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Towards a Unified Bayesian Approach to Hybrid
Metric-Topological SLAM

Jose-Luis Blanco, Juan-Antonio Farmdez-Madrigal, and Javier Gonzalez

Abstract— This article introduces a new approach to Si- After an intense research during the last decade, it is
multaneous Localization and Mapping (SLAM) which pursues clear that the most successful methods for SLAM are those
robustness and accuracy in large-scale environments. Like most based on probabilistic Bayesian estimation, which can gana

successful works on SLAM, we use Bayesian filtering to provide _ . ¢ d tainty in th bot locatian. t
a probabilistic estimation which can cope with uncertainty in NoiSy measurements and uncerainty in the robot locate,

the measurements, the robot pose, and the map. Our approach Map, and, for those based on particle filters, also in data
is based on the reconstruction of the robot path in a hybrid association [12], [16], [39], [57], [60]. Therefore, ourgmosal
discrete-continuous state space, which naturally combines metric js grounded on the success and accuracy of techniques for
and topological maps. There are two fundamental characteristie  atric |ocalization and mapping within small-sized scésgr
that set this work apart from previous ones: (i) the use of a It h Iso b h that | | . ¢ b
unified Bayesian inference approach both for the metrical and . .as a_so een shown f‘l afge'scae environments _can e
the topological parts of the problem; and (ii) the analytical divided intoareasof convenient sizes where these techniques
formulation of belief distributions over hybrid maps, which can be applied efficiently to produce consistectl sub-maps
allows us to maintain the spatial uncertainty in large spaces more [7], [19]. In our approach, this division of space depends on
accurately and efficiently than previous works. We also describe o nature of sensors in such a way that each area contains
a practical implementation which aims for real-time operation. ti fth . t that likelv to b d
Our ideas have been validated by promising experimental results portions o . € environment that are very li e)_/ obe sert_sp
in large environments (up to 30.000 M, a 2Km robot path) the robot simultaneously, whereas parts of different avabis
with multiple nested loops, which could hardly be managed be rarely or never observed at the same time. We employ for
appropriately by other approaches. this purpose existing methods [5], [63] based on this ddter
Index Terms—Bayesian filtering, hybrid metric-topological  Of simultaneous visibility (calledverlapin [5]). Notice that
maps, loop closure, mobile robots, Rao-Blackwellized particle this kind of area does not correspond to logical or semantic

fiters, SLAM, topological maps. divisions as could be interpreted by a human [37], such as
a corridor or a room, but is based on the robot’'s sensory
I. INTRODUCTION apparatus.

Using this definition of area, we introduce the concept of

S'MULTANEOUS Localization and Mapping (SLAM) is the hybrid metric-topological (HMT) path, which comprises

one of the central problems in mobile robotics, sincge sequence of areas the robot has traversed (topological
the effective introduction of autonomous robots into féfel- part) and its pose within each of them (metric part). Then,
applications will undoubtedly require their operation ive py considering the posterior belief distribution of the eho
ronments unknown at design time. The common formulatigimT path we can obtain the probability distribution over all
of the SLAM problem consists of building some kind of worldhe potentialtopological structuresof the environment, an
representation from the sequence of data gathered by tbe roysye not addressed before simultaneously to the estimatio
assuming no prior information about the environment anfle metric poses between, and within, the areas. The regulti
simultaneously localizing the robot using that repres@ma propabilistic map, called HMT map, represents the topology
Different kinds of representations, onaps have been pro- of the environment with graphs whose nodes (areas) are anno-
posed in the robotics and the artificial intelligence litera, tated with metric sub-maps and whose arcs (connections be-
ranging from low-level metric maps, such as landmark maggeen areas) are annotated with the coordinate transfimmsat
[12], [53] and occupancy grids [18], to topological graphgetween the corresponding areas. By conditioning the fbelie
which contain high-level qualitative information [10], 4R  distribution of the map to the knowledge of the HMT path,
[31], even multi-hierarchies of successively higher-less- \ve can represent these relative coordinate transfornsation
stractions [20]. While existing techniques allow buildingis  ¢|osed form, avoiding by design some problems that appear in
of relatively large areas, SLAM remains a largely unsolvegiobal mapping with particle filters [36], [54]. The avoidan
problem in relation to high-level representations and 48"  of apsolute coordinates has been repeatedly proposed in the
operation within large-scale environments. literature due to the difficulty of appropriately represegtthe

. . . _ uncertainty of poses far away from a global coordinate origi
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rebuilding any global metric map, which has been pointed out SUMMARY OF THE NOTATION EMPLOYED IN THE TEXT

sometimes as a weakness of grid-based, large-scale mapping
Our work is related to some existing methods for hybrid SvmsoL
mapping, specially to Hierarchical SLAM [19], and to the um i
Atlas framework [7]. The fundamental contributions of our The local metric map for the area
; : - bA The coordinate origin of arelarelative to that of area
proposal in the context of these and other previous works are a

MEANING
The HMT map (an annotated graph).

« The introduction of probability distributions over both
the metricand the topological part of the robot path.
Previous works have considered either the robot metric
[26], [39], [43] or topological [46] paths separately. Apar
from the mathematical consistency of a unified Bayesian
approach, this formulation supports multiple topological o
hypotheses, and can be factorized in such a way that's" "’ '

ut, ot
st ut, ot

S¢r ,’L (1 ,l Oy

The robot HMT pose at time step

The robot actions and hybrid observations at time step
t.

The sequences of robot poses, actions, and observa-
tions for time steps 1 to.

A convenient way of referencing the robot poses,
actions, and observations grouped into the arsach

as the first elements are given fdr= 0.

The sequences of all the corresponding variables up
to time stept.

allows the uncertainty of large maps to be maintained

i, 2t The area-dependant and metric observations, respec-
accurately. tively. _ . _
« A statistically grounded principle for the separation afth 7%t Iehsi);%g\?'eﬁg'ca' and metric parts ef at time stegt,
map into sub-maps. In [19], new sub-maps are started if The topological path of the robot up to time step

the previous ones reach a given number of landmarks, T
while in [7] this is performed whenever a measure of the s
localization performance degrades. We propose instead
to generate sub-maps that minimize a given measofre
covisibility or overlap between groups of observations,
which allows us to set a grounded statistical model for
HMT-SLAM as a Bayesian inference problem. Also, thifopular metric representations are landmark maps [1], [12]
provides the robot with topological structures that do n¢63], [56], occupancy grids [18], [26], [41], and raw range
depend on external engineered knowledge, but on its oweans [28], [35] (please refer to [57] for a more detailed
sensory system. classification). Some advantages of metric maps are their
« In contrast to previous works (such as [7]), in HMTdirect relation with robotic sensors and their value for som
SLAM all the hybrid map hypotheses are treated equalliasks such as motion planning or obstacle avoidance. There
associating different metric sub-maps to a given areadkist non-probabilistic approaches for building metricpsa
there exist multiple hypotheses about the topological pgi#5], [28], [35], although most works rely on probabilistic
followed by the robot. This implies that the metric poseepresentations of the robot pose and the map, where Bayesia
of the robot may be distributed around multiple modefiitering is used to estimate the corresponding probabilisy
even for particles with the same topological position. Ouributions [12], [53]. The hardest problem in those methisds
approach does not impose limits to the variety of theata association (that is, establishing correspondenuesg
inferred distributions, whose complexity will uniquely beobservations and the map) [44], a problem that aggravates
determined by the ambiguity of the environment and thghen the robot closes a loop since the uncertainty in thetrobo
uncertainty introduced by closing long loops. pose and the map increases as the robot explores new ageas, i.
The rest of this paper is outlined as follows. In section Il wéhe hardness of finding the correct data association ineseas
examine in more detail previous works on SLAM. Next, wavith the scale of the maps, and in turn, establishing wrong
provide the probabilistic foundations for our approachjlevh correspondences severely compromises the consistenby of t
some of its key elements are discussed in depth in section Rstimated maps. In fact, during the last years the research o
A practical system that implements these ideas is presémtedhe consistency of EKF-like solutions for SLAM has gained
section V, and experimental results with real robots indarginterest, since the approximations introduced by linéagiz
scale scenarios, as well as comparisons to other approach&d assuming Gaussian distributions are known to impose a
are discussed in section VI. Finally, some conclusions afigeximum length for a loop to be correctly closed [2], [8]. The
future work are outlined. idea of partitioning the environment into a sequence of sub-
maps has been proposed as an improvement [45], [56], which
is one of the basic motivations of our method.
A popular approach to the above mentioned problems of
In the following we discuss previous works in the fieldgnetric mapping is to employ a Rao-Blackwellized Particle
of metric, topological, and hybrid mapping, highlightifgetr  Filter (RBPF) [13], [40], [43]. If we denote the map as,
relation to the present paper. the robot path as;.; (or z* for compactness), and the robot
Pure metric approaches aim at reconstructing a represerigtions and observations as and z;, respectively, we can

tion of the environment where the relevant information is thobserve the following factorization of the SLAM posterior:
metrical arrangement and characteristics of the map elemen

The set of all known areas at time step

The k'th particle at time steg for the robot HMT
pose.

wik] Importance weight of thé’th particle at time steg.

II. RELATED WORK

Lideally, the cross-covariances in the case of landmark maps. p(zt, mlut, 2) = p(zt|u, 2")p(m|zt, ut, 2) 1)



which is exploited in a RBPF and holds for any form of

the probability densities. This factorization shows thatye @
O o

estimate the robot path through a separate particle filer, t

mapm can be estimated from the individual contributions of

the observations; since they are conditionally independent _’@_’@_' _’@_'
givenz!. This is supported by the structure of the variables in- ’ ’ 7 Otiidden variables
volved in SLAM, as shown in Fig. 1, which has been exploited @ @ @ Oovserved variabies

successfully to build large maps both with occupancy grids
[26] and landmarks (FastSLAM [39]). However, the numbégig- 1 Tﬁetstfukctl/ifet_of the Cgmgﬁon fOtrmU'ation t(})'|f SIBAM an a Dyrti;'lﬂmi
of samples required in these particle filters for closing@plo A fh‘g'%Botcpgt';:f:tagndotﬁgrmg’r?sgr:fsnfq:teffrve variables
increases with the length of the loop, which may eventually

turn into a storage capacity limitation since each particle

carries a hypothesis of the whole map. Another limitation @fur approach is closer to those where topological nodes are
RBPF for large-scale mapping is the loss of particle ditgrsithe result ofabstracting robot observatiorgathered at a given
when closing nested loops. Strategies exist for allevdatizyrea [5], [63]. Therefore, the size of the areas is automiic
these problems [54], [55], but the underlying hurdles aigetermined by the nature of sensors, more concretely, by the
just postponed. Another drawback of global mapping withverlap between observations [5]. As an example, exploring
RBPF is that the loss of diversity after closing a long loog single room with a narrow field-of-view camera may result
typically leads to the total loss of the robot path uncetiain in many different areas, whereas a wide-angle laser scanner

An enlightening discussion about the problems of standaggight probably lead to only one area. Our areas have no other
particle filters for large-scale mapping was recently pnes# special semantics.

in [36].

Building a topological map is an attractive alternative to I1l. PROBABILISTIC FOUNDATIONS
metric mapping due to, among other properties, the reduced .
storage requirements and the good integration with symboli Thg present proposal for HMT-SLAM is grou_nded_ on the
planning of complex tasks [9], [15], [50]. However purésparsny of the relations between robot observations irrgela
topological maps are not suitat;le o ’solve SLAM. Al’thougﬁnvironment: by our definition ofirea observations within

Bayesian estimation has been reported recently for theps mgbgwent_areabmlnll b_e ht'ggl.?:f relatted o o_rllle atn(_i_t:;riaawhlle
in [46], it is assumed a discrete set of “distinctive” placea servations belonging to diiierent areas will not. S

within the environment which must be correctly detecte gen employed in a number of works to ease the construction

whenever the robot passes close to them: the only relevgﬁé@ndmarkbm:p? [.21]’ [?44I3/'IT f th .
sensorial information is that of being close to a distireti © start by defining a map: of the environment as

v )
place or not. We believe that a variety of sensors ("ktge annotated gragfthat comprises the 2-tuple:

laser scanners, or cameras) can provide the robot a more

accurate'pose estimation through local metric sub-maps tha m = ({IM}icr,, {2 A arer,) )
that obtained by a purely topological approach, where mbst o , )
the sensory data is simply ignored. Here the’ M are metric sub-maps for each areac T,

So far, it seems an appealing approach that of consideriffjere T stands for the set of known areas at time step
hybrid map$, where topological nodes contain local metri©n the space of these hybrid maps, we will define beliefs as
information [7], [19], [30], [32], [38], [59], [61]. In paitular, Probability distributions. The local maps and the coorténa
the Atlas framework [7] and the work on hierarchical SLAMransformations; A between the adjacent areasand b are
by Estradaet al. [19] contain interesting similarities with thethe annotations of the nodes and the arcs in the graph,
present paper: both reference uncertainty to local coatelin"eSPectively. Although this is the only information relava
frames and represent maps as topological graphs with lof@] this work, it is worth mentioning that the graph couldals
metric sub-maps. However, in these previous works loop ciBlintain data about the kind each area is, the navigability
sure has been considered only under the metric point-ef;vid’etween areas, or any other high-level knowledge useful in
i.e. by finding the global metric coordinates transformatiodraph-based planning or symbolic reasoning [23]. We will
compatible with the loop closure. In turn, considering thgonsider conditional probability distributions overgiven the
whole HMT path of the robot leads to important advantage§iformation gathered by the robot up to some time step, where

Finally, we should also highlight that the meaning of thé&ch particle may contain in turn different belief disttibos
topological part of our HMT map strongly differs from thaffor the metrical sub-maps and the coordinate transformstio
considered in many other works. In the literature we can fidhd even a different number of nodes and arcs.
works that consider distinctive places as nodes [9], [332],[ Accordingly, the robot is provided with a hybrid discrete-

while others cut the map into disjoint areas [19], [59]. &ast, continuous description of its position within the map. Let
st = (v,z¢) denote the robot HMT pose at time step

2These maps are sometimes referencebiasirchical mapsn the SLAM
literature. We use here the alternative term “hybrid” to idveonfusion 3By “annotated graph” we mean a graph whose nodes and arcs tén ho
with pure topological graph representations that involsti@action processes, some non-topological information. This is an informal versimthe term
which are also usually called “hierarchical” [20], [23]. “typed attributed graph” in the graph transformation litara [17].
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Fig. 3. The graphical model for HMT-SLAM. Here segments of tbhbat
Fig. 2. Each metric sub-mapM has its own local coordinate frame. Thepath are conditionally independent given the starting paiseach segment.
robot HMT pose is thus a discrete-continuous variable wisigites both the The relative pose between areas is representefibywhile the termé M
current area (the node in the topological part of the map) hadrtetric pose stands for the metric sub-map of area
relative to the corresponding local frame.

Proposition 2. The metric sub-mapéM and the coor-
where the discrete variablg, indexes the current area and  dinate transformation$A are conditionally independent
the continuous variable, represents the metric pose relative  given the robot HMT path.
to the local coordinate frame of that area, as representedrhis property can be verified in Fig. 3 by noticing that the
schematically in Fig. 2. robot path alsal-separates the set of metric sub-maps and the

We can now state the problem of HMT-SLAM as theset of arcs)A.
estimation of the joint posterior of the robot HMT path

and the mapn given the sequences of robot actiom'sand Proposition 3. The posterior distribution of the robot
observations’ up to time step, that is: HMT path s* can be factorized into the product of its
segments through the different areas
p(st, m|ut, o) 3) it Qo
p(s'uf 0" = ] p('s"['u’" o) ()
For clarity, we denote sequences of variables over time i€T,

with superscripts, i.eu’ = {uy,...,u;}. We also definen; The reason of this property is that consecutive robot poses
as containing the hybrid paify, 2;), with the purpose of grouped into different areas, likés, and ®s, in Fig. 3,
conveniently setting metric observationg (such as range become independent variables in our model. This may seem
scans or landmarks extracted from images) apart from topgarprising at first glance, since these poses will oftenasgmt
logically dependant observations (such as the recognition close, consecutive positions along the robot path, and they
of a particular kind of area). This division renders espécia are actually related by a robot action (e.g. odometry) and
useful when facing the problem of global localization. observations of roughly the same place. Thus, the assumptio
In this paper we will approach HMT-SLAM under the point-of independence betwegsure metric posesvould certainly
of-view of sequential estimation, using the graphical niod&ead to a significant loss of information. The key point here
proposed in Fig. 3. For clarity, the first time step at eadb that we assume their independencehgibrid robot poses
segment has been denotedCasand we add the current area(metric plus topological), where the metric coordinates ar
as a left superscript to the name of variables, e.g. regagin referenced to different local frames. The information frtva
by "s,. We can observe the following interesting statisticdhst robot action {u in Fig. 3) is not lost, but incorporated
properties in the structure of HMT-SLAM under the proposeitito the correspondin§A variable.
sequential estimation model. Nevertheless, it must be noticed that the cross-covariance
between robot poses at different areas is definitively lost i

Proposition 1. Given the distribution of the robot HMT HMT-SLAM. In practice, partitioning the map will rarely
path, and due to the conditional independence betwegnerate strictly independent observations between toapk,

the local sub-maps, the joint posterior of all the sub-mapdich renders our approach as an approximate solution to
i € T; can be factorized as: SLAM. The loss of information, however, can be minimized

as much as desired by using grounded methods in the process
p({{M}icr,|st,ul, o) = H p(PM([ist ) ol) (4) of deciding when to start a new area [5], [63]. As a limit
€T, situation, if we desire no loss of information at all, HMT-
. ) . SLAM degenerates into the common global metric SLAM.
This property holds in general, regardless the choice pf; gimpiicity, we also assume here that the methods for
the metric map representation. defining areas give us roughly the same results indeperydent
The conditional independence between the sub-maps givsfrthe concrete robot path. This is required for identifytag
the robot path can be clearly seen in Fig. 3, where the roldifferent areas as the same physical placement, a requiteme
pathd-separates [49], [62] all the possible paths between afty closing loops at the topological level. Although thisyna
pair of sub-mapgM. lead to sub-optimal partitions, our partitioning methodl| wi
always generate the best ones in terms of the maximum



independence between observations. Our results show thdtere L is the number of times the robot has moved between
under the common assumption of an almost static world, oilve arease and b. The parameters of thg'th Gaussian in
method is appropriate for practical situations. Eq. (10) can be obtained from the metric path of the robot
Based on the above statistical properties of HMT-SLAMwhen the robot explores new areas), or from map alignment
we propose the following solution to the problem of estiprocedures (when considering the hypothesis of a topabgic
mating the posterior of Eq. (3). We start by using the Radeop closure). This means that each time the robot moves
Blackwellization approach [13] to first factorize the joinbetween a given pair of areas, the estimation of their k&ati
posterior into one component for the robot HMT pathand pose is refined and the uncertainty is reduced. Note as well
another one for the mam: that each variablé A can be estimated independently as a
consequence of proposition 3, which is consistent with the
construction of a map of relative poses. Therefore,

(s, mu’, o) = p(s'[u’, 0" )p(m|s", u’, ') 7
In this way we reduce the dimensionality of the joint path- p({2A}|st, ut,0') = Hp(ZA|st,ut, o") (11)
map space to that of the robot HMT path ondf)( which can ab

then be estimated using a particle filter. For each particle i
is computed the analytical conditioned distribution of thap
(m) associated to the corresponding path hypothesis. writiR
down the analytical part of Eq. (7) and given the condition
independence between the elements nof (proposition 2

above), we get: p(s'lu’,0') o< plog]s' ul o N p(s'fut 07T (12)

Next we address the non-analytical estimation of the robot
th, the first term in Eqg. (7). We estimate this posterior
quentially by Bayesian filtering:

‘ Like in [46], a particle filter is employed as a convenient
p(m|st, u',0") = p({'M}ier,, {2 A} aper,|st, ul, o) representation of the topological part of the robot path.(
= p({!M}ier,|st, 0 )p({8 A} aper, |st,ul,0t)  (8) Therefore, if we assume a set &f weighted particles dis-

tributed approximately according to the posterior for tistep
As shown in proposition 1, the first distribution in thist — 1:

product can be factorized and each sub-map computed using
closed form equations for landmark maps [39] and occupancy b1 [k] 1l 4
grids [42], [58]. The second element in Eq. (8) is the joint {s" "= p ~ (s w0 (13)

posterlqr of the variable§A. As typically f’:lssumed in the we can sequentially generate the particles for the next time
SLAM literature, we propose to use Gaussians to model thesg,; 1,y grawing samples from a given proposal distribution
relative poses, that is: q(s¢|s'=1, 0!, u?) and updating the importance weighté’“]
accordingly. We consider here the optimal proposal for each
bA ~ N(EALE) 9) particle to b_ep(§t|st*1’[’“],of,ut), which has been demon-
strated to minimize the variance of the weights [14]. Having
We can now perform a Bayesian fusion in closed-form fan exact expression for this proposal means that the gederat

each ar¢ A in the HMT map, simply by: particles will be distributed according to the true posteri
As shown in the derivation in Eq. (6), we can put the optimal
7 proposal for our particle filter in a form that allows us saimgl
p(CAlst, ut, of) = H N(ZA_;-,Z ) (10) anew pargiclesy“ in two steps: to draw firstly the topological
j=1 position yt[ l using a topological transition model (discussed
sgk} _ <%[k]’x£k]> ~g (stlst—l,[k]’utjot)

Bayes
t—1,[k] ,t .t t—1,[k] ,t t—1 t—1,[k] ,t t—1
= (s ) " sl a0 p (st o)

Independence between and ).

= p<’Yt7xt|8t_1’[k]autaot_l>p(Zt|8t7st_lﬁ[k]7ut70t_1)p(wt|7t75t_17[k]aut7ot_l> (6)

Definition of conditional probability

= P (’Yt‘stily[k] ) uta Ot71> p (J;t|’yta Stilﬁ[k]a utv Ot71> p (Zt|$t, Stily[k] ) uta Otil) p <¢t|’7ta Stil’[k] ) uta Otil)

{ 15 step: T ~ P (s 0, of =) p (s, w0

an Step: xi[fk] ~p (xt|’7t[k]7 St_l’[k] ) uta Ot_l) p (Zt‘xta ’Yt[k] ’ 8t_17[k] ’ uta 0t_1>



Sequence of traversed areas
(0—0—(0—~(0—~(m) o =
CRN

Some topological hypotheses

Y ={0,1,2,3,44 OO  Partition:{0,1,2,3,4}

vy ={0,1,2,3,0} g:% Partition:{{0,4} ,1,2,3}

Auxiliary graph
for observations Current robot pose

Fig. 5. An auxiliary graph of robot observations can be ugedetect when
the robot enters into a new area through graph bisectiomiggbs.

v ={0,1,2,3,1} Partition:{ 0,{1,4} ,2,3}

09

OO some possible implementations have been reported by other
authors [11].

Fig. 4. Our approach takes the sequence of areas traversetue bypbot Due to its discrete nature, the topological transition nhode

(on the top), and estimates the topological structure of thar@nment by - 55iqns g probability to a reduced number of potential event
considering some of the potential rearrangements of the sequ&he bottom

graphs show some examples of partitions (rearrangementsipstuciated o TO Stay at the same topological area (Sim‘pw = 7,{’2]1).
topological pathsy?, and the resulting map topologies. . k]
« To enter into an unexplored are#, ¢ Ty 1.

o To close a topological loop, that is/,y“] € Ty_1 with

in a later section), and to draw then the metric poﬁ@ ’Yt[k] # %Ui]r
from the conditional distribution of the obtained topolcayi The topological position of the robaet is therefore a piece-
position. This procedure is supported by our knowledge ef thvise constant sequence over timd-or example, consider the
conditioned density of the metric pose given the topoldgiceobot path shown in Fig. 5, where the robot topological pose
position. The metric sample can be obtained from exaista or b in the two separate parts of the path.
equations for landmark maps [40] or from approximations We can apply existing methods for partitioning a sequence
for occupancy grids [26]. This process is repeated for eaoh robot observations while minimizing some measure of
time step, performing resampling [48] whenever the effecti similarity or overlapping between them (the exact measure
sample size [33] of the RBPF falls below a given thresholth minimize may depend on the actual sensors and map
e.g. the 50%. Drawing hypotheses for the topological pmsiti representations [5], [63]). In short, these methods build a
v is arguably the most complex step in HMT-SLAM. Later orauxiliary graph whose nodes are the robot poses where ob-
we discuss an implementation aiming at real-time executieervations were taken, and undirected weighted arcs betwee
which has given good results. nodes keep the measure of similarity between the obsengatio
Observe that each hypothesis of the topological pgth as represented in Fig. 5. Then, the minimum normalized cut
implies a different topological structure of the enviromme of the graph can be computed by means of spectral bisection
(and thus, a different hypothesis feor) by means of clustering [51]. Lower cut values mean weaker relation between the
the sequence of areas traversed by the robot [46]. Since eabbkervations in the two subgraphs. A more detailed expositi
particle may maintain a different HMT hypothesis we havef this process can be found elsewhere [5]. Thus, the rolst ha
a probability distribution over the possible topologiestioé moved to a different area if the resulting cut is below a éerta

map, as illustrated with a few examples in Fig. 4. limit that settles the maximum allowed dependence between
adjacent sub-maps. If such a partitioning happens, the imme
IV. RELEVANT ELEMENTS INHMT-SLAM diate past of the robot path is updated to the new topological

After discussing the theoretical foundations of our apphoa position. Note thqt this process can be performed.only once
in this section we deal with some practical issues that eitnisefor groups of particles that sha}re the same topological. path
HMT-SLAM. Going back to the topological transition model we can

now specify that when the above partitioning method does
. ) . not find a sufficiently independent partition of the auxijiar
A. The Transition Model of the Topological Position graph (that is, the robot has not entered a new area), we have

A fundamental part of HMT-SLAM is the estimation of P (v,|dl¥]) = 1 for v, = +1¥|, and P (v|d¥]) = 0 otherwise.
the topological path of the robot. In this work we haven contrast, when a new area is entered, the transition model
addressed this problem sequentially via particle filtermgl considers the possibility of the robot having closed a logp b
considering the optimal proposal distribution for gene@t means ofP (7|d[k]) o F(v), and the possibility of having
new hypotheses. As shown in Eq. (6), this leads to drawirgitered into an unexplored area BY+') = n, wheren is
samplesﬂk] from the product of two terms: the transitiona constant and all the probabilities are scaled such as they
model of the topological positionP (v;|st~ >kl ut,0'=1), sum up to unity. The function”(y) provides a measure of
denoted in the following as” (v;|d!*!) for clarity, and the how likely it is to have arrived at the previously known area
appearance observation mo@e(hbtht,stfll[k],ut,otfl). For ~ through a loop closure. This measure should incorporate
shortening this paper we will not detail the latter herdyaligh the metric information of the arcs along the topologicalhpat
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between the two nodes (refer to Fig. 6), although it cang- 7. t(<’;1_) Arfl e??n(;_Ple t?]f a r']"MtT ;Tlapthaffter Cloigg a IOO?H (b) Pa tree
. . . representation for finaing the shortest pal rom n any otner node.

_also rel_y on hl-gh-level .tOpOIOQ'CaI_ feaso_”'”_g [15], [47]n A (c)—(d) The global map and the uncertainty for each area mddaby using

interesting choice for this function is the likelihood ofthast the shortest-path method for computing global coordinas«(f) The same

observations in relation to the metric sub-map of the caateid map obtained by using a globally consistent method. The eftipepresent

area~y Since we would need the exact robot P fter the 95% confidence intervals magnified by factor 5 for clarity.

loop closure to compute this measure, we rather take the

mathematical expectation using the prior distribution loé t I th “optimal” path h ith le i

robot pose, given by the information contained in the angs. fil these optimal™ paths, as shown with anh example in

this way, we obtain candidates for the loop closure that bothd: 7(a)—(b)._ It we dgmte the re_;‘lefr_er(;ci areauasnd (tjhe
are within the scope of the a priori metric uncertainty ang'®a we are interested in &swe will find the corresponding

provide a good prediction of the last observations. coordinate transformatiopA in the HMT map only ifa and
b are adjacent areas. Otherwise, this pose can be computed

B. Probability Distribution over Topologies fgpjggl;;'}“;g{h{g?g‘jg?gj'?{ Sf’;}‘f changes along the shortest
Sometimes it may be desirable to compute the discrete
probability mass function (PMF) of the topological path for
example for visualizing the topological structure hypcie "PA=1A® A ..o bA (15)
considered by the filter at a certain instant of time. This
operation can be achieved by marginalization which for oyfhere is the metric pose composition operator [52]. Given
particle filter simply becomes: the conditional independence between all the relative pose
along the topological path, a Monte Carlo simulation can
P(yt =3t of) = Zwyc] Q= {k: "M =5 (14) be employed to generate s_amplesf;(zji from independ_ent _
samples of all the elements in Eq. (15). The problem with this
approach is that the existence of loops leads to inconsisten
‘global coordinates. To illustrate the problem, pleaserrade
Fig. 7(c)—(d) which represent the global coordinates amd th
associated uncertainties for each area of a real HMT map. The
C. Obtaining Global Maps information in the arc between nod&8 and11 has not been
During the normal operation of the robot using HMT-SLAMconsidered by the shortest-path approach, hence we find an
it will usually be enough to reference the robot coordinates inconsistency in the resulting map between these two areas.
the coordinate frame of the current area. However, we couldTo solve this, we propose the alternative approach of apply-
desire sometimes to compute absolute coordinates relativang methods for globally consistent poses estimation thaeh
some arbitrary reference, for example for constructingphagll been reported in the past for networks of laser scans [35]. In
map for debugging or simple visualization. We describe netttis kind of method, we iteratively compute the approximate
two possible methods for computing the absolute coordinateptimal poses of all the nodes by minimizing the linearized
of all the areas of a map taking one of them as reference. version of a cost function which includes all the constsint
The first approach, proposed by Bosseal. in [6] and between adjacent areas. This algorithm typically conveige
adopted in our previous work [4], consists of applying tha few iterations, and the so obtained global maps are free
Dijkstra algorithm for finding the shortest topological Ipat of inconsistencies, as can be observed for the example in
from the reference area to the rest. In this way, the topotdgi Fig. 7(e)—(f). This is the method employed for the rest of
part of a HMT map is transformed into a tree that encodgsobal maps that illustrate this article.

ke

for each desired value &f'. Some examples of these distri
butions are shown in Fig. 10.



Framework for HMT SLAM by the robot), which are kept in a time-stamp-ordered queue
until they can be processed. Within the system, there are a

Topological z®\ | number of processes running concurrently which interact by
hypotheses @e‘@/’® means of read and write operations on the data held in the
— three levels represented in Fig. 8: the local metric map of

|TLCA| |TSBI| the current area, the sequence of traversed areas, and the

space of topological path hypotheses. It must be remarked
the parallel nature of the system, that is, the processe®to n

HMTmap - GGy - need to run in a predefined, sequential order. Next we describ
u, Real-time  these processes and their relations with the theory predent

*
0, ?mlﬂ_’—'|SLAM| |AAM| IszL FM‘. previously.
L1 I

Metric SLAM:It handles the robot localization and mapping
within the metric sub-map for the current area by processing
actions and observations. Conceptually, this process -is in
volved in estimating the metric part of Eq. (6). For occupanc
_ _ _ _ o grids, RBPFs have a complexity linear with the number of
HIMT-SLAM, Hore local metic SLAM 3 soived ficionty i reaine, while  Particles. Therefore, for a static number of particles weecha
the topological structure of the map is estimated concuyentla delayed @ Constant computation time independently of the size of the
fashion. In this way we prioritize the update of the metricipos of the |ocal area, which is a requisite if we desire a hard real-time
robot within the current area. Please refer to the text fathr details. estimation. In practice, we would need a variable number
of particles depending on the number of topological path
hypotheses considered at each instant of time, which may
) o ) increase after closing long loops. If we want metric SLAM to

It is WOI’th. to h'g_h“ght a crucial property of HMT'S,LAM have a bounded time complexity even in those cases we could
that makes it specially suitable for long-term operationaof impose a maximum number of particles in the filter, at the

mobile robot_. The statemer_n of HMT-SLAM as the estimatioeost of disregarding the most unlikely topological hypst

of the density in Eqg. (3) includes the robot HMT path in the TSBI process.

whose .dimensionality always increases over time. In thiSAreaAbstraction Mechanism (AAMErounded methods are
sense, it may seem that our apF’maCh suffer.s from the Sai¥plied here to detect clusters of (approximately) indepan
problem that global mapping with RBPFs, i.e. performingpqepations in the sequence of observations gatheredeby th
estimation into a state-space of unbounded dimensionality}, . [5], as already described in section IV-A.

However, hypotheses for the whole topological pathcan o5 0gical Space Bayesian Inference (TSBhe topolog-
be forgotten until the point where the differences betwéden tical transition model described in section IV-A is applieetd

part!cles begin. That is, if at a given inst:_amt of time all th9\/henever the AAM detects that the robot has moved into a
partlcles agree abiout_tht.a' current topological structtheret. new area. In our current implementation, the local metric-
IS EO h”e.ed to mamtja_un n mgmlory Iseveral malF’k to'?]()log'%'aps for the particles are not updated until TSBI gives us
with their corresponding metric local maps. Unlike the casge ynotheses for the new topological position of the robot
of purely metric SLAM, this does not mean a loss of they, o 'the topological transition model has been evaluated, a

esUmatEq uncc_artlalnty along the robot pg\t.h, since 'nm"i','vr{ﬁe particles are updated to account for the changes, which
SLAM this spatial uncertainty is maintained in a paramei ., 4o changing the coordinate references, removing gfart

form by the conditional distributions fgrA (refer to Eq. (10)). the cyrrent metric sub-map in the case of entering into a new
area, and in the case of a loop closure, loading the conténts o
V. IMPLEMENTATION FRAMEWORK the known area into the sub-map. Regarding the computationa
In sections Il and IV we have introduced the theoreticomplexity of the TSBI, a straight-forward implementation
formalization of HMT-SLAM. In the following we present aexhibits quadratic complexity in the number of known areas
practical framework which implements those ideas. A rafeva|Y;|. This complexity is imposed by the Dijkstra algorithm
issue here is that a mobile robot may demand accurate metrsed in the computation of the a priori metric information
localization in hard real-time (e.g. for navigation or n@ani (see IV-A).
ulation purposes), while maintaining the consistency @& th Topological Loop Closure Acceptance (TLCA)s dis-
topological map (i.e. solving loop closures) can be pergmm cussed above, it is unpractical to keep the whole historyhef t
in the “background” since reasonable delays are acceptablebot hybrid path for long-term operation. The TLCA process
An overview of the proposed framework is presented iis in charge of accepting part of the topological structuse a
Fig. 8, where we can observe its layered structure. Metuiefinitively correct. To avoid the risk of losing the validnfu
local SLAM is performed at the low level, while topologicalknown) hypothesis in this process, it only operates when the
representations are managed at the upper levels. Symbeiistem contains highly dominant (or unique) hypotheses for
reasoning or task planning would fit in additional layers\abo the robot topological path®. In our current implementation
these. The inputs to the system are actians(typically this process also performs a fine alignment of the local grid
produced by a planning level), and observatiopngacquired maps before building the metric map for the topological node

Local metric
sub-maps

D. Long-Term Operation
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Fig. 9. (a)—(b) The HMT maps generated from théldja and Edmonton datasets, respectively, shown as glolpal rekative to the first topological area
(labeled as '1’). (c) The average time (per action-obseswapair) taken by each of the processes in our HTM-SLAM impletatéon. (d) The globally
consistent poses of each area for thaldga map. The ellipses represent 95% confidence intervalsifieaighy factor 5 for clarity. () Comparison of the
memory requirements over time between our approach and metricimyapjih RBPF, both for the Mlaga map.

resulting from the fusion. contains almost 5000 laser scans collected along a 2Km path.
Real Time Localization (RTL)This process guarantees armhe second dataset was recorded at the Edmonton Convention
estimation of the robot position in a timely fashion. If timput Centre (Canada) by Nicholas Roy, and is freely available
gueue of actions and observations is empty, the best egiimabnline [29].
of the HMT poses; has been already updated by our HMT- For illustrating the experiments the resulting HMT maps
SLAM algorithm. On the contrary, when there are pendinfpr both datasets are shown in Fig. 9(a)—(b) as global maps
actions in the queue, the RTL computes the prior distrilytio(recall section IV-C), taking the first area in each map as
e.9. p(si+1]se,uir1), @as a more updated estimation of thehe referencek We also overlap the most likely topological
actual robot pose. We can easily compute this prior for theructure inferred by our approach to visualize the existin
robot metric pose in real-time, for example, by accumutatimodes and arcs. In contrast to global metric mapping with
odometry readings. The obtained pose estimations will rot RBPF, our approach is able to maintain the uncertainty in
the optimal ones, but as long as the metric SLAM procesdl the relative poses between the areas, as can be seen with
updates its estimation in a timely fashion, the estimatenfrothe (globally consistent) uncertainties represented gn $id).
RTL will be simultaneously accurate, and fast to obtain.  Recall that in RBPF-based global mapping, resampling steps
eventually lead to a total loss of the represented unceéytain
VI. RESULTS To compare the efficiency of other methods to our HMT-
SLAM implementation, we have also built the corresponding

We have tested our implementation of HMT-SLAM Wlthamps with an efficient RBPF-based technique for (global)

two different datasets, both comprised of odometry reaslin
and laser range scans in large planar scenarios containin
N EIJ_h first d 93 p h d by th h g’his paper has supplementary downloadable material aveilattl
several l0ops. e first ataget [] was gathere Yt e et Pctp://ieeexplore.ieee.org, provided by the authorssTintludes videos show-
at the campus of the University of &faga (Spain), and ing the mapping process for both datasets. This material (s M& in size.
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TABLE I

COMPARISON OFTOTAL MEMORY AND COMPUTATION TIME 100k I~ L~
REQUIREMENTSBETWEEN A GLOBAL METRIC RBPFAND HMT-SLAM € so——*—\\/—‘
Z 60"
Method Malaga dataset | Edmonton dataset A Unigue hpothesis g
Global RBPF | 197Mb, 103min 84Mb, 39min E !
HMT-SLAM 36Mb, 26min 28Mb, 8min & 03
0 - . L >
g
E osk- Hypothesis #1
metric mapping [26]. The performances in computation time E . N T A ,
and memory requirements are summarized in Table Il. These - b Hypothesis #2 | Unique hypothesis
RAM) and or occupancy i maps wih a cel s of 12om. ¢ NSRRI
RAM) and for occupancy grid maps with a cell size of 12cm. C N R
0 10 20 30 40 Time (seconds)

It is noticeable that HMT-SLAM outperforms global RBPF for
both datasets. The improvement in the memory requirements _ _ _ _
follows from the fact that in our implementation of HMT—E,'Ei'Ielgl'Osi;;ea ﬁ;’gg“gg&g‘éﬁr;g;s?{ 4ang ﬁ'“,:erzr:?taiemn;ftgp&%gf:
SLAM, each particle carries, apart from the topologicalhpathe graphs represent the effective sample si¥g) of the particle filter, and
hypothesis, a metric map for the current area only, while titig¢ marginal PMF for the robot topological position evaldafer the areas
sub-maps of previous areas are kept in a compact form [2—}Tl '15’, and '1’, respectively. Refer to the text for fumer discussion.
In the global RBPF, each particle carries a hypotheses of the
whole metric map. Therefore, the storage efficiency of a HMT
map in contrast to a global RBPF becomes more and mdrgpothesis will become much more likely than the rest, which
relevant for increasingly larger environments. This reasp will be ultimately removed by resampling. This process is
is supported by the evolution of the memory requirements ovelearly observable in Fig. 10, where we represent the éffect
time for the Malaga dataset, plotted in Fig. 9(e). Regardingample size (ESS) [33] of the filter and the marginal PMF
the lower computation time of our approach, it is a direaif the topology over time. In these graphs we can see how
consequence of the reduced number of particles (we useliEore timet; there is a unique hypothesis for the topological
samples). However, with only a few particles in our approagiosition (area '14"), and next two possibilities are coesétl:
we can achieve a representation of uncertainty better ti@an &n unexplored area '15’ and a loop closure '1’. Since the loop
one attainable by a global RBPF with a practical number ofosure hypothesis provides a much better explanationef th
particles (e.g. less than 100). This turns into more prdoige robot observations, its probability quickly increasesd after
closures and a more reliable representation of uncertainty a resampling it becomes the unique hypothesis in the filter,
To get an approximate idea of the time consumed igfinitively closing the loop.
each of the processes within our implementation (describedt is also desirable to contrast how other hybrid methods
in Section V) we have measured the average time taken frform in similar loop-closure situations. The Hieraozti
each one per action-observation pair in the datasets. As GIDAM approach reported in [19] computes the loop closure
be seen in Fig. 9(c), the SLAM and AAM processes takgy least-square error minimization, thus it considers prst
roughly the same time in both datasets, while there are larggetric) hypothesis for the closure. Although this may be
differences for TSBI and TLCA. This reflects the fact thagnough in many situations, in highly repetitive scenarios i
those processes become more time consuming for a high@uld be more advantageous to maintain multiple hypotheses
number of topological areas and potential loop closurescée until the closure becomes unambiguous. This is the casesof th
they take much more time in the &hga dataset than in theAtlas framework [7], which considers the so-callpt/enile
Edmonton dataset. Note that the RTL process has not bégmotheses for closing loops. In that work, a juvenile hy-
included in these experiments since they have been pertbrm@thesis is promoted tmaturewhen it performs much better
off-line. Nevertheless, it involves a negligible complgxin than the rest, and until that point it is not allowed to modify
comparison to the rest. its local map, that is, the treatment of hypotheses is purely
It is interesting that for both datasets our method quicklyeuristic. This is in contrast to our unified and mathemésica
converges to the correct topology after each loop closwe. grounded approach where there are no distinctions between
visualize this process, consider the first closure of a loradl the existing topological hypotheses, and all of them are
loop in the Malaga dataset, where the robot leaves the aralfowed to modify their corresponding local sub-maps (tims
labeled as '14’ and reenters the area '1’ (refer to Fig. 9(afurn, is required to perform sustainable accurate locidina
Then, two hypotheses for the robot topological location afeurthermore, since the Atlas framework is based on a hybrid
generated: a new, unexplored area ('15’), and an existiag arobot pose (instead of hybrid robpath) it allows only one
that closes the loop ('1’). The intuitive idea of the expelctehypothesis for the robot metric pose within each sub-map,
behavior of our filter at this point is that the actual topabad) while under HMT-SLAM one can devise highly ambiguous
hypothesis will fit better to the robot observations, thuwilt  environments where closing a long loop leads to a variety of
be assigned higher likelihood values within the particleefil hybrid path hypotheses, including the possibility of thbeab
that estimates the robot hybrid path Eventually, the correct being at the same area but with a multi-modal metric pose,



and consequently with different local sub-maps.

VII. CONCLUSIONS

(7]

In this paper we have introduced a new approach for solving]
the problem of large-scale SLAM, which consists of the

unified estimation of the hybrid metrical and topologicathpa [9

of the robot throughout the environment. It has been demon-
strated that this idea is supported by a probabilistic finec

in the SLAM problem under plausible approximations. In thi
paper we have addressed the probabilistic basis of a solutio
to HMT-SLAM in the form of sequential Bayesian filtering
in the joint path-map space, which supports our approach

a promising step towards the natural integration of exgstin
metric SLAM methods into high-level world representationg12]
always within a Bayesian framework that manages spatial un-
certainty more accurately and efficiently than previousrimet

and hybrid approaches. Additionally, an implementatiopwf

11

M. Bosse, P. Newman, J. Leonard, and S. Teller, “Simultasdamcal-
ization and Map Building in Large-Scale Cyclic Environmehising
the Atlas Framework,The International Journal of Robotics Research
vol. 23, no. 12, pp. 1113-1139, 2004.

J. Castellanos, J. Neira, and J. Tardos, “Limits to thesisiancy of
EKF-based SLAM,”5th IFAC Symposium on Intelligent Autonomous
Vehicles 2004.

] H. Choset and K. Nagatani, “Topological simultaneousalaation

and mapping (SLAM): Toward Exact Localization Without Exifi
Localization,”|EEE Transactions on Robotics and Automatigal. 17,
no. 2, pp. 125-137, 2001.

0] S. Coradeschi and A. Saffiotti, “An introduction to thexchoring

problem,” Robotics and Autonomous Systend. 43, no. 2-3, pp. 85—
96, 2003.

:g M. Cummins and P. Newman, “Probabilistic Appearance Bddaud-

(13]

ideas has been described in the form of a real-time/any-time
system capable of providing an estimation of the robot pose
and the map at each instant of time, giving more relevanpg]
to the computation of the metric robot pose, which may be

required for navigation or manipulation purposes. Our works,
has been validated by experiments where relatively largd HM
maps have been successfully built.

This work gives rise to a number of interesting topicgm]
that require future research, like the integration witheoth
map types (i.e. landmarks), the simultaneous estimation [&f]
the HMT path of a team of robots, or the use of appearance
and high-level knowledge for localization and loop-clasur [1g]
An especially interesting issue is that of solving the robot

awakening problem, or global localization, within a lagesale

(29]

andpartially knownenvironment (a problem that can be hardly

dealt with existing metric or topological methods). Thisus

[20]

would be faced by any mobile robot operating in a realistic

lifelong application. Under the perspective of our worke thjoq
problem is naturally cast as a special case of topological
loop-closure. This means that, as a byproduct, HMT-SLA

will allow a robot to incorporate to an existing map ne

information gathered while performing global localizati@and |
thus unifying SLAM and global localization.

(1]

(2]

(3]
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