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Towards a Unified Bayesian Approach to Hybrid
Metric-Topological SLAM

Jose-Luis Blanco, Juan-Antonio Fernández-Madrigal, and Javier Gonzalez

Abstract— This article introduces a new approach to Si-
multaneous Localization and Mapping (SLAM) which pursues
robustness and accuracy in large-scale environments. Like most
successful works on SLAM, we use Bayesian filtering to provide
a probabilistic estimation which can cope with uncertainty in
the measurements, the robot pose, and the map. Our approach
is based on the reconstruction of the robot path in a hybrid
discrete-continuous state space, which naturally combines metric
and topological maps. There are two fundamental characteristics
that set this work apart from previous ones: (i) the use of a
unified Bayesian inference approach both for the metrical and
the topological parts of the problem; and (ii) the analytical
formulation of belief distributions over hybrid maps, which
allows us to maintain the spatial uncertainty in large spaces more
accurately and efficiently than previous works. We also describe
a practical implementation which aims for real-time operation.
Our ideas have been validated by promising experimental results
in large environments (up to 30.000 m2, a 2Km robot path)
with multiple nested loops, which could hardly be managed
appropriately by other approaches.

Index Terms— Bayesian filtering, hybrid metric-topological
maps, loop closure, mobile robots, Rao-Blackwellized particle
filters, SLAM, topological maps.

I. I NTRODUCTION

SIMULTANEOUS Localization and Mapping (SLAM) is
one of the central problems in mobile robotics, since

the effective introduction of autonomous robots into real-life
applications will undoubtedly require their operation in envi-
ronments unknown at design time. The common formulation
of the SLAM problem consists of building some kind of world
representation from the sequence of data gathered by the robot,
assuming no prior information about the environment and
simultaneously localizing the robot using that representation.
Different kinds of representations, ormaps, have been pro-
posed in the robotics and the artificial intelligence literature,
ranging from low-level metric maps, such as landmark maps
[12], [53] and occupancy grids [18], to topological graphs
which contain high-level qualitative information [10], [24],
[31], even multi-hierarchies of successively higher-level ab-
stractions [20]. While existing techniques allow building maps
of relatively large areas, SLAM remains a largely unsolved
problem in relation to high-level representations and long-term
operation within large-scale environments.
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After an intense research during the last decade, it is
clear that the most successful methods for SLAM are those
based on probabilistic Bayesian estimation, which can manage
noisy measurements and uncertainty in the robot location, the
map, and, for those based on particle filters, also in data
association [12], [16], [39], [57], [60]. Therefore, our proposal
is grounded on the success and accuracy of techniques for
metric localization and mapping within small-sized scenarios.
It has also been shown that large-scale environments can be
divided intoareasof convenient sizes where these techniques
can be applied efficiently to produce consistentlocal sub-maps
[7], [19]. In our approach, this division of space depends on
the nature of sensors in such a way that each area contains
portions of the environment that are very likely to be sensedby
the robot simultaneously, whereas parts of different areaswill
be rarely or never observed at the same time. We employ for
this purpose existing methods [5], [63] based on this criterion
of simultaneous visibility (calledoverlap in [5]). Notice that
this kind of area does not correspond to logical or semantic
divisions as could be interpreted by a human [37], such as
a corridor or a room, but is based on the robot’s sensory
apparatus.

Using this definition of area, we introduce the concept of
the hybrid metric-topological (HMT) path, which comprises
the sequence of areas the robot has traversed (topological
part) and its pose within each of them (metric part). Then,
by considering the posterior belief distribution of the whole
HMT path we can obtain the probability distribution over all
the potentialtopological structuresof the environment, an
issue not addressed before simultaneously to the estimation of
the metric poses between, and within, the areas. The resulting
probabilistic map, called HMT map, represents the topology
of the environment with graphs whose nodes (areas) are anno-
tated with metric sub-maps and whose arcs (connections be-
tween areas) are annotated with the coordinate transformations
between the corresponding areas. By conditioning the belief
distribution of the map to the knowledge of the HMT path,
we can represent these relative coordinate transformations in
closed form, avoiding by design some problems that appear in
global mapping with particle filters [36], [54]. The avoidance
of absolute coordinates has been repeatedly proposed in the
literature due to the difficulty of appropriately representing the
uncertainty of poses far away from a global coordinate origin
[7], [19], [22], [56].

Our approach, called HMT-SLAM, supports metric sub-
maps of either landmarks or occupancy grid-maps. In the
context of occupancy grid mapping, it naturally provides a
correction of the robot path after closing large loops without
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rebuilding any global metric map, which has been pointed out
sometimes as a weakness of grid-based, large-scale mapping.

Our work is related to some existing methods for hybrid
mapping, specially to Hierarchical SLAM [19], and to the
Atlas framework [7]. The fundamental contributions of our
proposal in the context of these and other previous works are:

• The introduction of probability distributions over both
the metric and the topological part of the robot path.
Previous works have considered either the robot metric
[26], [39], [43] or topological [46] paths separately. Apart
from the mathematical consistency of a unified Bayesian
approach, this formulation supports multiple topological
hypotheses, and can be factorized in such a way that
allows the uncertainty of large maps to be maintained
accurately.

• A statistically grounded principle for the separation of the
map into sub-maps. In [19], new sub-maps are started if
the previous ones reach a given number of landmarks,
while in [7] this is performed whenever a measure of the
localization performance degrades. We propose instead
to generate sub-maps that minimize a given measure1 of
covisibility or overlap between groups of observations,
which allows us to set a grounded statistical model for
HMT-SLAM as a Bayesian inference problem. Also, this
provides the robot with topological structures that do not
depend on external engineered knowledge, but on its own
sensory system.

• In contrast to previous works (such as [7]), in HMT-
SLAM all the hybrid map hypotheses are treated equally,
associating different metric sub-maps to a given area if
there exist multiple hypotheses about the topological path
followed by the robot. This implies that the metric pose
of the robot may be distributed around multiple modes
even for particles with the same topological position. Our
approach does not impose limits to the variety of the
inferred distributions, whose complexity will uniquely be
determined by the ambiguity of the environment and the
uncertainty introduced by closing long loops.

The rest of this paper is outlined as follows. In section II we
examine in more detail previous works on SLAM. Next, we
provide the probabilistic foundations for our approach, while
some of its key elements are discussed in depth in section IV.
A practical system that implements these ideas is presentedin
section V, and experimental results with real robots in large-
scale scenarios, as well as comparisons to other approaches,
are discussed in section VI. Finally, some conclusions and
future work are outlined.

II. RELATED WORK

In the following we discuss previous works in the fields
of metric, topological, and hybrid mapping, highlighting their
relation to the present paper.

Pure metric approaches aim at reconstructing a representa-
tion of the environment where the relevant information is the
metrical arrangement and characteristics of the map elements.

1Ideally, the cross-covariances in the case of landmark maps.

TABLE I

SUMMARY OF THE NOTATION EMPLOYED IN THE TEXT

SYMBOL M EANING

m The HMT map (an annotated graph).
aM The local metric map for the areaa.
b
a∆ The coordinate origin of areab relative to that of area

a.
st The robot HMT pose at time stept.

ut, ot The robot actions and hybrid observations at time step
t.

st, ut, ot The sequences of robot poses, actions, and observa-
tions for time steps 1 tot.

ist′ ,
i ut′ ,

i ot′ A convenient way of referencing the robot poses,
actions, and observations grouped into the areai such
as the first elements are given fort′ = 0.

ist,i ut,i ot The sequences of all the corresponding variables up
to time stept.

ψt, zt The area-dependant and metric observations, respec-
tively.

γt, xt The topological and metric parts ofst at time stept,
respectively.

γt The topological path of the robot up to time stept.
Υt The set of all known areas at time stept.

s
[k]
t

The k’th particle at time stept for the robot HMT
pose.

ω
[k]
t

Importance weight of thek’th particle at time stept.

Popular metric representations are landmark maps [1], [12],
[53], [56], occupancy grids [18], [26], [41], and raw range
scans [28], [35] (please refer to [57] for a more detailed
classification). Some advantages of metric maps are their
direct relation with robotic sensors and their value for some
tasks such as motion planning or obstacle avoidance. There
exist non-probabilistic approaches for building metric maps
[25], [28], [35], although most works rely on probabilistic
representations of the robot pose and the map, where Bayesian
filtering is used to estimate the corresponding probabilitydis-
tributions [12], [53]. The hardest problem in those methodsis
data association (that is, establishing correspondences among
observations and the map) [44], a problem that aggravates
when the robot closes a loop since the uncertainty in the robot
pose and the map increases as the robot explores new areas, i.e.
the hardness of finding the correct data association increases
with the scale of the maps, and in turn, establishing wrong
correspondences severely compromises the consistency of the
estimated maps. In fact, during the last years the research on
the consistency of EKF-like solutions for SLAM has gained
interest, since the approximations introduced by linearizing
and assuming Gaussian distributions are known to impose a
maximum length for a loop to be correctly closed [2], [8]. The
idea of partitioning the environment into a sequence of sub-
maps has been proposed as an improvement [45], [56], which
is one of the basic motivations of our method.

A popular approach to the above mentioned problems of
metric mapping is to employ a Rao-Blackwellized Particle
Filter (RBPF) [13], [40], [43]. If we denote the map asm,
the robot path asx1:t (or xt for compactness), and the robot
actions and observations asut and zt, respectively, we can
observe the following factorization of the SLAM posterior:

p(xt,m|ut, zt) = p(xt|ut, zt)p(m|xt, ut, zt) (1)
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which is exploited in a RBPF and holds for any form of
the probability densities. This factorization shows that,if we
estimate the robot path through a separate particle filter, the
mapm can be estimated from the individual contributions of
the observationszt since they are conditionally independent
givenxt. This is supported by the structure of the variables in-
volved in SLAM, as shown in Fig. 1, which has been exploited
successfully to build large maps both with occupancy grids
[26] and landmarks (FastSLAM [39]). However, the number
of samples required in these particle filters for closing a loop
increases with the length of the loop, which may eventually
turn into a storage capacity limitation since each particle
carries a hypothesis of the whole map. Another limitation of
RBPF for large-scale mapping is the loss of particle diversity
when closing nested loops. Strategies exist for alleviating
these problems [54], [55], but the underlying hurdles are
just postponed. Another drawback of global mapping with
RBPF is that the loss of diversity after closing a long loop
typically leads to the total loss of the robot path uncertainty.
An enlightening discussion about the problems of standard
particle filters for large-scale mapping was recently presented
in [36].

Building a topological map is an attractive alternative to
metric mapping due to, among other properties, the reduced
storage requirements and the good integration with symbolic
planning of complex tasks [9], [15], [50]. However, pure
topological maps are not suitable to solve SLAM. Although
Bayesian estimation has been reported recently for these maps
in [46], it is assumed a discrete set of “distinctive” places
within the environment which must be correctly detected
whenever the robot passes close to them: the only relevant
sensorial information is that of being close to a distinctive
place or not. We believe that a variety of sensors (like
laser scanners, or cameras) can provide the robot a more
accurate pose estimation through local metric sub-maps than
that obtained by a purely topological approach, where most of
the sensory data is simply ignored.

So far, it seems an appealing approach that of considering
hybrid maps2, where topological nodes contain local metric
information [7], [19], [30], [32], [38], [59], [61]. In particular,
the Atlas framework [7] and the work on hierarchical SLAM
by Estradaet al. [19] contain interesting similarities with the
present paper: both reference uncertainty to local coordinate
frames and represent maps as topological graphs with local
metric sub-maps. However, in these previous works loop clo-
sure has been considered only under the metric point-of-view,
i.e. by finding the global metric coordinates transformation
compatible with the loop closure. In turn, considering the
whole HMT path of the robot leads to important advantages.

Finally, we should also highlight that the meaning of the
topological part of our HMT map strongly differs from that
considered in many other works. In the literature we can find
works that consider distinctive places as nodes [9], [31], [32],
while others cut the map into disjoint areas [19], [59]. Instead,

2These maps are sometimes referenced ashierarchical mapsin the SLAM
literature. We use here the alternative term “hybrid” to avoid confusion
with pure topological graph representations that involve abstraction processes,
which are also usually called “hierarchical” [20], [23].

x0 x1 x2

u1 u2

…

z0 z1 z2

m

xt

ut

zt

…

Hidden variables

Observed variables

Fig. 1. The structure of the common formulation of SLAM as a Dynamic
Bayesian Network. Actionsut and observationszt are the observed variables
from which the robot pathx1:t and the mapm are estimated.

our approach is closer to those where topological nodes are
the result ofabstracting robot observationsgathered at a given
area [5], [63]. Therefore, the size of the areas is automatically
determined by the nature of sensors, more concretely, by the
overlap between observations [5]. As an example, exploring
a single room with a narrow field-of-view camera may result
in many different areas, whereas a wide-angle laser scanner
might probably lead to only one area. Our areas have no other
special semantics.

III. PROBABILISTIC FOUNDATIONS

The present proposal for HMT-SLAM is grounded on the
sparsity of the relations between robot observations in a large
environment: by our definition ofarea, observations within
a given area will be highly related to one another, while
observations belonging to different areas will not. This fact has
been employed in a number of works to ease the construction
of landmark maps [21], [34].

We start by defining a HMT mapm of the environment as
the annotated graph3 that comprises the 2-tuple:

m = 〈{iM}i∈Υt
, {ba∆}a,b∈Υt

〉 (2)

Here theiM are metric sub-maps for each areai ∈ Υt,
where Υt stands for the set of known areas at time stept.
On the space of these hybrid maps, we will define beliefs as
probability distributions. The local maps and the coordinate
transformationsba∆ between the adjacent areasa and b are
the annotations of the nodes and the arcs in the graph,
respectively. Although this is the only information relevant
for this work, it is worth mentioning that the graph could also
maintain data about the kind each area is, the navigability
between areas, or any other high-level knowledge useful in
graph-based planning or symbolic reasoning [23]. We will
consider conditional probability distributions overm given the
information gathered by the robot up to some time step, where
each particle may contain in turn different belief distributions
for the metrical sub-maps and the coordinate transformations,
and even a different number of nodes and arcs.

Accordingly, the robot is provided with a hybrid discrete-
continuous description of its position within the map. Let
st = 〈γt, xt〉 denote the robot HMT pose at time stept,

3By “annotated graph” we mean a graph whose nodes and arcs can hold
some non-topological information. This is an informal versionof the term
“typed attributed graph” in the graph transformation literature [17].
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Fig. 2. Each metric sub-mapiM has its own local coordinate frame. The
robot HMT pose is thus a discrete-continuous variable whichstates both the
current area (the node in the topological part of the map) and the metric pose
relative to the corresponding local frame.

where the discrete variableγt indexes the current area and
the continuous variablext represents the metric pose relative
to the local coordinate frame of that area, as represented
schematically in Fig. 2.

We can now state the problem of HMT-SLAM as the
estimation of the joint posterior of the robot HMT pathst

and the mapm given the sequences of robot actionsut and
observationsot up to time stept, that is:

p(st,m|ut, ot) (3)

For clarity, we denote sequences of variables over time
with superscripts, i.e.ut = {u1, ..., ut}. We also defineot
as containing the hybrid pair〈ψt, zt〉, with the purpose of
conveniently setting metric observationszt (such as range
scans or landmarks extracted from images) apart from topo-
logically dependant observationsψt (such as the recognition
of a particular kind of area). This division renders especially
useful when facing the problem of global localization.

In this paper we will approach HMT-SLAM under the point-
of-view of sequential estimation, using the graphical model
proposed in Fig. 3. For clarity, the first time step at each
segment has been denoted as0, and we add the current area
as a left superscript to the name of variables, e.g. replacing st
by γtst′ . We can observe the following interesting statistical
properties in the structure of HMT-SLAM under the proposed
sequential estimation model.

Proposition 1. Given the distribution of the robot HMT
path, and due to the conditional independence between
the local sub-maps, the joint posterior of all the sub-maps
i ∈ Υt can be factorized as:

p({iM}i∈Υt
|st, ut, ot) =

∏

i∈Υt

p(iM|ist,i ot) (4)

This property holds in general, regardless the choice of
the metric map representation.

The conditional independence between the sub-maps given
the robot path can be clearly seen in Fig. 3, where the robot
pathd-separates [49], [62] all the possible paths between any
pair of sub-mapsiM.

Hidden variables

Observed variables
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Fig. 3. The graphical model for HMT-SLAM. Here segments of the robot
path are conditionally independent given the starting poseat each segment.
The relative pose between areas is represented byb

a∆, while the termiM
stands for the metric sub-map of areai.

Proposition 2. The metric sub-mapsiM and the coor-
dinate transformationsba∆ are conditionally independent
given the robot HMT path.

This property can be verified in Fig. 3 by noticing that the
robot path alsod-separates the set of metric sub-maps and the
set of arcsba∆.

Proposition 3. The posterior distribution of the robot
HMT path st can be factorized into the product of its
segments through the different areasi:

p(st|ut, ot) =
∏

i∈Υt

p(ist
′

|iut
′

,i ot
′

) (5)

The reason of this property is that consecutive robot poses
grouped into different areas, likeast′ and bs0 in Fig. 3,
become independent variables in our model. This may seem
surprising at first glance, since these poses will often represent
close, consecutive positions along the robot path, and they
are actually related by a robot action (e.g. odometry) and
observations of roughly the same place. Thus, the assumption
of independence betweenpure metric poseswould certainly
lead to a significant loss of information. The key point here
is that we assume their independence ashybrid robot poses
(metric plus topological), where the metric coordinates are
referenced to different local frames. The information fromthe
last robot action (aut′ in Fig. 3) is not lost, but incorporated
into the correspondingba∆ variable.

Nevertheless, it must be noticed that the cross-covariance
between robot poses at different areas is definitively lost in
HMT-SLAM. In practice, partitioning the map will rarely
generate strictly independent observations between localmaps,
which renders our approach as an approximate solution to
SLAM. The loss of information, however, can be minimized
as much as desired by using grounded methods in the process
of deciding when to start a new area [5], [63]. As a limit
situation, if we desire no loss of information at all, HMT-
SLAM degenerates into the common global metric SLAM.
For simplicity, we also assume here that the methods for
defining areas give us roughly the same results independently
of the concrete robot path. This is required for identifyingtwo
different areas as the same physical placement, a requirement
for closing loops at the topological level. Although this may
lead to sub-optimal partitions, our partitioning method will
always generate the best ones in terms of the maximum
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independence between observations. Our results show that,
under the common assumption of an almost static world, our
method is appropriate for practical situations.

Based on the above statistical properties of HMT-SLAM,
we propose the following solution to the problem of esti-
mating the posterior of Eq. (3). We start by using the Rao-
Blackwellization approach [13] to first factorize the joint
posterior into one component for the robot HMT pathst and
another one for the mapm:

p(st,m|ut, ot) = p(st|ut, ot)p(m|st, ut, ot) (7)

In this way we reduce the dimensionality of the joint path-
map space to that of the robot HMT path only (st), which can
then be estimated using a particle filter. For each particle it
is computed the analytical conditioned distribution of themap
(m) associated to the corresponding path hypothesis. Writing
down the analytical part of Eq. (7) and given the conditional
independence between the elements ofm (proposition 2
above), we get:

p(m|st, ut, ot) = p({iM}i∈Υt
, {ba∆}a,b∈Υt

|st, ut, ot)

= p({iM}i∈Υt
|st, ot)p({ba∆}a,b∈Υt

|st, ut, ot) (8)

As shown in proposition 1, the first distribution in this
product can be factorized and each sub-map computed using
closed form equations for landmark maps [39] and occupancy
grids [42], [58]. The second element in Eq. (8) is the joint
posterior of the variablesba∆. As typically assumed in the
SLAM literature, we propose to use Gaussians to model these
relative poses, that is:

b
a∆ ∼ N (ba∆̄,

b
a Σ) (9)

We can now perform a Bayesian fusion in closed-form for
each arcba∆ in the HMT map, simply by:

p(ba∆|st, ut, ot) =

L∏

j=1

N (ba∆̄
′

j ,
b
a Σ′

j) (10)

whereL is the number of times the robot has moved between
the areasa and b. The parameters of thej’th Gaussian in
Eq. (10) can be obtained from the metric path of the robot
(when the robot explores new areas), or from map alignment
procedures (when considering the hypothesis of a topological
loop closure). This means that each time the robot moves
between a given pair of areas, the estimation of their relative
pose is refined and the uncertainty is reduced. Note as well
that each variableba∆ can be estimated independently as a
consequence of proposition 3, which is consistent with the
construction of a map of relative poses. Therefore,

p({ba∆}|st, ut, ot) =
∏

a,b

p(ba∆|st, ut, ot) (11)

Next we address the non-analytical estimation of the robot
path, the first term in Eq. (7). We estimate this posterior
sequentially by Bayesian filtering:

p(st|ut, ot) ∝ p(ot|s
t, ut, ot−1)p(st|ut, ot−1) (12)

Like in [46], a particle filter is employed as a convenient
representation of the topological part of the robot path (γt).
Therefore, if we assume a set ofP weighted particles dis-
tributed approximately according to the posterior for timestep
t− 1:

{st−1,[k]}k=1..P ∼ p(st−1|ut−1, ot−1) (13)

we can sequentially generate the particles for the next time
stept by drawing samples from a given proposal distribution
q(st|st−1, ot, ut) and updating the importance weightsω[k]

t

accordingly. We consider here the optimal proposal for each
particle to bep(st|st−1,[k], ot, ut), which has been demon-
strated to minimize the variance of the weights [14]. Having
an exact expression for this proposal means that the generated
particles will be distributed according to the true posterior.
As shown in the derivation in Eq. (6), we can put the optimal
proposal for our particle filter in a form that allows us sampling
a new particles[k]t in two steps: to draw firstly the topological
position γ[k]

t using a topological transition model (discussed

s
[k]
t =

〈

γ
[k]
t , x

[k]
t

〉

∼ q
(

st|s
t−1,[k], ut, ot

)

= p
(

st|s
t−1,[k], ut, ot

) Bayes
∝ p

(

st|s
t−1,[k], ut, ot−1

)

p
(

ot|st, s
t−1,[k], ut, ot−1

)

= p
(

γt, xt|s
t−1,[k], ut, ot−1

)

Independence betweenzt andψt

︷ ︸︸ ︷

p
(

zt|st, s
t−1,[k], ut, ot−1

)

p
(

ψt|γt, s
t−1,[k], ut, ot−1

)

(6)

=

Definition of conditional probability
︷ ︸︸ ︷

P
(

γt|s
t−1,[k], ut, ot−1

)

p
(

xt|γt, s
t−1,[k], ut, ot−1

)

p
(

zt|st, s
t−1,[k], ut, ot−1

)

p
(

ψt|γt, s
t−1,[k], ut, ot−1

)

→

{

1st step: γ
[k]
t ∼ P

(
γt|st−1,[k], ut, ot−1

)
p

(
ψt|γt, st−1,[k], ut, ot−1

)

2nd step: x
[k]
t ∼ p

(

xt|γ
[k]
t , st−1,[k], ut, ot−1

)

p
(

zt|xt, γ
[k]
t , st−1,[k], ut, ot−1

)
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{ }0,1, 2,3, 4tγ =

{ }0,1, 2,3,0tγ =

{ }0,1, 2,3,1tγ =

{ }Partition: 0,1, 2,3, 4

{ }{ }Partition: 0, 4 ,1, 2,3
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Fig. 4. Our approach takes the sequence of areas traversed bythe robot
(on the top), and estimates the topological structure of the environment by
considering some of the potential rearrangements of the sequence. The bottom
graphs show some examples of partitions (rearrangements), theassociated
topological pathsγt, and the resulting map topologies.

in a later section), and to draw then the metric posex
[k]
t

from the conditional distribution of the obtained topological
position. This procedure is supported by our knowledge of the
conditioned density of the metric pose given the topological
position. The metric sample can be obtained from exact
equations for landmark maps [40] or from approximations
for occupancy grids [26]. This process is repeated for each
time step, performing resampling [48] whenever the effective
sample size [33] of the RBPF falls below a given threshold,
e.g. the 50%. Drawing hypotheses for the topological position
γt is arguably the most complex step in HMT-SLAM. Later on
we discuss an implementation aiming at real-time execution
which has given good results.

Observe that each hypothesis of the topological pathγt

implies a different topological structure of the environment
(and thus, a different hypothesis form) by means of clustering
the sequence of areas traversed by the robot [46]. Since each
particle may maintain a different HMT hypothesis we have
a probability distribution over the possible topologies ofthe
map, as illustrated with a few examples in Fig. 4.

IV. RELEVANT ELEMENTS IN HMT-SLAM

After discussing the theoretical foundations of our approach,
in this section we deal with some practical issues that arisein
HMT-SLAM.

A. The Transition Model of the Topological Position

A fundamental part of HMT-SLAM is the estimation of
the topological path of the robot. In this work we have
addressed this problem sequentially via particle filteringand
considering the optimal proposal distribution for generating
new hypotheses. As shown in Eq. (6), this leads to drawing
samplesγ[k]

t from the product of two terms: the transition
model of the topological positionP

(
γt|s

t−1,[k], ut, ot−1
)
,

denoted in the following asP
(
γt|d

[k]
)

for clarity, and the
appearance observation modelp

(
ψt|γt, st−1,[k], ut, ot−1

)
. For

shortening this paper we will not detail the latter here, although

t
aγ =

t
bγ =

Current robot pose
Auxiliary graph 

for observations

Fig. 5. An auxiliary graph of robot observations can be used to detect when
the robot enters into a new area through graph bisection techniques.

some possible implementations have been reported by other
authors [11].

Due to its discrete nature, the topological transition model
assigns a probability to a reduced number of potential events:

• To stay at the same topological area (simplyγ
[k]
t = γ

[k]
t−1).

• To enter into an unexplored area,γ[k]
t /∈ Υt−1.

• To close a topological loop, that is,γ[k]
t ∈ Υt−1 with

γ
[k]
t 6= γ

[k]
t−1.

The topological position of the robotγt is therefore a piece-
wise constant sequence over timet. For example, consider the
robot path shown in Fig. 5, where the robot topological pose
is a or b in the two separate parts of the path.

We can apply existing methods for partitioning a sequence
of robot observations while minimizing some measure of
similarity or overlapping between them (the exact measure
to minimize may depend on the actual sensors and map
representations [5], [63]). In short, these methods build an
auxiliary graph whose nodes are the robot poses where ob-
servations were taken, and undirected weighted arcs between
nodes keep the measure of similarity between the observations,
as represented in Fig. 5. Then, the minimum normalized cut
of the graph can be computed by means of spectral bisection
[51]. Lower cut values mean weaker relation between the
observations in the two subgraphs. A more detailed exposition
of this process can be found elsewhere [5]. Thus, the robot has
moved to a different area if the resulting cut is below a certain
limit that settles the maximum allowed dependence between
adjacent sub-maps. If such a partitioning happens, the imme-
diate past of the robot path is updated to the new topological
position. Note that this process can be performed only once
for groups of particles that share the same topological path.

Going back to the topological transition model we can
now specify that when the above partitioning method does
not find a sufficiently independent partition of the auxiliary
graph (that is, the robot has not entered a new area), we have
P

(
γt|d[k]

)
= 1 for γt = γ

[k]
t−1, andP

(
γt|d[k]

)
= 0 otherwise.

In contrast, when a new area is entered, the transition model
considers the possibility of the robot having closed a loop by
means ofP

(
γ|d[k]

)
∝ F (γ), and the possibility of having

entered into an unexplored area byF (γ′) = η, whereη is
a constant and all the probabilities are scaled such as they
sum up to unity. The functionF (γ) provides a measure of
how likely it is to have arrived at the previously known area
γ through a loop closure. This measure should incorporate
the metric information of the arcs along the topological path
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1
aγ =

2
bγ =

3
cγ =

4
dγ =

5
eγ =

6
 or  ?f aγ =

Prior metric

information
Arcs along the topological 

path between a and f.

Fig. 6. Is the robot after the loop at areaa or atf? The topological transition
model assigns a probability to each of these possibilities byaccounting for
the robot observations and the prior metric information (and uncertainty)
contained in the arcs of the HMT map.

between the two nodes (refer to Fig. 6), although it can
also rely on high-level topological reasoning [15], [47]. An
interesting choice for this function is the likelihood of the last
observations in relation to the metric sub-map of the candidate
areaγ. Since we would need the exact robot poseafter the
loop closure to compute this measure, we rather take the
mathematical expectation using the prior distribution of the
robot pose, given by the information contained in the arcs. In
this way, we obtain candidates for the loop closure that both
are within the scope of the a priori metric uncertainty and
provide a good prediction of the last observations.

B. Probability Distribution over Topologies

Sometimes it may be desirable to compute the discrete
probability mass function (PMF) of the topological pathγt, for
example for visualizing the topological structure hypotheses
considered by the filter at a certain instant of time. This
operation can be achieved by marginalization which for our
particle filter simply becomes:

P (γt = γ̃t|ut, ot) =
∑

k∈Ω

ω
[k]
t ,Ω = {k : γt,[k] = γ̃t} (14)

for each desired value of̃γt. Some examples of these distri-
butions are shown in Fig. 10.

C. Obtaining Global Maps

During the normal operation of the robot using HMT-SLAM
it will usually be enough to reference the robot coordinatesto
the coordinate frame of the current area. However, we could
desire sometimes to compute absolute coordinates relativeto
some arbitrary reference, for example for constructing a global
map for debugging or simple visualization. We describe next
two possible methods for computing the absolute coordinates
of all the areas of a map taking one of them as reference.

The first approach, proposed by Bosseet al. in [6] and
adopted in our previous work [4], consists of applying the
Dijkstra algorithm for finding the shortest topological path
from the reference area to the rest. In this way, the topological
part of a HMT map is transformed into a tree that encodes
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Fig. 7. (a) An example of a HMT map after closing a loop. (b) A tree
representation for finding the shortest path from node1 to any other node.
(c)–(d) The global map and the uncertainty for each area obtained by using
the shortest-path method for computing global coordinates. (e)–(f) The same
map obtained by using a globally consistent method. The ellipses represent
95% confidence intervals magnified by factor 5 for clarity.

all these “optimal” paths, as shown with an example in
Fig. 7(a)–(b). If we denote the reference area asa, and the
area we are interested in asb, we will find the corresponding
coordinate transformationba∆ in the HMT map only ifa and
b are adjacent areas. Otherwise, this pose can be computed
by sequentially composing pose changes along the shortest
topological path{a, 1, 2, 3, ..., n, b}, that is:

b
a∆ = 1

a∆ ⊕ 2
1∆ ⊕ ...⊕ b

n∆ (15)

where⊕ is the metric pose composition operator [52]. Given
the conditional independence between all the relative poses
along the topological path, a Monte Carlo simulation can
be employed to generate samples ofb

a∆ from independent
samples of all the elements in Eq. (15). The problem with this
approach is that the existence of loops leads to inconsistent
global coordinates. To illustrate the problem, please refer to
Fig. 7(c)–(d) which represent the global coordinates and the
associated uncertainties for each area of a real HMT map. The
information in the arc between nodes10 and11 has not been
considered by the shortest-path approach, hence we find an
inconsistency in the resulting map between these two areas.

To solve this, we propose the alternative approach of apply-
ing methods for globally consistent poses estimation that have
been reported in the past for networks of laser scans [35]. In
this kind of method, we iteratively compute the approximate
optimal poses of all the nodes by minimizing the linearized
version of a cost function which includes all the constraints
between adjacent areas. This algorithm typically converges in
a few iterations, and the so obtained global maps are free
of inconsistencies, as can be observed for the example in
Fig. 7(e)–(f). This is the method employed for the rest of
global maps that illustrate this article.
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Fig. 8. Overview of the implementation proposed as a practicalsolution to
HMT-SLAM. Here local metric SLAM is solved efficiently in real-time, while
the topological structure of the map is estimated concurrently in a delayed
fashion. In this way we prioritize the update of the metric position of the
robot within the current area. Please refer to the text for further details.

D. Long-Term Operation

It is worth to highlight a crucial property of HMT-SLAM
that makes it specially suitable for long-term operation ofa
mobile robot. The statement of HMT-SLAM as the estimation
of the density in Eq. (3) includes the robot HMT pathst,
whose dimensionality always increases over time. In this
sense, it may seem that our approach suffers from the same
problem that global mapping with RBPFs, i.e. performing
estimation into a state-space of unbounded dimensionality.
However, hypotheses for the whole topological pathγt can
be forgotten until the point where the differences between the
particles begin. That is, if at a given instant of time all the
particles agree about the current topological structure, there
is no need to maintain in memory several map topologies,
with their corresponding metric local maps. Unlike the case
of purely metric SLAM, this does not mean a loss of the
estimated uncertainty along the robot path, since in HMT-
SLAM this spatial uncertainty is maintained in a parameterized
form by the conditional distributions forba∆ (refer to Eq. (10)).

V. I MPLEMENTATION FRAMEWORK

In sections III and IV we have introduced the theoretic
formalization of HMT-SLAM. In the following we present a
practical framework which implements those ideas. A relevant
issue here is that a mobile robot may demand accurate metric
localization in hard real-time (e.g. for navigation or manip-
ulation purposes), while maintaining the consistency of the
topological map (i.e. solving loop closures) can be performed
in the “background” since reasonable delays are acceptable.

An overview of the proposed framework is presented in
Fig. 8, where we can observe its layered structure. Metric
local SLAM is performed at the low level, while topological
representations are managed at the upper levels. Symbolic
reasoning or task planning would fit in additional layers above
these. The inputs to the system are actionsut (typically
produced by a planning level), and observationsot (acquired

by the robot), which are kept in a time-stamp-ordered queue
until they can be processed. Within the system, there are a
number of processes running concurrently which interact by
means of read and write operations on the data held in the
three levels represented in Fig. 8: the local metric map of
the current area, the sequence of traversed areas, and the
space of topological path hypotheses. It must be remarked
the parallel nature of the system, that is, the processes do not
need to run in a predefined, sequential order. Next we describe
these processes and their relations with the theory presented
previously.

Metric SLAM:It handles the robot localization and mapping
within the metric sub-map for the current area by processing
actions and observations. Conceptually, this process is in-
volved in estimating the metric part of Eq. (6). For occupancy
grids, RBPFs have a complexity linear with the number of
particles. Therefore, for a static number of particles we have
a constant computation time independently of the size of the
local area, which is a requisite if we desire a hard real-time
estimation. In practice, we would need a variable number
of particles depending on the number of topological path
hypotheses considered at each instant of time, which may
increase after closing long loops. If we want metric SLAM to
have a bounded time complexity even in those cases we could
impose a maximum number of particles in the filter, at the
cost of disregarding the most unlikely topological hypotheses
in the TSBI process.

Area Abstraction Mechanism (AAM):Grounded methods are
applied here to detect clusters of (approximately) independent
observations in the sequence of observations gathered by the
robot [5], as already described in section IV-A.

Topological Space Bayesian Inference (TSBI):The topolog-
ical transition model described in section IV-A is applied here
whenever the AAM detects that the robot has moved into a
new area. In our current implementation, the local metric-
maps for the particles are not updated until TSBI gives us
the hypotheses for the new topological position of the robot.
Once the topological transition model has been evaluated, all
the particles are updated to account for the changes, which
include changing the coordinate references, removing partof
the current metric sub-map in the case of entering into a new
area, and in the case of a loop closure, loading the contents of
the known area into the sub-map. Regarding the computational
complexity of the TSBI, a straight-forward implementation
exhibits quadratic complexity in the number of known areas
|Υt|. This complexity is imposed by the Dijkstra algorithm
used in the computation of the a priori metric information
(see IV-A).

Topological Loop Closure Acceptance (TLCA):As dis-
cussed above, it is unpractical to keep the whole history of the
robot hybrid path for long-term operation. The TLCA process
is in charge of accepting part of the topological structure as
definitively correct. To avoid the risk of losing the valid (un-
known) hypothesis in this process, it only operates when the
system contains highly dominant (or unique) hypotheses for
the robot topological pathγt. In our current implementation
this process also performs a fine alignment of the local grid
maps before building the metric map for the topological node
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Fig. 9. (a)–(b) The HMT maps generated from the Málaga and Edmonton datasets, respectively, shown as global maps relative to the first topological area
(labeled as ’1’). (c) The average time (per action-observation pair) taken by each of the processes in our HTM-SLAM implementation. (d) The globally
consistent poses of each area for the Málaga map. The ellipses represent 95% confidence intervals magnified by factor 5 for clarity. (e) Comparison of the
memory requirements over time between our approach and metric mapping with RBPF, both for the Ḿalaga map.

resulting from the fusion.
Real Time Localization (RTL):This process guarantees an

estimation of the robot position in a timely fashion. If the input
queue of actions and observations is empty, the best estimation
of the HMT posest has been already updated by our HMT-
SLAM algorithm. On the contrary, when there are pending
actions in the queue, the RTL computes the prior distribution,
e.g. p(st+1|st, ut+1), as a more updated estimation of the
actual robot pose. We can easily compute this prior for the
robot metric pose in real-time, for example, by accumulating
odometry readings. The obtained pose estimations will not be
the optimal ones, but as long as the metric SLAM process
updates its estimation in a timely fashion, the estimate from
RTL will be simultaneously accurate, and fast to obtain.

VI. RESULTS

We have tested our implementation of HMT-SLAM with
two different datasets, both comprised of odometry readings
and laser range scans in large planar scenarios containing
several loops. The first dataset [3] was gathered by the authors
at the campus of the University of Ḿalaga (Spain), and

contains almost 5000 laser scans collected along a 2Km path.
The second dataset was recorded at the Edmonton Convention
Centre (Canada) by Nicholas Roy, and is freely available
online [29].

For illustrating the experiments the resulting HMT maps
for both datasets are shown in Fig. 9(a)–(b) as global maps
(recall section IV-C), taking the first area in each map as
the reference4. We also overlap the most likely topological
structure inferred by our approach to visualize the existing
nodes and arcs. In contrast to global metric mapping with
RBPF, our approach is able to maintain the uncertainty in
all the relative poses between the areas, as can be seen with
the (globally consistent) uncertainties represented in Fig. 9(d).
Recall that in RBPF-based global mapping, resampling steps
eventually lead to a total loss of the represented uncertainty.

To compare the efficiency of other methods to our HMT-
SLAM implementation, we have also built the corresponding
maps with an efficient RBPF-based technique for (global)

4This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. This includes videos show-
ing the mapping process for both datasets. This material is 48.1 MB in size.
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TABLE II

COMPARISON OFTOTAL MEMORY AND COMPUTATION TIME

REQUIREMENTSBETWEEN A GLOBAL METRIC RBPFAND HMT-SLAM

Method Málaga dataset Edmonton dataset
Global RBPF 197Mb, 103min 84Mb, 39min

HMT-SLAM 36Mb, 26min 28Mb, 8min

metric mapping [26]. The performances in computation time
and memory requirements are summarized in Table II. These
values have been obtained for a 2.0GHz Pentium M (1Gb
RAM) and for occupancy grid maps with a cell size of 12cm.
It is noticeable that HMT-SLAM outperforms global RBPF for
both datasets. The improvement in the memory requirements
follows from the fact that in our implementation of HMT-
SLAM, each particle carries, apart from the topological path
hypothesis, a metric map for the current area only, while the
sub-maps of previous areas are kept in a compact form [27].
In the global RBPF, each particle carries a hypotheses of the
whole metric map. Therefore, the storage efficiency of a HMT
map in contrast to a global RBPF becomes more and more
relevant for increasingly larger environments. This reasoning
is supported by the evolution of the memory requirements over
time for the Ḿalaga dataset, plotted in Fig. 9(e). Regarding
the lower computation time of our approach, it is a direct
consequence of the reduced number of particles (we use 15
samples). However, with only a few particles in our approach
we can achieve a representation of uncertainty better than the
one attainable by a global RBPF with a practical number of
particles (e.g. less than 100). This turns into more preciseloop
closures and a more reliable representation of uncertainty.

To get an approximate idea of the time consumed by
each of the processes within our implementation (described
in Section V) we have measured the average time taken by
each one per action-observation pair in the datasets. As can
be seen in Fig. 9(c), the SLAM and AAM processes take
roughly the same time in both datasets, while there are large
differences for TSBI and TLCA. This reflects the fact that
those processes become more time consuming for a higher
number of topological areas and potential loop closures, hence
they take much more time in the Ḿalaga dataset than in the
Edmonton dataset. Note that the RTL process has not been
included in these experiments since they have been performed
off-line. Nevertheless, it involves a negligible complexity in
comparison to the rest.

It is interesting that for both datasets our method quickly
converges to the correct topology after each loop closure. To
visualize this process, consider the first closure of a long
loop in the Ḿalaga dataset, where the robot leaves the area
labeled as ’14’ and reenters the area ’1’ (refer to Fig. 9(a)).
Then, two hypotheses for the robot topological location are
generated: a new, unexplored area (’15’), and an existing area
that closes the loop (’1’). The intuitive idea of the expected
behavior of our filter at this point is that the actual topological
hypothesis will fit better to the robot observations, thus itwill
be assigned higher likelihood values within the particle filter
that estimates the robot hybrid pathst. Eventually, the correct
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Fig. 10. The evolution over time of some values in the mapping process
while closing a loop between areas ’14’ and ’1’. From the top to the bottom,
the graphs represent the effective sample size (Neff) of the particle filter, and
the marginal PMF for the robot topological position evaluated for the areas
’14’, ’15’, and ’1’, respectively. Refer to the text for further discussion.

hypothesis will become much more likely than the rest, which
will be ultimately removed by resampling. This process is
clearly observable in Fig. 10, where we represent the effective
sample size (ESS) [33] of the filter and the marginal PMF
of the topology over time. In these graphs we can see how
before timet1 there is a unique hypothesis for the topological
position (area ’14’), and next two possibilities are considered:
an unexplored area ’15’ and a loop closure ’1’. Since the loop
closure hypothesis provides a much better explanation of the
robot observations, its probability quickly increases, and after
a resampling it becomes the unique hypothesis in the filter,
definitively closing the loop.

It is also desirable to contrast how other hybrid methods
perform in similar loop-closure situations. The Hierarchical
SLAM approach reported in [19] computes the loop closure
by least-square error minimization, thus it considers justone
(metric) hypothesis for the closure. Although this may be
enough in many situations, in highly repetitive scenarios it
would be more advantageous to maintain multiple hypotheses
until the closure becomes unambiguous. This is the case of the
Atlas framework [7], which considers the so-calledjuvenile
hypotheses for closing loops. In that work, a juvenile hy-
pothesis is promoted tomaturewhen it performs much better
than the rest, and until that point it is not allowed to modify
its local map, that is, the treatment of hypotheses is purely
heuristic. This is in contrast to our unified and mathematically
grounded approach where there are no distinctions between
all the existing topological hypotheses, and all of them are
allowed to modify their corresponding local sub-maps (this, in
turn, is required to perform sustainable accurate localization).
Furthermore, since the Atlas framework is based on a hybrid
robot pose (instead of hybrid robotpath) it allows only one
hypothesis for the robot metric pose within each sub-map,
while under HMT-SLAM one can devise highly ambiguous
environments where closing a long loop leads to a variety of
hybrid path hypotheses, including the possibility of the robot
being at the same area but with a multi-modal metric pose,



11

and consequently with different local sub-maps.

VII. C ONCLUSIONS

In this paper we have introduced a new approach for solving
the problem of large-scale SLAM, which consists of the
unified estimation of the hybrid metrical and topological path
of the robot throughout the environment. It has been demon-
strated that this idea is supported by a probabilistic structure
in the SLAM problem under plausible approximations. In this
paper we have addressed the probabilistic basis of a solution
to HMT-SLAM in the form of sequential Bayesian filtering
in the joint path-map space, which supports our approach as
a promising step towards the natural integration of existing
metric SLAM methods into high-level world representations,
always within a Bayesian framework that manages spatial un-
certainty more accurately and efficiently than previous metric
and hybrid approaches. Additionally, an implementation ofour
ideas has been described in the form of a real-time/any-time
system capable of providing an estimation of the robot pose
and the map at each instant of time, giving more relevance
to the computation of the metric robot pose, which may be
required for navigation or manipulation purposes. Our work
has been validated by experiments where relatively large HMT
maps have been successfully built.

This work gives rise to a number of interesting topics
that require future research, like the integration with other
map types (i.e. landmarks), the simultaneous estimation of
the HMT path of a team of robots, or the use of appearance
and high-level knowledge for localization and loop-closure.
An especially interesting issue is that of solving the robot
awakening problem, or global localization, within a large-scale
andpartially knownenvironment (a problem that can be hardly
dealt with existing metric or topological methods). This issue
would be faced by any mobile robot operating in a realistic
lifelong application. Under the perspective of our work, the
problem is naturally cast as a special case of topological
loop-closure. This means that, as a byproduct, HMT-SLAM
will allow a robot to incorporate to an existing map new
information gathered while performing global localization, and
thus unifying SLAM and global localization.
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