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Supporting Information Text12

Theorem B.3. ψk (x1 = λx1 + µ, ··· , xk = λxk + µ) = λkψk (x1, ··· , xk).13

Proof. ψk can be divided into k groups. From 1st to k − 1th group, the gth group has
(k

g

)(
g
1

)
terms having the form14

(−1)g+1 1
k−g+1x

k−g+1
i1

xi2 . . . xig . The final kth group is the term (−1)k−1 (k − 1)x1 ···xk.15

The first choice is letting xi1 = x1, k ̸= g, the gth group of ψk has
(k−l

g−l

)
terms having the form (−1)g+1 1

k−g+1x
k−g+1
1 x2 ···xlxi1 ···xig−l ,16

where x1, x2, ··· , xl are fixed, xi1 , ··· , xig−l are selected such that i1, ··· , ig−l ≠ 1, 2, ··· , l and i1 ̸= . . . ̸= ig−l. Define another17

function Ψk
(
x1, x2, ··· , xl, xi1 , ··· , xig−l

)
= (λx1 + µ)k−g+1 (λx2 + µ) ··· (λxl + µ) (λxi1 + µ) ···

(
λxig−l + µ

)
, the first group of18

Ψk is λkx1 ···xlxi1 ···xig−l , the hth group of Ψk, h > 1, has
( k−g+1

k−h−l+2

)
terms having the form λk−h+1µh−1xk−h−l+2

1 x2 ···xl.19

Transforming ψk by Ψk, then combing all terms with λk−h+1µh−1xk−h−l+2
1 x2 ···xl, k − h− l + 2 > 1, the summed coefficient20

is S1l =
∑h+l−1

g=l
(−1)g+1 1

k−g+1

( k−g+1
k−h−l+2

)(k−l
g−l

)
=
∑h+l−1

g=l
(−1)g+1 (k−l)!

(h+l−g−1)!(k−h−l+2)!(g−l)! = 0, since the summation is21

starting from l, ending at h+ l− 1, the first term includes the factor g− l = 0, the final term includes the factor h+ l−g− 1 = 0,22

the terms in the middle are also zero due to the factorial property.23

Another possible choice is letting one of xi2 . . . xig equal to x1, the gth group of ψk has (k − h)
(

h−1
g−k+h−1

)
terms having the24

form (−1)g+1 1
k−g+1x1x2 . . . x

k−g+1
j . . . xk−h+1xi1 . . . xig−k+h−1 , provided that k ̸= g, 2 ≤ j ≤ k − h+ 1, where x1, . . . , xk−h+125

are fixed, xk−g+1
j and xi1 , ··· , xig−k+h−1 are selected such that i1, ··· , ig−k+h−1 ̸= 1, 2, ··· ,k − h+ 1 and i1 ̸= . . . ̸= ig−k+h−1.26

Transforming these terms by Ψk
(
x1, x2, . . . , xj , . . . , xk−h+1, xi1 , . . . , xig−k+h−1

)
=27

(λx1 + µ) (λx2 + µ) ··· (λxj + µ)k−g+1 ··· (λxk−h+1 + µ) (λxi1 + µ) ···
(
λxig−k+h−1 + µ

)
, then there are k − g + 1 terms having28

the form λk−h+1µh−1x1x2 . . . xk−h+1. Transforming the final kth group of ψk by Ψk (x1, . . . , xk) = (λx1 + µ) ··· (λxk + µ), then,29

there is one term having the form (−1)k−1 (k − 1)λk−h+1µh−1x1x2 . . . xk−h+1. Another possible combination is that the gth30

group of ψk contains (g − k + h− 1)
(

h−1
g−k+h−1

)
terms having the form (−1)g+1 1

k−g+1x1x2 . . . xk−h+1xi1 . . . x
k−g+1
ij

. . . xig−k+h−1 .31

Transforming these terms by Ψk
(
x1, x2, . . . , xk−h+1, xi1 , . . . , xij , . . . , xig−k+h−1

)
=32

(λx1 + µ) (λx2 + µ) ··· (λxk−h+1 + µ) (λxi1 + µ) ···
(
λxij + µ

)k−g+1 ···
(
λxig−k+h−1 + µ

)
, then there is only one term having33

the form λk−h+1µh−1x1x2 . . . xk−h+1. The above summation S1l should also be included, i.e., xk−h−l+2
1 = x1, k = h+ l − 1.34

So, combing all terms with λk−h+1µh−1x1x2 . . . xk−h+1, according to the binomial theorem, the summed coefficient is35

S2l =
∑k−1

g=k−h+1 (−1)g+1 ( h−1
g−k+h−1

) (
k − h+ 1 + g−k+h−1

k−g+1

)
+(−1)k−1 (k − 1) = (k − h+ 1)

∑k−1
g=k−h+1 (−1)g+1 ( h−1

g−k+h−1

)
+36 ∑k−1

g=k−h+1 (−1)g+1 ( h−1
g−k+h−1

) (
g−k+h−1

k−g+1

)
+ (−1)k−1 (k − 1) = (−1)k(k − h+ 1) + (h− 2)(−1)k + (−1)k−1 (k − 1) = 0. The37

summation identities required are
∑k−1

g=k−h+1 (−1)g+1 ( h−1
g−k+h−1

)
= (−1)k and

∑k−1
g=k−h+1 (−1)g+1 ( h−1

g−k+h−1

) (
g−k+h−1

k−g+1

)
=38

(h− 2)(−1)k. These two summation identities are proven in Lemma B.4 and B.5. The result is the same if replacing x1 with xi,39

where i is from 2 to k, and replacing xl with other xi. Thus, all terms including µ can be canceled out. The proof is complete40

by noticing that the remaining part is λkψk (x1, ··· , xk).41

42

Lemma B.4.
∑k−1

g=k−h+1 (−1)g+1 ( h−1
g−k+h−1

)
= (−1)k.43

Proof. Let u = k − h+ 1, then the above identity becomes
∑k−1

g=u
(−1)g+1 (k−u

g−u

)
= (−1)k. Then, by deducing,

k−1∑
g=u

(−1)g+1
(

k − u

g − u

)
=

k−u−1∑
i=0

(−1)i+u+1
(

k − u

i

)
(Substitute i = g − u)

= (−1)k+2 +
k−u∑
i=0

(−1)i+u+1
(

k − u

i

)

= (−1)k+2 + (−1)u+1
k−u∑
i=0

(−1)i

(
k − u

i

)
= (−1)k (Apply the alternating sum identity),

the proof is complete.44

45

Lemma B.5.
∑k−1

g=k−h+1 (−1)g+1 ( h−1
g−k+h−1

) (
g−k+h−1

k−g+1

)
= (h− 2)(−1)k.46
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Proof. Let u = k − h+ 1, then the above identity becomes
∑k−1

g=u
(−1)g+1 ( k−u

g−u−1

)
= (−1)k (k − u− 1). Then by deducing,

k−1∑
g=u

(−1)g+1
(

k − u

g − u− 1

)
=

k−u−2∑
i=−1

(−1)u+i+2
(

k − u

i

)
(Substitute i = g − u− 1)

=
k−u∑
i=0

(−1)u+i+2
(

k − u

i

)
−

k−u∑
i=k−u−1

(−1)u+i+2
(

k − u

i

)
(Apply the alternating sum identity)

= −
k−u∑

i=k−u−1

(−1)u+i+2
(

k − u

i

)
= (−1)k+2

(
k − u

k − u− 1

)
+ (−1)k+3

(
k − u

k − u

)
= (−1)k+2(k − u) + (−1)k+3

= (−1)k+2(k − u− 1),

the proof is complete.47

Theorem F.1. Given a U-statistic associated with a symmetric kernel of degree k. Then, assuming that as n → ∞, k48

is a constant, the upper breakdown point of the LU-statistic is 1 − (1 − ϵ0)
1
k , where ϵ0 is the upper breakdown point of the49

corresponding LL-statistic.50

Proof. Suppose m arbitrary large contaminants are added to the sample. The fraction of bad values in the sample can
be represented as ϵUk = m

n+m
, where n denotes the original number of data points that remain unaffected. In the kernel

distribution,
(

n
k

)
out of a total of

(
n+m

k

)
points are not corrupted. Then, the breakdown can be avoided if the following

inequality holds

(
n

k

)
>
( 1
ϵ0

− 1
)

×
((

n+m

k

)
−
(
n

k

))
.

Since ϵ0 is the upper breakdown point of the corresponding LL-statistic, 0 ≤ ϵ0 ≤ 1
1+γ

,

1
1 − ϵ0

>

(
n+m

k

)(
n
k

) = (n+m) (n+m− 1) . . . (n+m− k + 1)
n (n− 1) . . . (n− k + 1) .

Assuming n → ∞, k is a constant, limn→∞
(

n+m−k+1
n−k+1

)
= n+m

n
, then the above inequality does not hold when n+m

n
≥
(

1
1−ϵ0

) 1
k .51

So, the upper asymptotic breakdown point of the LU -statistic is ϵUk = m
n+m

= 1 − n
n+m

= 1 − (1 − ϵ0)
1
k .52
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BMν=3,ϵ= 1
24

for the exponential distribution53

For a continuous distribution, TMy,z =

∫ F−1(z)

F−1(y)
xf(x)dx∫ F−1(z)

F−1(y)
f(x)dx

. For the exponential distribution, it is λ(−y+(y−1) ln(1−y)+z−(z−1) ln(1−z))
z−y

.

Then,

BMν=3,ϵ= 1
24

= 1
24

(
4TM 1

24 , 2
24

− 2TM 2
24 , 3

24
+ 2TM 3

24 , 4
24

+ 0TM 4
24 , 5

24
+ 4TM 5

24 , 6
24

− 2TM 6
24 , 7

24
+ 2TM 7

24 , 8
24

+0TM 8
24 , 9

24
+ 4TM 9

24 , 10
24

− 2TM 10
24 , 11

24
+ 2TM 11

24 , 12
24

+ 2TM 12
24 , 13

24
− 2TM 13

24 , 14
24

+ 4TM 14
24 , 15

24

+0TM 15
24 , 16

24
+ 2TM 16

24 , 17
24

− 2TM 17
24 , 18

24
+ 4TM 18

24 , 19
24

+ 0TM 19
24 , 20

24
+ 2TM 20

24 , 21
24

− 2TM 21
24 , 22

24
+ 4TM 22

24 , 23
24

)
= 1

24

(
4λ
(

1 − 22 ln
(12

11

)
+ 23 ln

(24
23

))
− 2λ

(
1 − 21 ln

(8
7

)
+ 22 ln

(12
11

))
+ 2λ

(
1 − 20 ln

(6
5

)
+ 21 ln

(8
7

))
+4λ

(
1 − 18 ln

(4
3

)
+ 19 ln

(24
19

))
− 2λ

(
1 + 18 ln

(4
3

)
− 17 ln

(24
17

))
+ 2λ

(
1 − 16 ln

(3
2

)
+ 17 ln

(24
17

))
+4λ

(
1 + 15 ln

(8
5

)
− 14 ln

(12
7

))
− 2λ

(
1 + 14 ln

(12
7

)
− 13 ln

(24
13

))
+ 2λ

(
1 − 12 ln(2) + 13 ln

(24
13

))
+2λ

(
1 + ln(4096) − 11 ln

(24
11

))
− 2λ

(
1 − 10 ln

(12
5

)
+ 11 ln

(24
11

))
+ 4λ

(
1 − 9 ln

(8
3

)
+ 10 ln

(12
5

))
+2λ

(
1 + 8 ln(3) − 7 ln

(24
7

))
− 2λ

(
1 − 6 ln(4) + 7 ln

(24
7

))
+ 4λ

(
1 + ln

(3125
1944

))
+2λ

(
1 + ln

(81
32

))
− 2λ

(
1 + ln

(32
9

))
+ 4λ(1 + ln(6))

)
= 2λ

24

(
12 − 12 ln(2) + 8 ln(3) + 6 ln(4) + ln(36) + ln(4096) − 16 ln

(3
2

)
− 54 ln

(4
3

)
− 18 ln

(8
3

)
− 20 ln

(6
5

)
+30 ln

(8
5

)
+ 30 ln

(12
5

)
+ 42 ln

(8
7

)
− 42 ln

(12
7

)
− 14 ln

(24
7

)
− ln

(32
9

)
− 66 ln

(12
11

)
− 22 ln

(24
11

)
+26 ln

(24
13

)
+ 34 ln

(24
17

)
+ 38 ln

(24
19

)
+ 46 ln

(24
23

)
+ ln

(81
32

)
+ 2 ln

(3125
1944

))
= λ

(
1 + ln

(
26068394603446272 6

√
7

247
3√11

3915/6101898752449325
√

5

))
.

Methods54

A. d Value Calibration. Asymptotic d values for the invariant moments for the exponential distribution (λ = 1) were approximated55

by a quasi-Monte Carlo study (1, 2). The study was conducted using the R programming language (version 4.3.1) with the56

following libraries: randtoolbox (3), Rcpp (4), Rfast (5), matrixStats (6), foreach (7), and doParallel (8). A large quasi-random57

sample was generated, with a sample size of approximately 1.8 million, from the exponential distribution. This sample was58

then quasi-subsampled about 1.8k million times to approximate the kernel distributions. Consequently, computations were59

made for the kth moment (km), the symmetric weighted Hodges-Lehmann kth moment (SWHLkm), the median kth moment60

(mkm), and the corresponding quantiles. The d values of recombined/quantile moments were obtained by the formulae61

drkm = km−SWHLkm
SWHLkm−mkm

and dqkm = F̂n,ψk (km)−F̂n,ψk (SWHLkm)
F̂n,ψk (SWHLkm)− 1

2
. The accuracy of the estimates was verified by comparing the62

quasi-bootstrap central moments to their asymptotic values, yielding errors of ≈ 0.0003, ≈ 0.001, and ≈ 0.03 for the second,63

third, and fourth central moments, respectively. The standard deviations of these central moments kernel distributions were64

2.234, 9.627, and 60.064, respectively, resulting in standardized errors for the values that were all smaller than 0.001, thus65

ensuring the accuracy implied in the number of significant digits of the values in Table 1 in the Main Text.66

For finite sample, the d values were estimated using 1000 pseudorandom samples with sample size n = 4096 with a quasi-67

bootstrap size of 18000. To estimate the errors of d value estimations of recombined mean in this way, first consider the first68

order Taylor approximation of the d value function, d = x1−x2
x2−x3

≈ d0 + ∂d
∂x1

x1 + ∂d
∂x2

x2 + ∂d
∂x3

x3. Then, by applying Bienaymé’s69

identity, the variance of d can be approximated by σ2
d ≈

∣∣ ∂d
∂x1

∣∣2 σ2
x1 +

∣∣ ∂d
∂x2

∣∣2 σ2
x2 +

∣∣ ∂d
∂x3

∣∣2 σ2
x3 + 2

∣∣ ∂d
∂x1

∣∣ ∣∣ ∂d
∂x2

∣∣Cov (X1, X2) +70

2
∣∣ ∂d

∂x1

∣∣ ∣∣ ∂d
∂x3

∣∣Cov (X1, X3) + 2
∣∣ ∂d

∂x2

∣∣ ∣∣ ∂d
∂x3

∣∣Cov (X2, X3) =
∣∣ 1

x2−x3

∣∣2 σ2
x1 +

∣∣∣− x1−x2
(x2−x3)2 − 1

x2−x3

∣∣∣2 σ2
x2 +

∣∣∣ x1−x2
(x2−x3)2

∣∣∣2 σ2
x3 +71

2
∣∣ 1

x2−x3

∣∣ ∣∣∣− x1−x2
(x2−x3)2 − 1

x2−x3

∣∣∣Cov (X1, X2)+2
∣∣ 1

x2−x3

∣∣ ∣∣∣ x1−x2
(x2−x3)2

∣∣∣Cov (X1, X3)+2
∣∣∣− x1−x2

(x2−x3)2 − 1
x2−x3

∣∣∣ ∣∣∣ x1−x2
(x2−x3)2

∣∣∣Cov (X2, X3).72

Since for the recombined mean, σ2
x1 = 0, so, σ2

drm ≈
∣∣∣− x1−x2

(x2−x3)2 − 1
x2−x3

∣∣∣2 σ2
x2 +

∣∣∣ x1−x2
(x2−x3)2

∣∣∣2 σ2
x3 +73
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2
(

− x1−x2
(x2−x3)2 − 1

x2−x3

)(
x1−x2

(x2−x3)2

)
Cov (X2, X3), where x1 is the expected value, x2 is the weighted L-statistic used, x3 is the74

median. For quantile mean, since σ2
x3 = 0, σ2

dqm ≈
∣∣ 1

x2−x3

∣∣2 σ2
x1 +

∣∣∣− x1−x2
(x2−x3)2 − 1

x2−x3

∣∣∣2 σ2
x2 +75

2
(

1
x2−x3

)(
− x1−x2

(x2−x3)2 − 1
x2−x3

)
Cov (X1, X2), where x1 is the percentile of the expected value, x2 is the percentile of the76

weighted L-statistic used, x3 is the percentile of median, 1
2 . Finally, the errors were estimated by the corresponding sample77

statistics. The results of error estimation were included in the SI Dataset S1.78

B. ASAB, ASB, and SSE. The computations of ASABs for invariant central moments were described in the Main Text. ASBs79

are the same, besides under finite sample scenarios. The SSE was computed by approximating the sampling distribution with80

1000 pseudorandom samples for n = 4096 and 30 pseudorandom samples for n = 1.8 × 106. Common random numbers were81

used for better comparison. Analogous to the asymptotic bias, the scaled standard error can be standardized, averaged, and82

weighted. It should be noted that, in Table 1, for symmetric distributions, the generalized Gaussian, the standard errors were83

used for location and asymmetry estimators, since when the mean value is close to zero, the scaled standard error will approach84

infinity and therefore be too sensitive to small changes. The errors of ASB and SSE were estimated by se (x̄) = σ√
n

≈ usb√
n

,85

se (sd) ≈ 1
2σ
se (var) =

√
µ4

4nσ2 − n−3
4n(n−1)σ

2 ≈
√

fm
4nvar

− n−3
4n(n−1)var, where usb is unbiased standard deviation of the sampling86

distribution with normality assumption (9). The computational methods used for two-parameter distributions were identical.87

The computations of invariant moments were described in the Main Text. The results of error estimation were included in the88

SI Dataset S1.89

C. The Impact of Bootstrap Size on Variance. The study of the impact of the bootstrap size, from n = 1.8 × 102 to n = 1.8 × 104,90

on the variance for the exponential distribution was done the same as above.91

D. Comparisons to Unbiased Central Moments, M -Estimators, and Marks Percentile Estimator. Within the same kurtosis92

range and five two-parametric distributions as the above, algorithms for unbiased central moment estimation proposed by93

Gerlovina and Hubbard (10) were used for estimating unbiased central moments. Then, within the same kurtosis range94

and four two-parametric distributions (except the generalized Gaussian distribution, since the logarithmic function does not95

produce results for negative values), the percentile estimators were computed using the method proposed by Marks (2005)96

(11) (consistent for the Weibull distribution) and the parameter setting proposed by Boudt, Caliskan, and Croux (2011) (12).97

The robust M -estimators were also computed in the same way using the methods proposed by Huber (13) (consistent for the98

Gaussian distribution) and He and Fung (1999) (14) (consistent for the Weibull distribution). Bisection is used to find the99

solution of the key equation in (14), while the results from the percentile estimator were used as initial values (-0.3 and +0.3).100

The results of He and Fung M -Estimator and Marks Percentile Estimator were then transformed to the first four moments to101

compute ASABs, ASBs, and SSEs. The ASABs, ASBs, and SSEs of unbiased central moments and Huber M -estimator were102

processed similarly.103

E. Maximum Asymptotic Biases. For simplicity, a brute force approach was used to estimate the maximum biases of SWHLMs104

and SWHLkms for five unimodal distributions. From the minimum kurtosis, a wide range was set to roughly estimate the105

parameter ranges in which the maximum bias might occur (the corresponding maximum kurtoses are all larger than 500).106

Then, the parameter range was broken to 100 parts, the maximum among all estimates was determined to be very close to the107

true maximum. Pseudo-maximum bias was described in the Main Text.108

The brute force approach is generally valid, i.e., the maximum is the global maximum, not local maximum, even when the109

the corresponding maximum kurtosis is finite. Because all five distributions here have the property that, as the kurtosis of the110

distribution increases to infinity, the standardized biases of SWHLMs approach zero.111

For example, for the Perato distribution,

BQ(ϵ, α) =
xm (1 − ϵ)− 1

α − αxm
α−1√

αxm2

(1−α)2(α−2)

.

limα→2 BQ(ϵ, α) = limα→2
xm(1−ϵ)− 1

α −αxm
α−1√

αxm2
(1−α)2(α−2)

= limα→2
(1−ϵ)− 1

2 −2√
2

(−1)2(2−2)

= 0. Since SWHLMs are quantile combinations, their112

standardized biases all approach zero.113

In SMRM I, it is shown that in a family of distributions that differ by a skewness-increasing transformation in van Zwet’s114

sense, violations of orderliness typically occur only when the distribution is near-symmetric. That means for the SWAs based115

on the orderliness, the distribution will follow the mean-SWA-median inequality as the skewness approaches infinity, and116

therefore as the kurtosis approaches infinity since they are correlated. Thus, proving the limits of the ratios between µ and σ,117

as well as m and σ is enough.118

For example, for the Weibull distribution, the ratio of µ and σ is limα→0
Γ(1+ 1

α )√
Γ(α+2

α )
= limα→0

(1+ 1
α

−1)!√
(α+2
α

−1)!
= limα→0

( 1
α )!√

(2× 1
α )!

=

0, the ratio of m and σ is limα→0+
α
√

ln(2)√
Γ(α+2

α )
= limα→0+

α
√

ln(2)√
(α+2
α

−1)!
= limx→∞

ex ln(ln(2))√
(2x)!

, where x = 1
α

. Applying Stirling’s
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approximation for the factorial gives:

lim
x→∞

ex ln(ln(2))√
(2x)!

= lim
x→∞

ex ln(ln(2))√(
2x
e

)(2x)√2π(2x)
= lim

x→∞

ex ln(ln(2))

√
2 4√π

√
22xe−2x

√
x2x+ 1

2

= lim
x→∞

ex ln(ln(2))

√
2 4√π2xe−x

√
x2x+ 1

2

= lim
x→∞

ex(ln(ln(2))−1)

2x
√

2 4√πxx
√
x
.

Since (ln(ln(2)) − 1) ≈ −1.367, the numerator goes to zero as x → ∞. Obviously, the denominator is monotonic increasing and119

goes to infinity as x → ∞, therefore, limα→0+
α
√

ln(2)√
Γ(α+2

α )
= 0.120

Similarly, for the gamma distribution, the ratio of µ and σ is limα→0
α√
α

= limα→0
1√
α

= 0, the ratio of m and σ is121

limα→0
P −1(α, 1

2 )√
α

= 0 (15).122

The lognormal distribution is the same, the ratio of µ and σ is limσ→∞
e
µ+σ2

2√
(eσ

2 −1)e2µ+σ2
= limσ→∞

e
µ+σ2

2√
e2µ+2σ2

= limσ→∞
e
σ2
2

eσ
2 =123

0, the ratio of m and σ is limσ→∞
eµ√

(eσ
2 −1)e2µ+σ2

= 0.124

As demonstrated, the growth rate of the standard deviation greatly exceeds that of the mean and that of the median. This125

phenomenon is closely tied to the Taylor’s law and is more widespread than these examples suggest.126

F. Language Refinement and Mathematical Expressions. ChatGPT, an AI language model developed by OpenAI, was used to127

improve the grammatical accuracy of the manuscript. To deduce and verify complex mathematical expressions, both Wolfram128

Alpha and ChatGPT were utilized.129

SI Dataset S1 (dataset_one.xlsx)130

Raw data of Table 1 in the Main Text.131
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