𝑢, 𝑥𝑖𝑢) − 𝑢𝑖 |2

and

𝑀𝑆𝐸 𝑓 =
1
𝑁

𝑁∑︁
𝑖=1

| 𝑓 (𝑡𝑖𝑢, 𝑥𝑖𝑢) |2

The {𝑡𝑖𝑢, 𝑥𝑖𝑢, 𝑢𝑖}𝑁𝑖=1 denotes the training data on 𝑢(𝑡, 𝑥), the
𝑀𝑆𝐸𝑢 loss corresponds to the training data in 𝑢(𝑡, 𝑥), and the
𝑀𝑆𝐸 𝑓 loss imposes the structure of Equation 1 on a finite set
of CPs. The number and location of CPs are the same as the
training data.

In this work a dataset of 2,000 points generated by the
numerical Gaussian Quadrature Method (GQM), using _1 = 1
and _2 = 0.01/𝜋, was used to obtain the CPs, that are also
used to compare the result obtained through PINN. The GQM
method is an iterative numerical algorithm that approximates
the definite integral of a function as a weighted sum of
the function values at specified points within the domain of
integration [5].

When training a PINN, some important adjustable hyper-
parameters are the number of hidden layers 𝑁𝑙 (𝑙 = 1, 2, ...),
and the number of neurons in each layer 𝑁𝑙𝑒 (𝑒 = 1, 2, ...).
A general understanding about 𝑁𝑙 and 𝑁𝑙𝑒 is that efficient
adjustment is still an unsolved problem and the determination
is made empirically [7].

The results obtained in this work using DNN are subject to
the problem of overfitting and underfitting. Overfitting means
that the DNN performs very well when using training data, but
fails as soon as it needs to deal with new data in the problem
domain, that is, it does not generalize. Underfitting, on the
other hand, means that the model performs poorly on both
datasets, i.e., it does not fill the model. Both issues can also
negatively affect performance [6].

The Relative L2 Error used in this work is introduced here
as defined in Equation 4 where ∥𝑈 −𝑈∥ is the L2 norm of
the prediction deviation at certain time, and ∥𝑈∥ denotes the
L2 norm of the synthetic data at that time. 𝑅𝐿2 gives good
quantification of the prediction accuracy at a certain time [7].

𝑅𝐿2 =
∥𝑈 −𝑈∥
∥𝑈∥ (4)

A. PINN Implementation

The specific PINN architecture implemented in this work is
an MLP network with an input layer of 2 neurons, a number

2

of hidden layers ranging from 1 to 8, with each hidden layer
having a number of neurons ranging from 10 to 30, and a output
layer with one neuron. The loss function is the mean squared
error (MSE). Minimization of the loss function is performed
by an optimization method, the generalized limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, a
quasi-Newton method. All hidden layers employ the hyperbolic
tangent as the activation function. The implementation has been
configured to stop training when it reaches 50,000 iterations
or when the hardware’s floating point precision is interfering
with the calculated error.

The PINN implementation is based on the work of Raissi
et al. (2019) [3] and uses the TensorFlow1 1.15 library and
the Python 3.7 interpreter. Code snippets of the TensorFlow
library are shown in Listing 1 and Listing 2. The code was
run on SDumont and uses a V100 GPU.

Listing 1. Code snippet that implements 𝑢(𝑡 , 𝑥)

def neural_net(self, X, weights, biases):
num_layers = len(weights) + 1
H = 2.0 * (X - self.lb) / (self.ub - self.lb) - 1.0
for l in range(0, num_layers - 2):
W = weights[l]
b = biases[l]
H = tf.tanh(tf.add(tf.matmul(H, W), b))

W = weights[-1]
b = biases[-1]
Y = tf.add(tf.matmul(H, W), b)
return Y

def net_u(self, x, t):
u = self.neural_net(tf.concat([x, t], 1), self.weights,

self.biases)
return u

Listing 2. Code snippet that implements 𝑓 (𝑡 , 𝑥)

def net_f(self, x, t):
lambda_1 = self.lambda_1
lambda_2 = tf.exp(self.lambda_2)
u = self.net_u(x, t)
u_t = tf.gradients(u, t)[0]
u_x = tf.gradients(u, x)[0]
u_xx = tf.gradients(u_x, x)[0]
f = u_t + lambda_1 * u * u_x - lambda_2 * u_xx
return f

To obtain the results, first the network is trained until the
parameters are obtained, then the prediction is made and
compared with the values of the training dataset, which is
used both to train the network and compare the results. The
implementation does not clearly divide the dataset into training,
validation, and testing, however it would be an improvement
to be investigated in future work.

III. RESULTS

The following results are divided into 4 parts, in the last
3 the number of neurons per layer is fixed on the horizontal
axis, and the vertical axis varies according to the number of
layers and size of the dataset. In the first part the result is
shown in the form of a graph rendered as a pseudo-colored
image showing 𝑡, 𝑥 and 𝑢(𝑡, 𝑥) (visual evaluation of the PINN’s

1http://www.tensorflow.org

predictive accuracy), and also a slice at time 𝑡 = 0.5. In the
second part, the vertical axis is the number of layers (“Neurons
x Layers” for simplicity), and in the third part it is the size of
the dataset (“Neurons x Dataset” for simplicity). The fourth
and final part shows the prediction time for some number of
neurons per hidden layer and number of layers. The size of the
dataset in some cases is called CP, meaning the same thing.

A. Visual assessment

A visual assessment of PINN’s predictive accuracy is shown
in Figure 1, with time 𝑡 on the horizontal axis and spatial
coordinate 𝑥 on the vertical axis. The color scale refers to the
speed 𝑢(𝑥, 𝑡). The black marks on the graph represent 2,000 CPs
randomly generated and used for training, and to obtain them
_1 = 1 and _2 = 0.01/𝜋 were used. The network architecture
used is composed of 4 hidden layers with 20 neurons each. The
white solid vertical line at 𝑡 = 0.5 represents a specific snapshot
shown in Figure 2, which shows the overlapping solutions
for PINN and GQM. For this specific result, the equation
obtained by PINN is 𝑢𝑡 + 0.99958𝑢𝑥 − 0.0032199𝑢𝑥𝑥 = 0
whereas the equation used to obtain the training dataset is
𝑢𝑡 + 𝑢𝑥 − 0.0031831𝑢𝑥𝑥 = 0 . The network is able to identify
the underlying partial differential equation with remarkable
accuracy.

Fig. 1. Predicted solution u(t, x) along with the training data. The horizontal
axis denotes time 𝑡 , and the vertical axis, the coordinate 𝑥. The marks in the
graph represent the randomly assigned CPs used for training. The color scale
refers to the speed u(t, x). The solid white vertical line refers to the snapshot
𝑡 = 0.5 shown in Figure 2.

Fig. 2. Superimposed solutions for PINN (in red) and numerical solution (in
blue) for the 𝑡 = 0.5 snapshot.

B. Neurons x Layers

For the results presented below, the hyperparameters 𝑁𝑙

(number of hidden layers) and 𝑁𝑙𝑒 (number of neurons per
hidden layer) were varied, as well as the number of CPs for
training. The Table I shows the relative L2 errors and training
times of the neural network, for different hyperparameters used:

3

http://www.tensorflow.org

10, 15, 20, 25, and 30 neurons per hidden layer, and 1, 2, 4, 6,
and 8 hidden layers. The number of CPs was set at 2,000. All
values shown here are the average of 3 runs. In this table it is
possible to observe that there is a tendency for the best values
to be concentrated in the center, probably because there is a
problem of underfitting or overfitting in the values at the edges
of the table. One of the highlights is that the smallest error
is obtained with 6 hidden layers, not 8. In this specific case,
increasing the number of layers not only does not increase
precision, but also worsens performance.

Number of neurons per hidden layer
10 15 20 25 30

Relative L2 Error (%)
1 18.54 17.77 17.80 17.53 17.47
2 3.70 2.52 1.52 1.77 1.59
4 0.30 0.41 0.44 0.39 0.16
6 0.22 0.19 0.10 0.18 0.17
8 0.26 0.13 0.19 0.16 0.23

Training - processing time (seconds)
1 4.2 5.4 5.0 21.7 9.4
2 35.9 51.8 39.3 55.5 70.7
4 51.2 43.1 33.4 40.9 47.4
6 59.7 40.3 42.5 35.2 38.6
8 58.7 60.0 58.6 54.4 84.5

Hidden
layers

TABLE I
RELATIVE L2 ERRORS AND DNN TRAINING TIMES FOR DIFFERENT

NUMBER OF NEURONS AND HIDDEN LAYERS. ON THE COLOR SCALE, THE
BEST VALUES ARE HIGHLIGHTED IN RED.

The Figure 3 shows that the error for 1 hidden layer is high
compared to the other number of layers. For 2 layers there is
a significant improvement in accuracy. For 4, 6, and 8 the gain
in precision is not that great, but the curves are similar and
are in the region of greater precision, showing that they would
be the best choices.

10 15 20 25 30
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

1
2
4
6
8

Number of neurons per hidden layer

R
el

at
iv

e
L2

 e
rr

or

Number of
hidden layers

Fig. 3. Relative L2 error (%) in function of number of neurons and hidden
layers.

The Figure 4 shows for 4 hidden layers, a tendency to
describe a curve that resembles a parabolic, with a minimum
processing time of 20 neurons per hidden layer. This is probably
due to the problem of underfitting and overfitting occurring at
the beginning and at the end of the curve.

10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

1
2
4
6
8

Number of neurons per hidden layer

Tr
ai

ni
ng

 -
pr

oc
es

si
ng

 ti
m

e
(s

ec
on

ds
)

Number of
hidden layers

Fig. 4. Processing times (seconds) in function of number of neurons and
hidden layers.

C. Neurons x Dataset

The table Table II shows the relative L2 errors and training
times of the neural network, for different hyperparameters and
number of CPs used: 10, 15, 20, 25, and 30 neurons per hidden
layer, and 400, 800, 1200, 1600, and 2000 CPs. The number
of layers was set at 8. All values shown here are the average
of 3 runs. In this table, as in the previous one, it is possible
to observe that there is a tendency for the best values to be
concentrated in the center, probably because the problem of
underfitting or overfitting is occurring in the values at the
edges of the table. One of the highlights is that considering the
smallest error and the shortest processing time, the best dataset
size is 1600, and the best number of neurons per hidden layer
is 20.

Number of neurons per hidden layer
10 15 20 25 30

Relative L2 Error (%)
400 3.12 3.30 2.83 1.84 6.36
800 1.79 0.83 0.59 0.52 0.34

1200 0.41 0.50 0.46 0.35 0.61
1600 0.90 0.51 0.19 0.46 0.13
2000 0.26 0.13 0.19 0.16 0.23

Training - processing time (seconds)
400 57.9 82.3 83.3 59.8 58.6
800 79.7 53.5 63.2 45.0 63.0

1200 63.7 52.2 43.8 42.1 56.8
1600 59.9 27.5 45.3 46.5 56.4
2000 58.7 60.0 58.6 54.4 84.5

Dataset
size

TABLE II
RELATIVE L2 ERRORS AND DNN TRAINING TIMES FOR DIFFERENT

NUMBER OF NEURONS AND DATASET SIZE. THE NUMBER OF HIDDEN
LAYERS IS SET TO 8. ON THE COLOR SCALE, THE BEST VALUES ARE

HIGHLIGHTED IN RED.

The Figure 5 shows that the error for 400 CPs is high
compared to the others, 800 CPs presents a significant im-
provement in precision, and the other curves are relatively
close, not presenting such a large accuracy gain.

The Figure 6 shows for most curves a tendency to describe a
curve that resembles a parabolic, probably due to the problem

4

10 15 20 25 30
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

400
800
1200
1600
2000

Number of neurons per hidden layer

R
el

at
iv

e
L2

 e
rr

or Dataset size

Fig. 5. Relative L2 error (%) in function of number of neurons and dataset
size. The number of hidden layers is set to 8.

of underfitting and overfitting occurring at the beginning and
end of the curve. The shortest processing time occurs for 15
neurons per hidden layer, and 1600 CPs.

10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

400
800
1200
1600
2000

Number of neurons per hidden layer

Tr
ai

ni
ng

 -
pr

oc
es

si
ng

 ti
m

e
(s

ec
on

ds
)

Dataset size

Fig. 6. Processing times (seconds) in function of number of neurons and
dataset size. The number of hidden layers is set to 8.

D. Prediction time

The Table III shows the neural network’s prediction times,
once training is complete. Times are for 10, 20, and 30 neurons
per hidden layer, and 1, 4, and 8 layers. Most times are relatively
close, around 0.7 seconds. Compared to the training time of
about 43 seconds in the best cases, the time to predict the final
result represents about 1.5% of the training time, relatively.
The difference is very large, and shows that we should look
for algorithms or solutions where the number of trainings is
smaller than the number of predictions, when applicable.

Number of neurons per hidden layer
10 20 30

1 0.647 0.636 0.675
4 0.704 0.724 0.705
8 1.092 0.867 0.789

Number of
hidden layers

TABLE III
PREDICTION TIMES FOR DIFFERENT NUMBER OF NEURONS AND HIDDEN

LAYERS. ON THE COLOR SCALE, THE BEST VALUES ARE HIGHLIGHTED IN
RED.

IV. CONCLUSIONS

This work evaluates data-driven parameter discovery for a
one-dimensional Burgers’ equation using a Physics-Informed
Neural Network (PINN). The Burgers’ equation is a funda-
mental partial differential equation (PDE) with derivatives in
space and time, which is commonly solved by a numerical
method. An evaluation of the relative error and required training
time, performed in SDumont, is also presented for different
hyperparameters and dataset sizes. It was possible to observe
that adjusting the hyperparameters and the size of the dataset
is important for obtaining performance when using PINN. The
implementation also proved to be relatively simple, and the
results easy to obtain. As deep learning technology continues to
grow rapidly, both in terms of methodological and algorithmic
developments, this could be a timely contribution that can
benefit a wide range of scientific domains. As future work, it
would be interesting to explore other PINN architectures, as
well as taking advantage of the parallel use of GPU.

ACKNOWLEDGMENT

Authors thank LNCC (National Laboratory for Scientific
Computing) for grant 205341 AMPEMI (call 2020-I), which
allows access to the Santos Dumont supercomputer (node of
the SINAPAD, the Brazilian HPC system).

REFERENCES

[1] F. Chevallier, J. Morcrette, F. Chéruy, and N. A. Scott, “Use of
a neural-network-based long-wave radiative-transfer scheme in the
ECMWF atmospheric model,” Quart J Royal Meteoro Soc, vol.
126, no. 563, pp. 761–776, Jan. 2000, {06}. [Online]. Available:
https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.49712656318

[2] V. M. Krasnopolsky and M. S. Fox-Rabinovitz, “A new synergetic
paradigm in environmental numerical modeling: Hybrid models combining
deterministic and machine learning components,” Ecological Modelling,
vol. 191, no. 1, pp. 5–18, Jan. 2006, {04}. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0304380005003455

[3] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,” Journal of
Computational physics, vol. 378, pp. 686–707, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021999118307125

[4] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi,
and F. Piccialli, “Scientific Machine Learning Through Physics-
Informed Neural Networks: Where we are and What’s Next,”
arXiv preprint arXiv:2201.05624, 2022. [Online]. Available: https:
//arxiv.org/abs/2201.05624

[5] J. Burkardt, “Investigating Uncertain Parameters in the Burgers Equation,”
Mathematics Department, Ajou University, Suwon, Korea, 2013. [Online].
Available: https://people.sc.fsu.edu/~jburkardt/presentations/burgers_2013_
ajou.pdf

[6] W. Koehrsen, “Overfitting vs. underfitting: A complete example,”
Towards Data Science, vol. 405, 2018. [Online]. Available: http:
//www.pstu.ac.bd/files/materials/1566949131.pdf

[7] S. Xu, Z. Sun, R. Huang, G. Dilong, G. Yang, and S. Ju, “A practical
approach to flow field reconstruction with sparse or incomplete data
through physics informed neural network,” Acta Mechanica Sinica, vol. 39,
Nov. 2022.

5

https://rmets.onlinelibrary.wiley.com/doi/10.1002/qj.49712656318
https://www.sciencedirect.com/science/article/pii/S0304380005003455
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://arxiv.org/abs/2201.05624
https://arxiv.org/abs/2201.05624
https://people.sc.fsu.edu/~jburkardt/presentations/burgers_2013_ajou.pdf
https://people.sc.fsu.edu/~jburkardt/presentations/burgers_2013_ajou.pdf
http://www.pstu.ac.bd/files/materials/1566949131.pdf
http://www.pstu.ac.bd/files/materials/1566949131.pdf

	Introduction
	Material and methods
	PINN Implementation

	Results
	Visual assessment
	Neurons x Layers
	Neurons x Dataset
	Prediction time

	Conclusions
	References

