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A B S T R A C T

In this paper, we introduce an Adaptable and Interpretable Framework for Anomaly Detection (AID) designed
for industrial systems utilizing IoT data streams on top of well-established SCADA systems. AID leverages
dynamic conditional probability distribution modeling to capture the normal operation of dynamic systems and
isolate the root causes of anomalies at the level of individual inputs. The self-supervised framework dynamically
updates parameters of underlying model, allowing it to adapt to non-stationarity. AID interprets anomalies
as significant deviations from conditional probability, encompassing interactions as well as both spatial and
temporal irregularities by exposing them as features. Crucially, AID provides dynamic operating limits to
integrate with existing alarm handling mechanisms in SCADA-based IoT systems. Two industrial-scale case
studies demonstrate AID’s capabilities. The first study showcases AID’s effectiveness on energy storage system,
adapting to changes, setting context-aware limits for SCADA, and ability to leverage a physics-based model.
The second study monitors battery module temperatures, where AID identifies hardware faults, emphasizing its
relevance to energy storage safety. A benchmark evaluation on real data shows that AID delivers comparable
performance to other self-learning adaptable anomaly detection methods, with the significant advancement in
diagnostic capabilities for improved system reliability and performance.
1. Introduction

Anomaly detection systems play a critical role in risk-averse sys-
tems by identifying abnormal patterns and adapting to novel expected
patterns in data. These systems are particularly vital in the context of
Internet of Things (IoT) devices that continuously stream high-fidelity
data to control units.

In this rapidly evolving field with long-spanning roots, Chandola
et al. (2009) conducted an influential review of prior research efforts
across diverse application domains. Recent studies have underscored
the need for holistic and tunable anomaly detection methods accessible
to operators (Cook et al., 2020; Kejariwal, 2015; Laptev et al., 2015).

Cook et al. denote substantial aspects that pose challenges to
anomaly detection in IoT, including the temporal, spatial, and ex-
ternal context of measurements, multivariate characteristics, noise,
and nonstationarity (Cook et al., 2020). To address these complex-
ity issues, Zhang et al. (2024) have successfully employed spatially
distributed sensors and time-relative modulation. Their approach has
proven effective, particularly in the context of complex non-linear sys-
tems, offering potential solutions to some of the challenges posed by IoT
data. Huang et al. on the other hand, tackled the problems of detecting
global outliers, local outliers, and outlier clusters simultaneously. Their
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proposed approach, based on density estimation, relies on the notion
that density distributions should exhibit minimal variations in local
areas. To achieve this, they introduce a novel turning ratio metric,
which reduces reliance on hyperparameters and enhances anomaly
detection (Huang et al., 2023).

Additionally, feature engineering techniques play a crucial role
in capturing contextual properties and enhancing anomaly detection
performance (Fan et al., 2019). However, it is worth noting that fea-
ture engineering may introduce categorical variables and significantly
increase the dimensionality of the data, requiring specific methods for
handling large data, sizeable data storage, and substantial computa-
tional resources (Talagala et al., 2021). Recently, Li et al. introduced
an attribute-weighted outlier detection algorithm, designed for high-
dimensional datasets with mixtures of categorical and numerical data.
Their approach assigns different weights to individual attributes based
on their importance in anomaly detection and uses these weights to
calculate distances between data points. Notably, Li et al. demonstrated
the superior performance of their algorithm compared to state-of-the-
art methods (Li & Liu, 2024). Another strategy for handling high-
dimensional data involves using deep learning methods with synthetic
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normal data to enhance the detection of outliers with subtle deviations,
as proposed in Du et al. (2024).

Nevertheless, the presence of nonstationarity, often stemming from
concept drift (a shift in data patterns due to changes in statistical
distribution) and change points (permanent alterations in system state),
presents a substantial challenge (Salehi & Rashidi, 2018). In practical
scenarios, those changes tend to be unpredictable in both their spatial
and temporal aspects. Consequently, they require systems with solid
outlier rejection capabilities of intelligent tracking algorithms (Bar-
bosa Roa et al., 2019). This underscores the critical importance of an
anomaly detection method’s ability to adapt to evolving data structures,
especially in long-term deployments. Nevertheless, as Tartakovsky et al.
(2013) remarked, immediate detection is not a feasible option unless
there is a high tolerance for false alarms. Promising balance between
early transition detection and low false alarm rate could be achieved
by contrastive learning approach. Deldari et al. (2021) have shown that
by evaluating cosine similarity between predicted future representation
and anticipated representation of time windows, it is possible to detect
evolution in data with high accuracy.

The adaptation of batch models at scale introduces a significant
latency in detector adaptation (Wu et al., 2021). Incremental learning
methods allowed adaptation while restraining the storage of the whole
dataset. The supervised operator-in-the-loop solution offered by Pannu
et al. (2012) showed the detector’s adaptation to data labeled on
the flight. Others approached the problem as sequential processing of
bounded data buffers in univariate signals (Ahmad et al., 2017) and
multivariate systems (Bosman et al., 2015).

1.1. Related work

Recent advances in anomaly detection have broadened its scope to
include root cause identification governed by the development of ex-
planatory methods capable of diagnosing and tracking faults across the
system. Studies can be split into two groups of distinct approaches. The
first group approaches explainability as the importance of individual
features (Amarasinghe et al., 2018; Carletti et al., 2019; Nguyen et al.,
2019). Those studies allow an explanation of novelty by considering
features independently. The second group uses statistical learning cre-
ating models explainable via probability. For instance, the integration
of variational Bayesian inference probabilistic graph neural network
allowed Zhang et al. to model the posterior distribution of sensor
dependency for gas leakage localization on unlabeled data (Zhang et al.,
2023a). Yang et al. recently proposed a Bayesian network (BN) for fault
detection and diagnosis. In this BN, individual nodes of the network
represent normally distributed variables, whereas the multiple regres-
sion model defines weights and relationships. Using the predefined
structure of the BN, the authors propose offline training with online
detection and diagnosis (Yang et al., 2022).

Given the infrequent occurrence of anomalies and their potential
absence in training data, the incorporation of synthetic data or feature
extraction for various detected events emerges to assist diagnosis of the
system. Brito et al. designed synthetic faults based on expert knowledge
and introduced them into a transfer learning classifier to exploit faults
in rotating machinery, with a subsequent explanation layer (Brito et al.,
2023). Conversely, We et al. leveraged feature selection to expose
various types of abnormal behavior. The team presents competitive
performance while using change in relationships to provide causal
inference (Wu et al., 2024).

However, it is crucial to underscore that offline training, as previ-
ously emphasized, is inherently inadequate when it comes to adapting
to anticipated novel patterns, rendering it unsuitable for sustained,
long-term operation on IoT devices.

This paper emphasizes the importance of combining adaptability in
interpretable anomaly detection and proposes a method that addresses
this challenge in real industrial systems. Here we report the discovery
2

and characterization of an adaptive anomaly detection method for
existing supervisory control and data acquisition (SCADA) systems,
employing streaming IoT data. The ability to diagnose multivariate data
while providing root cause isolation via statistical learning, extends
our previous contribution to the field as presented in Wadinger and
Kvasnica (2023). The proposed algorithm aims to represent a general
method that aids a range of existing safety-critical systems where
anomaly diagnosis and identification are paramount. The schematic
overview of the proposed method’s integration is presented in Fig. 1.

1.2. Novelty of proposed approach

The idea of using statistical outlier detection is well-established. We
highlight the impactful contributions of Yamanishi et al. in Yamanishi
and Takeuchi (2002), Yamanishi et al. (2004). The authors propose a
method for detecting anomalies in a time series. The method is based
on the assumption that the continuous data is generated by a mixture
of Gaussian distributions, while discrete data is modeled as histogram
density. The authors solve the problem of change point detection as
well. However, the adaptation system is unaware of such changes,
making the moving window the only source of adaptation. Online vec-
torized forecasting methods based on well-established autoregression
and moving averages have recently shown the capability of adapting
to non-stationarity in multivariate systems without supervision (Mel-
nyk et al., 2016; Zhang et al., 2023b). Their extension to diagnostic
tasks is yet to be explored. Our self-supervised approach facilitates
intelligent adaptation concerning detected change points, to increase
the speed of adaptation where the probability of concept drift is high.
By leveraging its ability to adapt to changes in operational states, our
proposed method operates autonomously when such changes occur.
Moreover, Yamanishi et al. (2004) does not attempt to isolate the root
cause of the anomaly. Our approach extends statistical outlier detec-
tion by incorporating interpretability. This is achieved by evaluating
the inverse cumulative distribution function of the latest conditional
probabilities for each measurement, considering the remainder of the
measurements, and establishing limits that define the threshold for
normal event probabilities.

A limited number of studies have focused on adaptation and in-
terpretability within the framework of anomaly detection. Two recent
contributions in this area are made by Steenwinckel et al. as reported
in Steenwinckel (2018), Steenwinckel et al. (2021). In Steenwinckel
(2018), the authors emphasize the importance of combining prior
knowledge with a data-driven approach to achieve interpretability,
particularly concerning root cause isolation. They propose a novel
approach that involves extracting features based on knowledge graph
pattern extraction and integrating them into the anomaly detection
mechanism. This graph is subsequently transformed into a matrix, and
adaptive region-of-interest extraction is performed using reinforcement
learning techniques. To enhance interpretability, a Generative Ad-
versarial Network (GAN) reconstructs a new graphical representation
based on selected vectors. However, it is important to note that the
validation of this idealized approach is pending further investigation.
Lately, Steenwinckel et al. (2021) introduced a comprehensive frame-
work for adaptive anomaly detection and root cause analysis in data
streams. While the adaptation process is driven by user feedback,
the specific mechanism remains undisclosed. The authors present an
interpretation of their method through a user dashboard, featuring
visualizations of raw data. This dashboard is capable of distinguish-
ing between track-related problems and train-related issues, based on
whether multiple trains at the same geographical location approach the
anomaly. Meanwhile, our efforts are directed towards the development
of a self-supervised method that can learn autonomously, reducing the
reliance on human supervision, which is often constrained by time
limitations and can lead to significant delays in adaptation. Our method
is distinguished by its straightforward statistical reasoning and the
ability to isolate the root cause of anomalies. The interpretability of

our method is demonstrated through the establishment of dynamic
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Fig. 1. Schematic representation of the proposed method AID.
𝑥

operating limits for each signal, leveraging conditional probabilities
derived from the signal and other system measurements and features.
This provides operators with a clear understanding of the system’s state
and the underlying causes of anomalies and offers interoperability with
existing alarm handling mechanisms in SCADA which utilize operating
limits. To the best of our knowledge, this study appears to be one of
the initial attempts to introduce a self-supervised approach for adaptive
anomaly detection and root cause isolation in SCADA-based systems
utilizing IoT data streams.

1.3. Validation

Two real-world industrial-scale case studies showcase that our pro-
posed method has the capacity to explain anomalies, isolate the root
cause, and allow adaptation to change points, allowing long-term de-
ployment at the end users of energy storage systems. We observe similar
detection performance, albeit with lower scalability, on benchmark
data when comparing our approach to well-established unsupervised
anomaly detection methods in streamed data which create a bedrock
for many state-of-the-art contributions, such as One-Class SVM (Amer
et al., 2013; Gözüaçık & Can, 2021; Krawczyk & Woźniak, 2015; Liu
et al., 2014; Miao et al., 2019), and Half-Space Trees (Lyu et al., 2020;
Wetzig et al., 2019).

1.4. Practical impact

Potential applications of the proposed method are in the field of
energy storage systems, where the ability to detect anomalies and
isolate their root causes while adapting to changes in operation and
environment, is crucial for the system safety. The proposed method is
designed to be integrated into the existing infrastructure of the systems,
utilizing IoT data streams on top of well-established SCADA systems.
SCADA systems continuously monitor these process data in real-time,
embodying alarm handling mechanisms, which are designed to notify
operators of the system’s abnormal behavior and drive attention to the
root of the problem. By comparing the current values to the upper and
lower operating limits, they take action when a variable exceeds or falls
below these limits. However, safe operating limits are often established
based on a combination of equipment design limits and the dynamics
of the process (Stauffer & Chastain-Knight, 2021). Those are indifferent
to the actual state of the system and environmental conditions. The
proposed method allows the establishment of dynamic operating limits,
based on the current state of the system and its environment, with
direct utilization in SCADA systems expecting minimal intervention
to existing infrastructure. This allows the system to operate closer or
further from its design limits, increasing its safety and profitability.
The dynamic operating limits allow operational metrics monitoring,
making potential early detection and prevention easier. Using general
adaptable methods without interpretability, on the other hand, may
pose safety risks and lower total financial benefits, as the triggered false
alarms may need to be thoroughly analyzed, resulting in prolonged
downtimes.

The main contribution of the proposed solution to the developed
body of research is that it:
3

• Interpretable anomaly detector with self-supervised adaptation
• Demonstrates interpretability by providing dynamic operating

limits
• Leverages self-learning approach on streamed IoT data
• Utilizes existing SCADA-based industrial infrastructure
• Offers faster response time to incidents due to root cause isolation

1.5. Paper organization

The rest of the paper is structured as follows: We begin with
the problem and motivation in Section 1, providing context. Next, in
Section 2, we lay the theoretical groundwork. Our proposed adaptive
anomaly detection method is detailed in Section 3. We then demon-
strate real-world industrial-scale applications in Section 4. Finally, we
conclude the paper in Section 5, summarizing findings and discussing
future research directions.

2. Preliminaries

In this section, we present the fundamental ideas that form the basis
of the developed approach. Section 2.1 explains Welford’s online algo-
rithm, which can adjust distribution to changes in real-time. Section 2.2
proposes a two-pass implementation that can reverse the impact of
expired samples. The math behind distribution modeling in Section 2.3
establishes the foundation for the Gaussian anomaly detection model
discussed in Section 2.5, followed by conditional probability computa-
tion in Section 2.4. The last subsection of the preliminaries is devoted
to the definition of anomalies.

2.1. Welford’s online algorithm

Welford introduced a numerically stable online algorithm for calcu-
lating mean and variance in a single pass through data. Therefore, the
algorithm allows the processing of IoT device measurements without
the need to store their values (Welford, 1962).

Given measurement 𝑥𝑖 where 𝑖 = 1,… , 𝑛 is a sample index in sample
population 𝑛, the corrected sum of squares 𝑆𝑛 is defined as

𝑆𝑛 =
𝑛
∑

𝑖=1
(𝑥𝑖 − �̄�𝑛)2, (1)

with the running mean �̄�𝑛 defined as previous mean �̄�𝑛−1 weighted by
proportion of previously seen population 𝑛 − 1 corrected by current
sample as

̄𝑛 =
𝑛 − 1
𝑛

�̄�𝑛−1 +
1
𝑛
𝑥𝑛 = �̄�𝑛−1 +

𝑥𝑛 − �̄�𝑛−1
𝑛

. (2)

Throughout this paper, we consider the following formulation of an
update to the corrected sum of squares:

𝑆 = 𝑆 + (𝑥 − �̄� )(𝑥 − �̄� ), (3)
𝑛 𝑛−1 𝑛 𝑛−1 𝑛 𝑛
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as it is less prone to numerical instability due to catastrophic cancel-
lation, significant loss of precision due to subtracting two nearly equal
numbers. Finally, the corresponding unbiased variance is

𝑠2𝑛 =
𝑆𝑛

𝑛 − 1
. (4)

This implementation of the Welford method requires the storage of
hree scalars: �̄�𝑛−1; 𝑛; 𝑆𝑛.

.2. Inverting Welford’s algorithm

Based on (2), it is clear that the influence of the latest sample over
he running mean decreases as the population 𝑛 grows. For this reason,
egulating the number of samples used for sample mean and variance
omputation has crucial importance over adaptation. Given access to
he instances used for computation and expiration period 𝑡e ∈ N𝑛−1

0 ,
reverting the impact of 𝑥𝑛−𝑡e can be written as follows

𝑆𝑛−1 = 𝑆𝑛 − (𝑥𝑛−𝑡e − �̄�𝑛−1)(𝑥𝑛−𝑡e − �̄�𝑛), (5)

where the reverted mean is given as

̄𝑛−1 =
𝑛

𝑛 − 1
�̄�𝑛 −

1
𝑛 − 1

𝑥𝑛−𝑡e = �̄�𝑛 −
𝑥𝑛−𝑡e − �̄�𝑛

𝑛 − 1
. (6)

Finally, the unbiased variance follows the formula:

2
𝑛−1 =

𝑆𝑛−1
𝑛 − 2

. (7)

Notably, inversion allows the algorithm to keep a constant rate of
daptation at the cost of storing a bounded data buffer.

.3. Statistical model of multivariate system

Multivariate normal distribution generalizes the multivariate sys-
ems to the model where the degree to which variables are related is
epresented by the covariance matrix. Gaussian normal distribution of
ariables is a reasonable assumption for process measurements, as it is
common distribution that arises from stable physical processes mea-

ured with noise (Mishra & Datta-Gupta, 2018). The general notation
f multivariate normal distribution is:

∼ 𝑘(𝝁, 𝜮), (8)

where 𝑘-dimensional mean vector is denoted as 𝝁 = (�̄�1,… , �̄�𝑘)𝑇 ∈ R𝑘

and 𝜮 ∈ R𝑘×𝑘 is the 𝑘 × 𝑘 covariance matrix, where 𝑘 is the index of
last random variable.

The probability density function (PDF) 𝑓 (𝒙;𝝁,𝜮) of multivariate
normal distribution is denoted as:

𝑓 (𝒙;𝝁,𝜮) = 1
(2𝜋)𝑘∕2|𝜮|

1∕2
𝑒−

1
2 (𝒙−𝝁)

⊤𝜮−1(𝒙−𝝁), (9)

here 𝒙 is a 𝑘-dimensional vector of measurements 𝑥𝑖 at time 𝑖, |𝜮|

denotes the determinant of 𝜮, and 𝜮−1 is the inverse of 𝜮.
The cumulative distribution function (CDF) of a multivariate Gaus-

sian distribution describes the probability that all components of the
random vector 𝑿 take on a value less than or equal to a particular point
𝑞 in space, and can be used to evaluate the likelihood of observing a
particular set of measurements or data points. In other words, it gives
the probability of observing a random vector that falls within a certain
region of space. The standard notation of CDF is as follows:

𝐹 (𝒙;𝝁,𝜮) = ∫

𝑞

−∞
𝑓 (𝒙;𝝁,𝜮)d𝒙, (10)

where d𝒙 denotes the integration over all 𝑘 dimensions of 𝒙.
As Eq. (10) cannot be integrated explicitly, an algorithm for numer-

ical computation was proposed in Genz (2000).
Given the PDF, we can also determine the value of 𝒙 that cor-

responds to a given quantile 𝑞 using a numerical method for inver-
sion of CDF (ICDF) often denoted as percent point function (PPF) or
𝐹 (𝒙;𝝁,𝜮)−1. An algorithm that calculates the value of the PPF is part
of standard statistical software tools.
4

2.4. Conditional probability distribution

Considering that we observe particular vector 𝒙𝑖, we can update
probability distributions, calculated according to the rules of condi-
tional probability, of individual measurements within the vector given
the rest of the measurements in 𝒙𝒊. Let us assume multivariate normal
distribution (8) and without loss of generality, that the vector 𝒙𝑖 can
e partitioned into subset variable 𝑥𝑎, and complement vector 𝒙𝒃 as
ollows

𝑖 =
[

𝑥𝑎
𝒙𝒃

]

with dimensions
[

1 × 1
(𝑘 − 1) × 1

]

, (11)

here 𝑎 = 1,… , 𝑘 and 𝒃 = {1, 2,… , 𝑘} where 𝑎 ∉ 𝒃. This partitioning
allows us to define block-wise mean and covariance as follows:

𝝁 =
[

𝜇𝑎
𝝁𝒃

]

with dimensions
[

1 × 1
(𝑘 − 1) × 1

]

, (12)

and

𝜮 =
[

𝜎2𝑎𝑎 𝜮𝑎𝒃
𝜮𝒃𝑎 𝜮𝒃𝒃

]

with dimensions
[

1 × 1 1 × (𝑘 − 1)
(𝑘 − 1) × 1 (𝑘 − 1) × (𝑘 − 1)

]

.

(13)

Subsequently, we can derive the conditional distribution of any
subset variable 𝑥𝑎, given the complementary vector 𝒙𝒃. This conditional
distribution conforms to a univariate normal distribution, characterized
by:

𝑋𝑎 ∣ 𝐗𝒃 ∼  (𝜇𝑎∣𝒃, 𝜎2𝑎∣𝒃). (14)

where 𝜇𝑎∣𝒃 denotes the conditional mean and 𝜎2𝑎∣𝒃 represents the condi-
tional variance. These crucial parameters can be computed by applying
the Schur complement as follows:

𝜎2𝑎∣𝒃 = 𝜎2𝑎𝑎 −𝜮𝑎𝒃𝜮−1
𝒃𝒃𝜮𝒃𝑎, (15)

for the conditional variance 𝜎2𝑎∣𝒃, while the conditional mean, denoted
as 𝜇𝑎∣𝒃, is determined by:

𝜇𝑎∣𝒃 = 𝜇𝑎 +𝜮𝑎𝒃𝜮−1
𝒃𝒃 (𝒙𝒃 − 𝝁𝑏). (16)

The conditional variance 𝜎2𝑎∣𝒃 essentially represents the Schur com-
plement of 𝜮𝒃𝒃 within the overall covariance matrix 𝜮.

2.5. Gaussian anomaly detection

From a viewpoint of statistics, outliers are commonly denoted as
values that significantly deviate from the mean. Under the assumption
that the spatial and temporal characteristics of a system, observed over
a moving window, can be suitably represented as normally distributed
features, we assert that any anomaly can be identified as an outlier.

In empirical fields like machine learning, the three-sigma rule (3𝜎)
rovides a framework for characterizing the region of a distribution
ithin which normal values are expected to fall with high confidence.
his rule renders approximately 0.265% of values in the distribution as
nomalous.

The 3𝜎 rule establishes the probability that any sample 𝑥𝑎 of a
andom vector 𝑋 falls within a given CDF over a semi-closed interval as
he distance from the conditional mean 𝜇𝑎∣𝒃 of 3 conditional variances
2
𝑎∣𝒃 and gives an approximate value of 𝑞 as

= 𝑃 {|𝑥𝑎 − 𝜇𝑎∣𝒃| < 3𝜎2𝑎∣𝒃} = 0.99735. (17)

Utilizing a probabilistic model of normal behavior, we can deter-
ine threshold values 𝑥l and 𝑥u corresponding to the closed interval of

he CDF where this probability is established. The inversion of Eq. (10)
acilitates this calculation, yielding:

= 𝐹 ((1 − 𝑃 {|𝑥 − 𝜇 | < 3𝜎2 });𝜇 , 𝜎2 )−1, (18)
l 𝑎 𝑎∣𝒃 𝑎∣𝒃 𝑎∣𝒃 𝑎∣𝒃
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for the lower limit, and

𝑥u = 𝐹 ((𝑃 {|𝑥𝑎 − 𝜇𝑎∣𝒃| < 3𝜎2𝑎∣𝒃});𝜇𝑎∣𝒃, 𝜎
2
𝑎∣𝒃)

−1, (19)

or the upper limit. These lower and upper limits together form vectors
l and 𝒙u, respectively, defining the region of normal system operation.
his region is conceptualized as a hypercube in the feature space,
ith each dimension bounded by the corresponding feature limits, as

omputed using Eqs. (18) and (19) for all 𝑎 = 1,… , 𝑘; 𝒃 = {1, 2,… , 𝑘}
where 𝑎 ∉ 𝒃. The approximation of a confidence ellipse as a hypercube
can be employed to represent the region of normal system operation
for individual variables of a multivariate system, rendering it as an aid
for visual representation.

The predicted state of the system, denoted as 𝑦𝑖, and the normal-
ity of signals 𝒚s,𝑖 at time 𝑖 are determined based on the maximum
istance of observations from the center of the probabilistic density.
he center of the probabilistic density corresponds to the vector of
onditional means 𝜇𝑎∣𝒃 with respect to other features. The calculation
f this distance involves the cumulative distribution function (CDF) of
bservations and conditional distributions, as follows:

(𝑥𝑎;𝜇𝑎∣𝒃, 𝜎2𝑎∣𝒃) ∶ 𝑎 = 1,… , 𝑘; 𝒃 = {1, 2,… , 𝑘} where 𝑎 ∉ 𝒃. (20)

Subsequently, operation states of individual inputs are defined as
ollows:

s,𝑖 =

{

0 if 𝑇 ≤ (20)
1 if 𝑇 > (20),

(21)

here 𝑇 represents a threshold that distinguishes between normal
ignal measurement (𝒚s,𝑖 = 0) and abnormal (𝒚s,𝑖 = 1).

For the overall abnormality of the system, any anomaly in signals
s,𝑖 is considered, resulting in:

𝑖 =

{

1 if 1 ∈ 𝒚s,𝑖

0 otherwise,
(22)

efining the discrimination boundary between system operation where
𝑖 = 0 indicates normal system operation, and 𝑦𝑖 = 1 indicates
nomalous operation.

.6. Anomaly definition

This subsection provides an overview of the definition of anomalies
n data analysis and their categorization, setting conventions for this
aper.

In the realm of data analysis, anomalies are conspicuous deviations
rom the anticipated patterns within a dataset. Traditionally, the task
f anomaly detection has relied upon unsupervised methodologies,
herein the identification of ‘‘outliers’’ entails the comparison of data
oints in both temporal and spatial contexts. This approach, often
eferred to as point-wise anomaly detection, classifies a data point as an
nomaly when it exhibits significant dissimilarity from its neighboring
ata points (Iglesias Vázquez et al., 2023).

The concept of point anomalies, influenced by factors such as tem-
oral and spatial aspects, can be further categorized into conditional
nd contextual anomalies (Ruff et al., 2021).

Nevertheless, this conventional method may not be suitable for
cenarios characterized by collective anomalies, where clusters of ab-
ormal data points coexist. A more pragmatic approach defines anoma-
ies as deviations from established ‘‘normal’’ patterns, resembling the
rinciples of semi-supervised learning. Change point detection, in a
imilar vein, can be regarded as a relative approach that takes into
ccount the varying dynamics of changes, whether they occur gradually
r abruptly (Iglesias Vázquez et al., 2023).

It is imperative to recognize that the interpretation of anomalies,
utliers, and novelties can vary upon the application. Anomalies typ-
cally garner significant attention, while outliers are often treated as
ndesirable noise and are typically excluded during data preprocessing.
5

ovelties, on the other hand, signify new observations that necessitate
odel updates to adapt to an evolving environment (Ruff et al., 2021).

Notwithstanding the differences in terminology, methods employed
or the identification of data points residing in low-probability re-
ions, irrespective of whether they are referred to as ‘‘anomaly detec-
ion’’, ’’outlier detection’’, or "novelty detection’’, share fundamental
imilarities (Iglesias Vázquez et al., 2023).

For visual clarity, Fig. 2 illustrates the differences between point
nomalies, collective anomalies, and change points.

. Adaptive anomaly detection and interpretation framework

In this section, we present an adaptive and interpretable detection
ramework (AID) designed for SCADA-based industrial systems with
treaming IoT devices. Our approach is rooted in the foundational
oncepts discussed in Preliminaries 2. We systematically leverage these
heoretical building blocks to introduce our method in a coherent
anner.

Our approach begins by modeling the system as a dynamic multi-
ariate normal distribution, allowing it to effectively handle pervasive
onstationary effects and interactions that impact industrial processes.
e address several critical factors, such as change points, concept drift,

nd seasonal effects. Our primary contribution is the integration of an
daptable self-supervised system with root cause identification and dy-
amic operating limits setting. This unique combination empowers our
nline statistical model to diagnose anomalies through three distinct
echanisms.

Firstly, we employ conditional probability calculations to assess the
ormality of the system’s operating conditions. This step ensures that
ur method identifies outliers within individual signal measurements
nd interprets the root causes of anomalies, facilitating faster and
ore precise diagnoses. Secondly, we detect abrupt changes due to

oncept drift, serving for faster adaptation to new operating conditions
ithout human intervention. Thirdly, we harness interpretability as a

ool to establish dynamic operating limits. These adaptive limits en-
ble our framework to seamlessly integrate with existing SCADA-based
nfrastructure, a substantial advantage over existing solutions.

We have structured the subsequent sections to delve into the details
f our proposed methodology by the logical flow of data. The upcoming
ubsection will cover the anomaly detection mechanism, followed by
ections on online training and adaptation. The next subsection will
escribe dynamic operating limits setting, followed by diagnostic capa-
ilities. Lastly, we describe how those parts converge into a diagnostic
ool. For a schematic representation of our proposed method, with a
ighlighted subsection attribution, please refer to Fig. 3. For a con-
ise technical representation of our proposed method, please refer to
lgorithm 1.

.1. Online detection

In the online detection phase, AID distinguishes between normal
nd anomalous observations based on the model of the system’s normal
ehavior. The detection pipeline is event-triggered upon the arrival of
new set of measurements.

To initiate the process, AID computes the properties of the con-
itional distribution based on the current observations given the dy-
amic joint normal distribution. These calculations are performed for
ach element of the process observation vector 𝒙𝑖 at time instance
. Specifically, we calculate the conditional mean using (16) and the
onditional variance using (15) for elements of 𝒙𝑖. These computations
ield univariate conditional distributions for individual signals and
eatures. These conditional distributions play a crucial role in assessing
he abnormality of signals and features concerning their relationships
ith other elements of 𝒙𝑖. Consequently, AID inherently considers the

nteractions between input signals and features.
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Fig. 2. Illustration of sample scenarios of point anomaly (measurement with significant dissimilarity), collective anomaly (cluster of abnormal points), and change point (initial
sequence of changed operation) detection.
Fig. 3. Schematic representation of the proposed method AID with parameter initialization. Colored boxes represent steps described within the subsection.
The determination of anomalous behavior is influenced by the
parameter 𝑇 , which is a user-defined hyperparameter representing a
probabilistic threshold that sets the boundary between normal and
anomalous behavior. Details regarding the selection of an appropriate
value for 𝑇 are discussed in Section 3.5. Whenever an anomaly is
detected within one of the signals or features, it triggers an alert
regarding the overall system’s anomalous behavior, as described in
. Nevertheless, individual determinations of anomalies serve as a di-
agnostic tool for isolating the root causes of anomalies, as further
discussed in Section 3.4.

The proposed mechanism is applicable to both point anomalies and
collective anomalies. In the case of collective anomalies, their duration
and deviation may serve as precursors to concept drift in the system.
To identify concept drift, we introduce a parameter adaptation period
𝑡a. Given the predicted system anomaly state from as 𝑦𝑖 over a window
of past observations 𝒚𝑖 = {𝑦𝑖−𝑡a ,… , 𝑦𝑖} bounded by 𝑡a, the following test
determines anticipated change points:
∑

𝑦∈𝒚𝑖 𝑦

𝑛(𝒚𝑖)
> 𝑇 . (23)

Here, 𝑛(𝒚𝑖) denotes the dimensionality of 𝒚𝑖. The logic behind (23)
is that over an adaptation period 𝑡a, change points can be distin-
guished from collective anomalies and point anomalies due to their
minimum duration, while 𝑇 allows for some overlap with previous
normal conditions.

Our framework anticipates unexpected novel behavior, including
non-uniformities in sampling. Assuming that the distribution of sam-
pling times remains stable over the long term, we can employ equiva-
lent steps on the observed time between samples to discriminate signal
loss from long-term anomalous network events.
6

3.2. Online learning

AID’s training process follows an incremental self-learning
approach, allowing for online model updates as new samples arrive.
Self-learning, in this context, focuses on selecting only relevant data
for training to maintain the model’s long-term relevancy and stabil-
ity. This approach proves particularly valuable in handling streaming
data, where human supervision can introduce significant computational
delays, affecting response time in a sequential setting.

In online anomaly detector training, regardless of the type of super-
vision, the learning is typically built upon observations of the normal
state. We introduce a grace period denoted as 𝑡g to enable model
calibration in the initial stages after deployment. During this period,
when normality in samples is expected, the model learns from all
observations. Subsequently, self-supervised and unsupervised detectors
are expected to make autonomous decisions.

However, in the case of industrial systems, the drifts in the con-
cept might often render the normal state anomalous, slowing down
or preventing adaptation completely. This is particularly true for the
case of seasonal effects, where the system is expected to operate in a
different mode for a certain period of time. To address this issue, AID’s
adaptation incorporates two self-supervised mechanisms.

Firstly, the model is updated if the observation at time instance 𝑖
is marked normal in the detection phase. In the case of a dynamic
multivariate probability distribution, the updated parameters are 𝝁𝒊
and 𝜮𝒊 at time instance 𝑖. Update of the mean vector 𝝁𝒊 and covariance
matrix 𝜮𝒊 is governed by Welford’s online algorithm using Eq. (2) and
(4) respectively. Samples beyond the expiration period 𝑡e, discussed
further in Section 3.5, are disregarded during the second pass. The
effect of expired samples is reverted using inverse Welford’s algorithm
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for mean (6) and variance (7), accessing the data in the bounded
internal buffer. For more details, refer to Section 2.2.

The second mechanism, which enables adaptation to anomalous
samples, relies on changepoint detection. This mechanism operates
under the assumption that detected changepoints represent new oper-
ational states with limited overlap with the previous ones, as specified
in Eq. (23). It facilitates rapid adaptation to evolving data patterns
without the need for human intervention. The selection of the adap-
tation period 𝑡a, as discussed further in Section 3.5, is thus crucial for
determining the speed of adaptation or the potential mitigation of the
second adaptation mechanism.

To anticipate potential deviations from sampling uniformity, we
calculate the cumulative distribution function (CDF) over the univariate
normal distribution of sampling. We operate under the assumption
that, over the long term, the distribution of sampling times remains
stable, employing a one-pass update mechanism of (2) and (4), for
efficiency. To proactively detect subtle changes in sampling patterns,
self-supervised learning is employed, leveraging anomalies weighted by
the deviation from (1 − 𝐹 (𝑥𝑖;𝜇, 𝜎2)) for training.

3.3. Dynamic limits acquisition

As we wrote in Section 1.4 Practical Impact, the monitoring mecha-
nisms of SCADA readily depend on the upper and lower operating limits
of individual parameters of the system. In the case of industrial systems,
these limits are often defined by the sensor’s designed limits and the
system dynamics. These limits are typically static and do not account
for the dynamically changing conditions. Our proposed method AID is
capable of setting dynamic operating limits, thus allowing integration
into the existing SCADA-based infrastructure.

The threshold 𝑇 applied on the dynamic multivariate normal dis-
tribution creates a confidence hyperellipse at 𝑇 probability level. Such
a hyperellipse would not allow to effectively bound individual signals
as it depends on values that other jointly distributed variables take.
Nevertheless, by computing the conditional for process observation
vector 𝒙𝑖 at time instance 𝑖, we can compute the conditional density
function for individual signals. By applying threshold 𝑇 on individ-
ual conditional probabilities, we establish a hypercube defined by
lower and upper threshold values, denoted as 𝒙l and 𝒙u, respectively.
These thresholds are derived from (18) and (19), incorporating updated
model parameters. Lower and upper thresholds play a pivotal role as
dynamic operating limits. They may be used as an addition to static
operating limits used by monitoring systems in SCADA, accounting for
spatial factors, such as multipoint measurements, temporal factors, such
as aging, and actual environmental conditions that influence sensor
operation. Moreover, any violation of the limits is also detected as an
anomaly.

3.4. Diagnostics

One of the crucial aspects of diagnostics is root cause isolation.
Using the ability to detect anomalies in individual signals and features,
AID is capable of isolating the root cause of anomalies with consider-
ation of their mutual relationships. This is achieved by computing the
conditional probability of individual signals and features given the rest
of the process observation vector 𝒙𝑖 at time instance 𝑖. The dynamic
process limits further enhance the diagnosis by providing the context of
the anomaly, including the extent of deviation from normal operation
and the direction of the deviation. The proposed diagnostic mechanism
is particularly useful in the case of collective anomalies, where the
unified direction of deviations is expected. AID’s interpretability is
an asset for domain experts to understand why certain anomalies are
flagged and enables operators to assess the system’s state by visualizing
limits and deviations, thus detecting the speed at which the process
7

variable approaches the limits before an anomaly occurs.
3.5. Model parameters initialization

The model initialization is governed by defining two required hyper-
parameters of the model: the expiration period (𝑡e) and the threshold
(𝑇 ). The expiration period determines the window size for time-rolling
computations, impacting the proportion of outliers within a given
timeframe and directly influencing the relaxation (with a longer ex-
piration period) or tightening (with a shorter expiration period) of
dynamic signal limits. Additionally, we introduce a grace period 𝑡g,
which defaults to 𝑢𝑖𝑡𝑒, allowing for model calibration. During this grace
period, system anomalies are not flagged to prevent false positives and
speed up self-supervised learning, introduced in Section 3.2. 𝑡g can take
any value smaller than 𝑢𝑖𝑡𝑒, if the detection must be delivered fast after
integration. The length of the expiration period inversely correlates
with the model’s ability to adapt to sudden changes. The adaptation and
detection of significant drifts in the data-generating process, such as
changes in central tendency, is managed through the adaptation period
𝑡a. A shorter 𝑡a results in faster adaptation to new operating conditions,
while making the system vulnerable to prolonged collective anomalies.
A longer 𝑡a results in slower adaptation to significantly deviating new
operations, but allows longer alerts regarding collective anomalies. In
most cases, 𝑡a = 1∕4𝑡e offers optimal performance.

As a general rule of thumb, expiration period 𝑡e should be deter-
mined based on the slowest observed dynamics within the multivariate
system. The threshold 𝑇 defaults to the three-sigma probability of 𝑞
in (17). Adjusting this threshold can fine-tune the trade-off between
precision and recall. A lower threshold boosts recall but may lower pre-
cision, while a higher threshold enhances precision at the cost of recall.
We recommend starting with the default values of other parameters
and making adjustments based on real-time model performance, as the
model’s interpretability can reduce the time and effort required for fine-
tuning. The presence of one non-default interpretable hyperparameter
facilitates quick adaptation of AID in a broad range of use cases.

Algorithm 1 Online Detection and Identification Workflow
Input: expiration period 𝑡e
utput: system anomaly 𝑦𝑖, signal anomalies 𝒚s,𝑖, sampling anomaly
𝑦t,𝑖, change-point 𝑦c,𝑖, lower thresholds 𝒙l,𝑖, upper thresholds 𝒙u,𝑖,
Initialisation :

1: 𝑖 ← 1; 𝑛 ← 1; 𝑇 ← (17); 𝝁 ← 𝒙𝟎; 𝜮 ← 𝟏𝑘×𝑘; 𝜇t ← 0; 𝜎2t ← 1;
2: compute 𝐹 (𝒙𝟎;𝝁,𝜮) using algorithm in Genz (2000);
LOOP Process

3: loop
4: 𝒙𝑖, 𝑡𝑖 ← RECEIVE();
5: 𝒚s,𝑖 ← PREDICT(𝒙𝑖, 𝑇 ) using (21);
6: 𝑦𝑖 ← PREDICT(𝒚s,𝑖) using (22);
7: 𝒙l,𝑖, 𝒙u,𝑖 ← GET(𝑇 ,𝝁,𝜮) using (18), (19);
8: 𝑦t,𝑖 ← PREDICT(𝑡𝑖 − 𝑡𝑖−1) using (21);
9: 𝜇t, 𝜎2t ← UPDATE(𝑡𝑖 − 𝑡𝑖−1, 𝜇t, 𝜎2t ) using (2), (4);
0: if (22) = 0 or (23) then
1: 𝝁,𝜮 ← UPDATE(𝒙𝑖,𝝁,𝜮, 𝑛) using (2), (4);
2: if (23) then
3: 𝑦c,𝑖 ← 1;
4: else
5: 𝑦c,𝑖 ← 0;
6: end if
7: 𝑛 ← 𝑛 + 1;
8: for 𝒙𝑖−𝑡e do
9: 𝝁,𝜮 ← REVERT(𝒙𝑖−𝑡e ,𝝁,𝜮, 𝑛) using (6), (7);
0: 𝑛 ← 𝑛 − 1;
1: end for
2: end if
3: 𝑖 ← 𝑖 + 1;
4: end loop
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Fig. 4. Photograph of the actual studied TERRA energy storage unit with open doors (left), and closed doors (right).
4. Case study

This section presents two case studies on real industrial-scale energy
storages and a real data benchmark to demonstrate the effectiveness
and applicability of our proposed approach. We investigate the proper-
ties and performance of the approach using signals from IoT devices in
an energy system and streamed benchmark system data. The successful
deployment demonstrates that this approach is suitable for existing
industrial systems utilizing IoT data streams on top of well-established
SCADA systems.

4.1. Battery energy storage system TERRA

In the first case study, we demonstrate our proposed method on real
industrial-scale battery energy storage system (BESS) TERRA, depicted
in Fig. 4. TERRA has an installed capacity of 151 kWh distributed
among 10 modules with 20 Li-ion NMC cells. The Inverter’s nominal
power is 100 kW. The TERRA reports measurements of State of Charge
(SoC), supply/draw energy set-points, and inner temperature, at 6
positions (channels) of each battery module. A substantial size of the
system, which is 2.4 × 2.4 × 1.2 m (HxWxD), requires a proper cooling
mechanism. The cooling is handled by forced air from the HVAC system
and inner fans, while the fire safety system is passive. Tight battery
temperature control is needed to optimize performance and maximize
the safety and battery’s lifespan. Identifying anomalous events and
removal of corrupted data might yield significant improvement in the
process control level and increase the reliability and stability of the
system.

The AID is integrated into the existing software infrastructure of the
system, allowing detection and diagnosis of the system using streamed
IoT data. Here we replay a 9-day stream of historical measurements of
the device, to demonstrate key features of AID.

For demonstration purposes, the expiration period 𝑡e is set to 4 days,
as the system is expected to adapt to the new behavior, due to the
transfer of the module to the outside. The grace period was reduced
to 1 day, to observe the reaction to concept drift. The threshold 𝑇 is
set to 3.5𝜎 to reduce the number of alarms. The frequency will be higher
as the detector is protected and self-supervised. The adaptation period
𝑡a is changed to 3 h as this is the time constant of the temperature to
the unit change of supply/draw power demand.

Fig. 5 depicts the average cell temperature measurement of the
TERRA for all 10 modules. The data are normalized to the range [0, 1]
to protect the sensitive business value. The light red area represents
the region out of dynamic operating limits as provided by AID. On 7th
March 2022, the system was relocated from the inside of the building
to the outside power socket. The system was expected to adapt to the
new behavior within 4 days as specified by 𝑡e. Nevertheless, due to the
protection of the model from learning the anomalous data, the new
behavior could not be captured as the system was not operating within
the safe limits. The adaptation started three days later, as only some
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of the measurements within the safe region after transfer were learned.
Therefore, the importance of self-supervised adaptation to changes in
data is crucial. As we can see, the change points detection according
to (23) alerted such change shortly after the TERRA was connected
to a data broker, while the length of the adaptation period enabled
discrimination from collective anomaly.

In Fig. 6 we depict the same measurement with a changepoint adap-
tation mechanism in place. The mechanism speeds up the adaptation
to the new behavior, as the system is allowed to learn from anomalous
data when they represent the changed behavior. The adaptation took
approximately 6 times shorter.

The default sampling rate of the incoming signal measurements is
1 min. However, network communication of the IoT devices is prone
to packet dropout, which results in unexpected non-uniformities in
sampling from the perspective of the SCADA system. The transfer of
TERRA was accompanied by the disconnection of IoT sensors from
the data broker which might be considered an anomaly. The system
can detect such anomalies as well, as depicted in Fig. 7. Along with
known disconnection, the system alerted two more non-uniformities
of shorter extend, scaled in the figure for better visibility. The short
loss of signal was caused by the packet drop, as it impacted only a few
consecutive measurements. Various confidence levels could be used to
further analyze and map potential causes to the duration of the outage.

Lastly, we want to acknowledge the outlier, left uncaptured due
to increased variance of the distribution in a period of adaptation.
Observing multiple variables, where some might be influenced less by
the change in behavior, might be beneficial in such cases. The indus-
trial partner provided a physics-based model of the battery module
temperature, defined as follows:

𝑇bat,𝑖+1 = 𝑇bat,𝑖 + 𝑇s(𝑞fan𝑉b,max𝜌𝑐p(𝑇out − 𝑇bat,𝑖) + 𝑉c,max𝑞circ.fan𝜌𝑐p𝑇bat,𝑖

+ 𝑞circ.fan(𝑃cool𝑞cool𝑃heat𝑞heat) + 𝑐scale𝑄bat + 𝑞inner fans (24)
− (𝑉b,max𝑞fan𝑉c,max𝑞circ.fan)𝜌𝑐p𝑇bat,𝑖)∕(𝑚bat𝑐p,b)

When combined with an averaged measurement of battery mod-
ule temperature, we could compute the difference between real and
predicted temperature. Such deviation can be useful in detecting unex-
pected patterns in temperature due to the impact of external distur-
bance and aging. Nevertheless, it may be inaccurate as the physics-
based model is simplified and does not account for spatial aspects, like
temperature gradients as well as different dynamic effects of charging
and discharging on temperature. For instance, in Fig. 8 during the first
two days we see, that the cooling dynamic is not captured well, result-
ing in a subtle positive difference between average cell temperature and
the temperature predicted by the model. In combination with the raw
measured average of the temperature, the AID captures the outlier on
9th March which could not be captured in a univariate setting. The
physics-based model exposes temporal aspects of the behavior as it
considers the dynamics of its inputs. The rapid increase in temperature
w.r.t the modeled dynamics due to environmental conditions will draw
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Fig. 5. Detection of anomalies using model without adaptation to change points in normalized average cell temperature of TERRA observed over nine days (blue line). The model
lerts anomalies (red dots) for approximately three days. The dynamic operating limits (light red area), given by the model without adaptation to change points, are stagnant
uring the period of detected change point (orange bars), which is triggered 𝑡a hours after anomaly is alerted. The adaptation of the model to novel behavior starts as the 𝑡e is
pproached.
Fig. 6. Detection of anomalies using model with adaptation to change points over the same historical measurement as in Fig. 5. The change point is detected 𝑡a hours after the
nomaly is alerted, triggering adaptation to changed behavior more than two days sooner, compared to model without adaptation to change points in Fig. 5. The adaptation is
eflected in changes in dynamic operating limits. The system alerts anomalies for approximately 10 h.
Fig. 7. Depiction of accompanying task of sampling anomaly detection (green bars) for model with adaptation to change points from Fig. 6. Zoomed areas focus on short events
of abnormal sampling detected by AID. The second zoomed area also highlights faulty measurements, which the system marked as point anomalies (red dots in the main figure
area). The scaling in Figs. 5 and 6 for visibility rendered this fault out of the axis.
a sharp positive peak in the difference between the real and predicted
temperature, which will slowly vanish. Based on the significance of
the deviation, the peak will be notified as a single-point anomaly or
collective anomaly.

This case study demonstrated AID’s effectiveness within the context
of the energy storage system, specifically the TERRA system. The AID
system exhibited adaptability to changes in the operational environ-
ment, contributing to its versatility and robustness. Additionally, it
facilitated the establishment of dynamic operating limits for SCADA
systems, considering context of the device such as environmental con-
ditions or aging. Furthermore, the AID system showcased its capability
to operate with a physics-based model, enhancing the precision of
anomaly detection processes. This highlights the potential of AID as
a valuable tool within complex industrial systems. The validity of
our proposed approach was verified by our industrial partner, who
confirmed that the detected anomalies were indeed caused by the
aforementioned events.
9

4.2. Kokam battery module

A second case study presents temperature profile monitoring of indi-
vidual modules of battery pack TERRA deployed at the premises of the
end user. During the operation, a hardware fault of module’s 9 cooling
fan occurred on 23rd August 2023 at 17:12:30. Our industrial partner
was interested in finding out, whether such an event could be captured
by an anomaly detection system. Each of the 10 modules, embodies 20
cells measured by 6 spatially distributed sensors as shown in Fig. 9.
The measurements are sent in 30-second intervals and processed in a
streamed manner by SCADA. With the availability of the temperature
profiles for all the modules, we computed the deviation of the observed
value from the average of all the modules’ temperature measurements.
The ground truth information about the fan fault was provided to the
best of the operator’s knowledge. However, this information serves for
evaluation only, as the system operates in a self-supervised manner.
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Fig. 8. Time series of TERRA measurements observed over 9 days (blue line). The 𝑦-axis renders the average temperature of all cells and modules after the normalization to the
ange of [0, 1]. The light red area represents an area out of dynamic operating limits for individual signals. Observations out of the limits are marked by a red dot. Orange bars
epresent the times, at which changepoints were detected. Green bars represent periods where sampling anomaly was alerted. Red bars denote the period where any of the signals
ontained anomaly. Grace period is grayed out.
Fig. 9. Module 9 with 20 cells and 6 sensors measuring the temperature at each 4th
cell.

Our anomaly detection system was, in this case, initialized for the
operation in production. The expiration period of 7 days, allowed the
system to adapt to weekly seasonality due to the usage of the battery
following work week. The grace period was kept at the default value,
equal to 𝑡e. The threshold value was shifted to a 4 sigma value of
99.977% which makes the frequency of anomalous events approxi-
mately once a week given 30-second sampling. The adaptation period
was held constant as the deployed system is not expected to change its
behavior dramatically on a daily basis.

In Fig. 10 we observe 4 days of operation around the period of
fan fault occurrence. The deviations between the observed temperature
measured by channels of module 9 and the average temperature of all
10
modules are displayed. The dynamic operating limits tightly envelop
temperatures measured by the sensors in the middle of the module
(refer to Fig. 9), while measurements at both sides deviate more due
to the proximity to the walls and sources of disturbance. We observed
multiple alarms raised by various channels individually before the
fan fault. These anomalies, while not addressed here further, could
be subjects of interest for further investigation by system operators.
Meanwhile, the fan fault at the center of our focus is alarmed based on
three measurements, namely channels 1, 2, and 3. From the zoomed
views, we can observe a sharp increase in the temperature deviation.
The alarm is on until 24th August at noon, when significant fluctuations
vanish followed by temporary settling of the temperature. On 25th
August at 11:21, increased temperature fluctuations are followed by an
increase of temperature similar to the initial one. AID alerts this fault
again based on measurements by channels 1, 2, and 3.

Time series of TERRA measurements observed over 9 days (blue
line). The 𝑦-axis renders the average temperature of all cells and
modules after the normalization to the range of [0, 1]. The light red
area represents an area out of dynamic operating limits for individual
signals. Observations out of the limits are marked by a red dot. Orange
bars represent the times, at which changepoints were detected. Green
bars represent periods where sampling anomaly was alerted. Red bars
denote the period where any of the signals contained anomaly. Grace
period is grayed out.

Interestingly, during the presence of a fault in the fan, two more
periods where the fan started operating again followed as depicted in
Fig. 11. Periods of operation were interrupted again on 27th and 28th
August respectively in the early morning hours. In both of the cases,
AID detected the presence of the fault at the moment of occurrence.
In the first case, channel 3 reported an anomaly slightly before the
increase in temperature, due to abnormal fluctuation happening prior
to faults.

This case study demonstrates the effectiveness of the AID framework

in identifying hardware faults within the context of energy storage
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Fig. 10. Time series of battery module 9 measurements (blue line). The 𝑦-axis renders the normalized deviations of temperature from the average of all modules. Signal anomalies
are marked as red dots. The light red area represents an area out of dynamic operating limits. True fan faults are marked by purple bars. Green bars represent the times of
changepoint detection. Red bars denote the period where any signal anomaly.
systems. It showcases the system’s ability to harness spatially dis-
tributed sensors that measure the same process variable. The AID
system successfully pinpointed a fault in a cooling fan during real-
world production operations, underlining its practical utility and its
relevance in enhancing the safety of energy storage systems. Further-
more, the incorporation of adaptation mechanisms ensures that the
system can be deployed over extended periods without necessitating
resource-intensive retraining. Additionally, the concept of dynamic
operating limits introduced in this study holds promise for integration
with Supervisory Control and Data Acquisition (SCADA) monitoring
systems, enabling proactive responses in situations where human life,
equipment, or the environment may be at risk.

4.3. Real data benchmark

The benchmarking comparison in this subsection evaluates the AID
framework against adaptive unsupervised detection methods, specif-
11

ically One-Class Support Vector Machine (OC-SVM) and Half-Space
Trees (HS-Trees). These methods are widely recognized for their it-
erative learning capabilities on multivariate time-series data, making
them suitable for anomaly detection in dynamic systems, as previously
discussed in the Introduction 1.3.

The comparison is based on the Skoltech Anomaly Benchmark
(SKAB) dataset, a real-world dataset with annotated labels distinguish-
ing between anomalous and normal observations (Katser & Kozitsin,
2020). SKAB is used for this purpose, as no established benchmarking
multivariate data were found regarding energy storage systems sim-
ilar to the ones studied in Sections 4.1 and 4.2. The SKAB dataset
involves experiments related to rotor imbalance, where various control
actions and changes in water volume are introduced to the system. It
encompasses eight features and exhibits both gradual and sudden drifts.

To ensure fairness in the benchmark, data preprocessing adheres
to best practices for each method. OC-SVM employs standard scaling,
while HS-Trees use normalization. Our proposed AID method requires
no scaling. Preprocessing is performed online, simulating a real produc-

tion environment, with running mean and variance for standard scaling
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Fig. 11. Time series of battery module 9 measurements (blue line). The 𝑦-axis renders the normalized deviations of temperature from an average of all modules. Signal anomalies
are marked as red dots. The light red area represents an area out of dynamic operating limits. True fan faults are marked by purple bars. Green bars represent the times of
changepoint detection. Red bars denote the period where any of the signals contained anomaly.
and running peak-to-peak distance for normalization, as supported by
the online machine learning library ‘‘river’’ (Montiel et al., 2021).

The optimal hyperparameters for both reference methods are found
using Bayesian Optimization. Due to no further knowledge about the
data generating process, and equity in benchmark, the hyperparameters
of our proposed method were optimized using Bayesian Optimization
as well. 20 steps of random exploration with 100 iterations of Bayesian
Optimization were used, increasing default values set in the Bayesian
Optimization library, to allow thorough exploration and increase the
possibility of finding global optima in each case (Nogueira, 2014). The
hyperparameters are optimized with the F1 score as a cost function
first, to maximize both precision and recall on anomalous samples.

As adaptation is required and anticipated within benchmark
datasets, the performance is evaluated iteratively, similarly to the
operation after deployment. The metric is updated with each new
sample and its final value is used to drive Bayesian Optimization. The
performance is evaluated using the best-performing model, found by
12
Bayesian Optimization. The performance of the proposed method is
evaluated on the same data as the models are optimized for.

Hyperparameter search ranges are specified, with values centered
around default library values for OC-SVM and HS-Trees. The ranges
are intentionally set wide to facilitate comprehensive exploration. The
quantile filter threshold used in OC-SVM and HS-Trees aligns with the
threshold used in AID. These hyperparameter ranges are presented in
Table 1.

The results for models optimized for the F1 score are summarized
in Table 2, which includes precision, recall, F1 score, and average
latency. Macro values are enclosed in brackets, representing the mean
of the metric for both anomalies and normal data. A perfect detection
achieves 100% in each metric except for the false positive rate (FAR),
where a perfect detection attains 0%. According to the Scoreboard for
various algorithms on SKAB’s Kaggle page, all iterative approaches per-
form comparably to the batch-trained isolation forest and autoencoder,
validating the optimization process. Notably, the proposed AID method

outperforms both reference methods in terms of precision, recall, F1
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Table 1
Hyperparameter ranges for detection algorithms.

Algorithm Hyperparameters Default Ranges

AID Threshold
𝑡e
𝑡a
𝑡g

0.99735
–
𝑡e
𝑡e

(0.85, 0.99994)
(150, 10000)
(50, 2000)
(50, 1000)

OC-SVM Threshold
Learning Rate

–
0.01

(0.85, 0.99994)
(0.005, 0.02)

HS-Trees Threshold
N Trees
Max Height
Window Size

–
10
8
250

(0.85, 0.99994)
(0, 20)
(2, 14)
(100, 400)

Table 2
Evaluation of models optimized for F1 score on SKAB dataset (Katser & Kozitsin, 2020).
The best-performing model is highlighted in bold. Values in brackets represent macro
values of the metric.

Algorithm AID HS-Trees OC-SVM

Precision [%] 𝟒𝟏 (59) 36 (51) 39 (54)
Recall [%] 𝟖𝟎 (59) 74 (51) 63 (54)
F1 [%] 𝟓𝟒 (53) 48 (44) 48 (52)
AUC [%] 𝟓𝟗 51 54
Mean Rolling AUC [%] 𝟓𝟕 50 53
FPR [%] 𝟒𝟕 56 48
Avg. Latency [ms] 1.45 𝟎.𝟎𝟓 𝟎.𝟎𝟓

Table 3
Optimal hyperparameters of methods optimized for F1 score.

Algorithm Hyperparameters Found

AID Threshold
𝑡e
𝑡a
𝑡g

0.96442
1136
396
546

OC-SVM Threshold
Learning Rate

0.86411
0.01956

HS-Trees Threshold
N Trees
Max Height
Window Size

0.99715
1
7
283

score, area under curve, and false positive rate, despite having a 30-
fold higher latency per sample. This highlights the scalability as a
candidate for further development. Nevertheless, in this case, sampling
of the benchmark data still offers enough time to deliver predictions
with sufficient frequency. Scalability analysis to number of features is
presented in Section 4.4.

Optimal hyperparameters found during Bayesian Optimization are
detailed in Table 3. None of the parameters are at the edge of the pro-
vided ranges, serving as necessary proof of ranges being broad enough.
Nevertheless, sufficient proof is not possible as multiple parameter
ranges are not bounded by designed limits.

4.4. Scalability analysis

We evaluate the scalability of the proposed method using tempera-
ture data from 10 battery modules with six temperature measurement
points in the TERRA system. The data, sampled at 30-second intervals,
are streamed to the AID system, which is initialized with parameters
identical to those in Section 4.2. Processing the data in a streamed
manner simulates a real production environment. Latency is measured
as the time between the sample’s arrival and the prediction’s delivery,
including model updates. This evaluation occurs in a containerized
environment with a single core and 8 GB RAM. Latency measurement
spans 20160 samples from 2023-08-21 to 2023-08-27, excluding all
but one measurement made during the grace period of 1 day. We
13

analyze latency for both the detection task alone and the combined
Table 4
Latency analysis of the proposed method AID with varying number of features.

Number of
features

Detection
𝜇 ± 𝜎 (min, max) [ms]

Detection + Limits
𝜇 ± 𝜎 (min, max) [ms]

1 0.37 ± 0.26 (0.05, 31.7) 0.63 ± 0.38 (0.23, 35.9)
10 2.25 ± 0.92 (0.10, 13.6) 5.24 ± 0.98 (0.80, 15.1)
20 5.46 ± 2.16 (0.26, 30.6) 14.7 ± 2.27 (1.10, 47.5)
30 10.9 ± 4.31 (0.52, 42.4) 34.3 ± 4.50 (2.59, 72.4)
40 20.7 ± 8.15 (0.89, 52.7) 69.5 ± 8.57 (2.84, 140)
50 97.3 ± 47.4 (1.36, 1010) 297 ± 59.4 (3.94, 1330)
60 142 ± 71.2 (1.95, 1640) 468 ± 111 (7.08, 3710)

task of detection and establishing dynamic process limits. Table 4
presents statistical indicators of the results, while the accompanying
violin plots in the Figure offer visual insights into latency distribution
for varying numbers of features. The significantly smaller minimum
latency is attributed to evaluation during the grace period, where fewer
computations are performed. The significantly higher maximum latency
could be attributed to reverting the effect of multiple points after signal
loss in time-series data occurs (see Fig. 12).

5. Conclusion

In this paper, we demonstrate the capacity of adaptive conditional
probability distribution to model the normal operation of dynamic
systems employing streaming IoT data and isolate the root cause of
anomalies. AID dynamically adapts to non-stationarity by updating
multivariate Gaussian distribution parameters over time. Additionally,
self-supervision enhances the model by protecting it from the effects
of outliers and increasing the speed of adaptation in response to au-
tonomously detected changes in operation.

Our statistical model isolates the root causes of anomalies as ex-
treme deviations from the conditional means vector, considering spatial
and temporal effects encoded in features, as demonstrated in our
case studies. This approach establishes the system’s operational state
by analyzing the distribution of signal measurements, computing the
distance from the mean of conditional probability, and setting dynamic
operating limits based on multivariate distribution parameters. Addi-
tionally, the detector alerts for non-uniform sampling due to packet
drops and sensor malfunctions. These adaptable limits can be seam-
lessly integrated into SCADA architecture, enhancing context awareness
and enabling plug-and-play compatibility with existing infrastructure.

The ability to detect and identify anomalies in the system, isolate
the root cause of anomaly to specific signal or feature, and identify sig-
nal losses is shown in two case studies on data from operated industrial-
scale energy storages. These case studies highlight the model’s ability
to adapt, diagnose the root cause of anomalies, and leverage both
physics-based models and spatially distributed sensors. Unlike many
anomaly detection approaches, the proposed AID method does not
require historical data or ground truth information about anomalies,
alleviating the general limitations of detection methods employed in
the energy industry.

The benchmark performed on industrial data indicates that our
model provides comparable results to other self-learning adaptable
anomaly detection methods. This is an important property of our
model, as it also allows for root cause isolation.

AID represents a significant advancement in the safety and prof-
itability of evolving systems that utilize well-established SCADA archi-
tecture and streaming IoT data. By providing dynamic operating limits,
AID seamlessly integrates with existing alarm mechanisms commonly
employed in SCADA systems. To the best of our knowledge, this study
appears to be one of the initial attempts to introduce a self-supervised
approach for adaptive anomaly detection and root cause isolation in
SCADA-based systems utilizing IoT data streams.

Future work on this method will include improvements to the
change point detection mechanism, reduction in latency for high-

dimensional data, and minimizing the false positive rate, which is a
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hallenge for general plug-and-play models. We will also explore the
bility to operate with non-parametric models, in contrast to Gaussian
istribution.

dditional information

Our framework is openly accessible on GitHub at the following URL:
ttps://github.com/MarekWadinger/online_outlier_detection.
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