

Introduction to quantum Monte Carlo methods Part 1

Claudia Filippi and Ravindra Shinde
MESA+ Institute for Nanotechnology, Universiteit Twente, The Netherlands

Anthony Scemama and Vijay Gopal Chilkuri Laboratoire de Chimie et Physique Quantique, CNRS, Toulouse, France

Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union Horizoon 2020 research and innovation programme under Grant Agreement No. 952165.

Monte Carlo methods

Approaches which make repeated use of random numbers:

- to simulate truly stochastic events
- ▶ to solve deterministic problems using probabilities

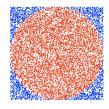
Very important class of methods in statistical mechanics

→ Sampling Boltzmann distribution Computation of averages (integrals in many dimensions)

For quantum mechanical simulations \rightarrow Quantum Monte Carlo

A simple example of a Monte Carlo simulation

Basic idea of Monte Carlo through the "dartboard method"



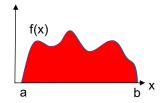
 \rightarrow Throw darts, compute A_{circle}, compute π

Throw darts which land randomly within the square

$$\frac{\text{\# hits inside circle}}{\text{\# hits inside the square}} \ = \ \frac{A_{\text{circle}}}{A_{\text{square}}} = \frac{\pi}{4}$$

$$\uparrow$$
many, many hits

We want to compute the integral of f(x) in the interval [a, b]

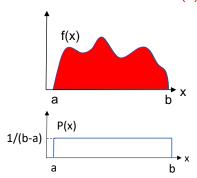


$$I = \int_{a}^{b} f(x) dx = (b - a) \int_{a}^{b} f(x) \frac{1}{b - a} dx$$
$$= (b - a) \langle f \rangle_{[a,b]}$$

where $\langle f \rangle_{[a,b]}$ is the average of the function in the range [a,b]

$$\langle f \rangle_{[a,b]} = \int_a^b f(x) \frac{1}{b-a} dx$$

$$= \int_a^b f(x) P(x) dx$$

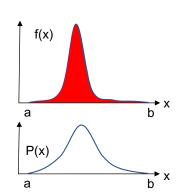


Draw M random numbers distributed unformely in [a, b]

$$1/(b-a) \xrightarrow[a]{P(x)} P(x) \longrightarrow \sqrt{\langle f \rangle_{[a,b]}} \approx \frac{1}{M} \sum_{i=1}^{M} f(x_i)$$

A less uniform function

$$I = \int_{a}^{b} f(x) dx$$
$$= \int_{a}^{b} \frac{f(x)}{P(x)} P(x) dx$$



Draw M random numbers distributed as P(x)

$$\begin{array}{c|c}
 & P(x) \\
\hline
 & x \\
\hline
 & x \\
\hline
 & x \\
\hline
 & P(x_i) \\
\hline
 & P(x_i)
\end{array}$$

Monte Carlo integration in a nutshell

We want to compute
$$\langle A \rangle = \int_a^b A(x) P(x)$$

with $P(x) \ge 0$ and $\int_a^b P(x) = 1$ \leftarrow a probability density!

Monte Carlo \rightarrow Sample $\{x_1, \dots, x_M\}$ from P(x)

Estimate
$$\langle A \rangle \approx \frac{1}{M} \sum_{i=1}^{M} A(x_i)$$

Statistical physics: $P(x) = \frac{e^{-\beta E(x)}}{7}$, the Boltzman distribution

Quantum chemical simulations

- Density functional theory methods
 Large systems but approximate exchange/correlation
- Quantum chemistry post-Hartree-Fock methods
 Accurate on small-medium systems
 - \rightarrow Jungle of approaches: CI, MCSCF, CC, CASPT2 ...
- Quantum Monte Carlo techniques
 - Stochastic solution of the Schrödinger equation

 Accurate correlated calculations for medium-large systems

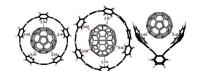
Some general words about quantum Monte Carlo methods

Stochastically solve interacting Schrödinger equation

Why (real-space) quantum Monte Carlo?

- Favorable scaling

 Energy is $O(N^4)$
- Flexibility in choice of functional form of wave function
- Easy parallelization
- Among most accurate calculations for medium-large systems
 Routinely, molecules of up to 100 (mainly 1st/2nd-row) atoms



upto C₁₃₆H₄₄ (Alfé 2017)

A different way of writing the expectation values

Consider the expectation value of the Hamiltonian on Ψ

$$\begin{split} E_{V} &= \frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\int \mathrm{d}\mathbf{R} \, \Psi^{*}(\mathbf{R}) \mathcal{H} \Psi(\mathbf{R})}{\int \mathrm{d}\mathbf{R} \, \Psi^{*}(\mathbf{R}) \Psi(\mathbf{R})} \geq E_{0} \\ &= \int \mathrm{d}\mathbf{R} \, \frac{\mathcal{H} \Psi(\mathbf{R})}{\Psi(\mathbf{R})} \left[\frac{|\Psi(\mathbf{R})|^{2}}{\int \mathrm{d}\mathbf{R} |\Psi(\mathbf{R})|^{2}} \right] \\ &= \int \mathrm{d}\mathbf{R} \, E_{L}(\mathbf{R}) \, P(\mathbf{R}) = \langle E_{L}(\mathbf{R}) \rangle_{P} \end{split}$$

 $P(\mathbf{R})$ is a probability density and $E_{\mathrm{L}}(\mathbf{R}) = \frac{\mathcal{H}\Psi(\mathbf{R})}{\Psi(\mathbf{R})}$ the local energy

Variational Monte Carlo: a random walk of the electrons

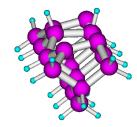
Use Monte Carlo integration to compute expectation values

- \triangleright Sample **R** from $P(\mathbf{R})$ using Metropolis algorithm

$$E_V = \langle E_{\mathrm{L}}(\mathbf{R}) \rangle_P pprox rac{1}{M} \sum_{i=1}^M E_{\mathrm{L}}(\mathbf{R}_i)$$

Random walk in 3N dimensions, $\mathbf{R} = (\mathbf{r}_1, \dots, \mathbf{r}_N)$

Just a trick to evaluate integrals in many dimensions



$Si_{21}H_{22}$

Number of electrons $4 \times 21 + 22 = 106$

Number of dimensions $3 \times 106 = \boxed{318}$

Integral on a grid with 10 points/dimension \rightarrow 10^{318} points!

MC is a powerful trick \Rightarrow Freedom in form of the wave function Ψ

Monte Carlo integration

We want to compute an integral

$$E_V = \int \mathrm{d}\mathbf{R} E_{\mathrm{L}}(\mathbf{R}) P(\mathbf{R})$$

We sample
$$P(\mathbf{R})
ightarrow \left| E_V = \langle E_{\mathrm{L}}(\mathbf{R}) \rangle_P pprox rac{1}{M} \sum_{i=1}^M E_{\mathrm{L}}(\mathbf{R}_i)
ight|$$

- Does the trick always work?
- How efficient is it?

The Central Limit Theorem

Probability density P and function f with finite mean and variance

$$\boxed{\mu} = \int \mathrm{d}x \, f(x) P(x) \qquad \boxed{\sigma^2} = \int \mathrm{d}x \, (f(x) - \mu)^2 P(x)$$

Sample M independent random variables x_1, \ldots, x_M from P(x)

Define
$$F_M = \frac{1}{M} \sum_{i=1}^M f(x_i)$$

As M increases, F_M is normally distributed as $\frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma_M^2}$ with a mean μ and variance $\sigma_M^2=\sigma^2/{\rm M}$

ightarrow Irrespective of the original probability density function

Monte Carlo versus deterministic integration

Integration error ϵ using $M_{\rm int}$ integration/ $M_{\rm MC}$ Monte Carlo points

Monte Carlo methods

$$\epsilon \propto rac{1}{\sqrt{M_{
m MC}}}$$
 independent on dimension !

It follows from Central Limit Theorem

- ightarrow width of Gaussian decreases as $\frac{\sigma}{\sqrt{M_{
 m MC}}}$ for finite variance
- Deterministic integration methods

1-dim Simpson rule:
$$\epsilon \propto \frac{1}{M_{\rm int}^4}$$
 d-dim Simpson rule: $\epsilon \propto \frac{1}{M^{4/d}}$

Scaling with number of electrons

Roughly, Monte Carlo integration advantageous if d > 8

- ... for many-body wave functions $d = 3N_{\text{elec}}$!
- Simpson rule integration (M_{int} integration points)

$$\epsilon = \frac{c}{M_{
m int}^{4/d}} = \frac{c}{M_{
m int}^{4/3N_{
m elec}}} \quad \Rightarrow \quad M_{
m int} = \left(\frac{c}{\epsilon}\right)^{3N_{
m elec}/4}$$
 Exponential

- Monte Carlo integration (M $_{
m MC}$ Monte Carlo samples)

$$\epsilon = \frac{\sigma}{\sqrt{M_{
m MC}}} = c\sqrt{\frac{N_{
m elec}}{M_{
m MC}}} \quad \Rightarrow \quad M_{
m MC} = \left(\frac{c}{\epsilon}\right)^2 N_{
m elec} \quad {
m [Linear]}$$

Summary of variational Monte Carlo

Expectation value of the Hamiltonian on Ψ

$$E_{V} = \frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \int d\mathbf{R} \, \frac{\mathcal{H} \Psi(\mathbf{R})}{\Psi(\mathbf{R})} \frac{|\Psi(\mathbf{R})|^{2}}{\int d\mathbf{R} |\Psi(\mathbf{R})|^{2}} = \int d\mathbf{R} \, E_{L}(\mathbf{R}) \, P(\mathbf{R})$$

$$E_{V} = \int d\mathbf{R} \, E_{L}(\mathbf{R}) \, P(\mathbf{R})$$

$$\sigma^{2} = \int d\mathbf{R} (E_{L}(\mathbf{R}) - E_{V})^{2} P(\mathbf{R})$$

Estimate E_V and σ from M independent samples as

$$\bar{E}_{V} = \frac{1}{M} \sum_{i=1}^{M} E_{L}(\mathbf{R}_{i})$$

$$\bar{\sigma}^{2} = \frac{1}{M-1} \sum_{i=1}^{M} (E_{L}(\mathbf{R}_{i}) - \bar{E}_{V})^{2}$$

Are there any conditions on many-body Ψ to be used in VMC?

Within VMC, we can use any "computable" wave function if

- ▷ Continuous, normalizable, proper symmetry
- ▶ Finite variance

$$\sigma^2 = \frac{\langle \Psi | (\mathcal{H} - E_V)^2 | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \langle (E_{\rm L}(\mathbf{R}) - E_V)^2 \rangle_P$$

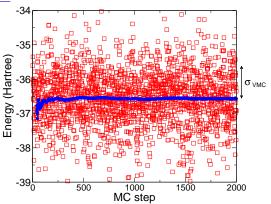
since the Monte Carlo error goes as

$$\mathrm{err}(E_V) \sim \frac{\sigma}{\sqrt{M}}$$

Zero variance principle: if $\Psi \to \Psi_0$, $E_L(\textbf{R})$ does not fluctuate

Typical VMC run

Example: Local energy and average energy of acetone (C_3H_6O)



$$E_{\mathrm{VMC}} = \langle E_{\mathrm{L}}(\mathbf{R}) \rangle_P = -36.542 \pm 0.001$$
 Hartree (40×20000 steps)

$$\sigma_{
m VMC} = \langle ({\it E}_{
m L}({\it R}) - {\it E}_{
m VMC})^2
angle_{\it P} = 0.90$$
 Hartree

Variational Monte Carlo: To do list

- Method to sample distribution function $P(\mathbf{R}) = \frac{|\Psi(\mathbf{R})|^2}{\int \mathrm{d}\mathbf{R} |\Psi(\mathbf{R})|^2}$
 - \rightarrow Obtain a set of $\{\mathbf{R}_1, \mathbf{R}_2, \dots, \mathbf{R}_M\}$ distributed as $P(\mathbf{R})$ How? As in classical Monte Carlo with Metropolis algorithm!
- Build the wave function $\Psi(\mathbf{R})$. Which functional form ? Here, we spend most of our time, open topic of research
- Compute expectation values $\boxed{ \frac{\langle \Psi | \mathcal{O} | \Psi \rangle}{\langle \Psi | \Psi \rangle} }$

Reformulate them to reduce fluctuations, open topic of research

How do we sample $P(\mathbf{R})$?

Generate a Markov chain

$$\dots \xrightarrow{M} \mathbf{R} \xrightarrow{M} \mathbf{R}' \xrightarrow{M} \mathbf{R}'' \xrightarrow{M} \dots$$

Construct $M(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})$ as probability for transition $\mathbf{R}_{\mathrm{i}} \to \mathbf{R}_{\mathrm{f}}$ so that

$$- \ \ \textit{M}(\textbf{R}_{\rm f}|\textbf{R}_{\rm i}) \geq 0 \ \ \text{and} \ \ \int d\textbf{R}_{\rm f} \textit{M}(\textbf{R}_{\rm f}|\textbf{R}_{\rm i}) = 1 \ \ \text{(stochastic)}$$

- If we start from an arbitrary distribution P_{init} , we evolve to P
 - \rightarrow Impose stationarity condition

Constructing *M*

To sample P, use M which satisfies stationarity condition:

$$\int \mathrm{d}\mathbf{R}_{\mathrm{i}}\, M(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})\, P(\mathbf{R}_{\mathrm{i}}) = P(\mathbf{R}_{\mathrm{f}}) \quad \forall \; \mathbf{R}_{\mathrm{f}}$$

- Stationarity condition
 - \Rightarrow If we start with P, we continue to sample P
- \triangleright Stationarity condition + stochastic property of M + ergodicity
 - \Rightarrow Any initial distribution will evolve to P

More stringent condition

In practice, we impose detailed balance condition

$$M(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \ P(\mathbf{R}_{\mathrm{i}}) = M(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \ P(\mathbf{R}_{\mathrm{f}})$$

Stationarity condition can be obtained by summing over $\boldsymbol{R}_{\mathrm{i}}$

$$\int \mathrm{d}\textbf{R}_{\mathrm{i}} \textit{M}(\textbf{R}_{\mathrm{f}}|\textbf{R}_{\mathrm{i}}) \; \textit{P}(\textbf{R}_{\mathrm{i}}) = \underbrace{\int \mathrm{d}\textbf{R}_{\mathrm{i}} \textit{M}(\textbf{R}_{\mathrm{i}}|\textbf{R}_{\mathrm{f}})}_{1} \; \textit{P}(\textbf{R}_{\mathrm{f}}) = \textit{P}(\textbf{R}_{\mathrm{f}})$$

Detailed balance is a sufficient but not necessary condition

How do we construct the transition matrix *P* in practice?

Metropolis method \rightarrow Write M as proposal $T \times$ acceptance A

$$M(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) = A(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \ T(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})$$

$$\mathbf{R}_{\mathrm{i}} \longrightarrow \mathbf{R}_{\mathrm{f}}$$

Let us rewrite the detailed balance condition

$$\begin{split} M(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \; P(\mathbf{R}_{\mathrm{i}}) &= \; M(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \; P(\mathbf{R}_{\mathrm{f}}) \\ A(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \; T(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \; P(\mathbf{R}_{\mathrm{i}}) &= \; A(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \; T(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \; P(\mathbf{R}_{\mathrm{f}}) \\ \Rightarrow \; \frac{A(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})}{A(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}})} \; &= \; \frac{T(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \; P(\mathbf{R}_{\mathrm{f}})}{T(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \; P(\mathbf{R}_{\mathrm{i}})} \end{split}$$

Choice of acceptance matrix A

Original choice by Metropolis et al. maximizes the acceptance

$$\textit{A}(\boldsymbol{\mathsf{R}}_{f}|\boldsymbol{\mathsf{R}}_{i}) = \min\left\{1, \frac{\textit{T}(\boldsymbol{\mathsf{R}}_{i}|\boldsymbol{\mathsf{R}}_{f})\;\textit{P}(\boldsymbol{\mathsf{R}}_{f})}{\textit{T}(\boldsymbol{\mathsf{R}}_{f}|\boldsymbol{\mathsf{R}}_{i})\;\textit{P}(\boldsymbol{\mathsf{R}}_{i})}\right\}$$

Note: $P(\mathbf{R})$ does not have to be normalized

ightarrow For complicated Ψ we do not know the normalization!

$$\rightarrow P(\mathbf{R}) = |\Psi(\mathbf{R})|^2$$

Original Metropolis method

$$\mathsf{Symmetric} \ \mathcal{T}(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) = 1/\Delta^{3N} \ \Rightarrow \ \mathcal{A}(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) = \min\left\{1, \frac{P(\mathbf{R}_{\mathrm{f}})}{P(\mathbf{R}_{\mathrm{i}})}\right\}$$

Better choices of proposal matrix T

Sequential correlation $\Rightarrow M_{\text{eff}} < M$ independent observations

$$M_{
m eff} = rac{M}{T_{
m corr}}$$
 with $T_{
m corr}$ autocorrelation time of desired observable

Aim is to achieve fast evolution and reduce correlation times

Use freedom in choice of T: For example, use available trial Ψ

$$\mathcal{T}(\boldsymbol{\mathsf{R}}_f|\boldsymbol{\mathsf{R}}_i) = \mathcal{N} \exp\left[-\frac{(\boldsymbol{\mathsf{R}}_f - \boldsymbol{\mathsf{R}}_i - \boldsymbol{\mathsf{V}}(\boldsymbol{\mathsf{R}}_i)\tau)^2}{2\tau}\right] \ \mathrm{with} \ \boldsymbol{\mathsf{V}}(\boldsymbol{\mathsf{R}}_i) = \frac{\nabla \boldsymbol{\psi}(\boldsymbol{\mathsf{R}}_i)}{\boldsymbol{\psi}(\boldsymbol{\mathsf{R}}_i)}$$

Acceptance and $T_{ m corr}$ for the total energy E_V

Example: All-electron Be atom with simple wave function

Simple Metropolis

Δ	$T_{ m corr}$	Ā
1.00	41	0.17
0.75	21	0.28
0.50	17	0.46
0.20	45	0.75

Drift-diffusion transition

au	$T_{ m corr}$	Ā
0.100	13	0.42
0.050	7	0.66
0.020	8	0.87
0.010	14	0.94

Generalized Metropolis algorithm

- 1. Choose distribution $P(\mathbf{R})$ and proposal matrix $T(\mathbf{R}_f|\mathbf{R}_i)$
- 2. Initialize the configuration \mathbf{R}_i
- 3. Advance the configuration from \mathbf{R}_i to \mathbf{R}'
 - a) Sample R' from $T(R'|R_i)$.
 - b) Calculate the ratio $p = \frac{T(\mathbf{R}_i|\mathbf{R}')}{T(\mathbf{R}'_i|\mathbf{R}_i)} \frac{P(\mathbf{R}')}{P(\mathbf{R}_i)}$
 - c) Accept or reject with probability *p*

Pick a uniformly distributed random number $\chi \in [0,1]$

if
$$\chi < p$$
, move accepted $ightarrow$ set $\mathbf{R}_{\mathrm{f}} = \mathbf{R}'$

if
$$\chi > p$$
, move rejected \rightarrow set $\mathbf{R}_{\rm f} = \mathbf{R}$

- 4. Throw away first κ configurations of equilibration time
- 5. Collect the averages

Variational Monte Carlo ightarrow Freedom in choice of Ψ

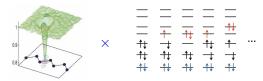
Monte Carlo integration allows the use of complex and accurate $\boldsymbol{\Psi}$

- \Rightarrow More compact representation of Ψ than in quantum chemistry
- \Rightarrow Beyond $c_0 D_{\mathrm{HF}} + c_1 D_1 + c_2 D_2 + \dots$ millions of determinants

Jastrow-Slater wave function

Commonly employed compact Jastrow-Slater wave functions

$$\Psi(\textbf{r}_1,\ldots,\textbf{r}_N)=\mathcal{J}(\textbf{r}_1,\ldots,\textbf{r}_N)\times\sum_{i}\,c_i\,D_i(\textbf{r}_1,\ldots,\textbf{r}_N)$$



- $\overline{\mathcal{J}} \longrightarrow \mathsf{Jastrow}$ correlation factor
- Explicit dependence on electron-electron distances r_{ij}

 $\overline{\sum c_i D_i}$ \longrightarrow Determinants of single-particle orbitals

Few and not millions of determinants

Divergence in potential and behavior of the local energy

Consider two particles of masses m_i , m_j and charges q_i , q_j Assume $r_{ij} \rightarrow 0$ while all other particles are well separated

Keep only diverging terms in $\frac{\mathcal{H}\Psi}{\Psi}$ and go to relative coordinates close to $\mathbf{r}=\mathbf{r}_{ii}=0$

$$egin{split} -rac{1}{2\mu_{ij}}rac{
abla^2\Psi}{\Psi} + \mathcal{V}(r) &\sim -rac{1}{2\mu_{ij}}rac{\Psi''}{\Psi} - rac{1}{\mu_{ij}}rac{1}{r}rac{\Psi'}{\Psi} + \mathcal{V}(r) \ &\sim \left[-rac{1}{\mu_{ij}}rac{1}{r}rac{\Psi'}{\Psi} + \mathcal{V}(r)
ight] \end{split}$$

where $\mu_{ij} = m_i m_j/(m_i + m_j)$

Divergence in potential and cusp conditions

Diverging terms in the local energy

$$-\frac{1}{\mu_{ij}}\frac{1}{r}\frac{\Psi'}{\Psi} + \mathcal{V}(r) = -\frac{1}{\mu_{ij}}\frac{1}{r}\frac{\Psi'}{\Psi} + \frac{q_iq_j}{r} = \text{ finite}$$

 $\Rightarrow \Psi$ must satisfy Kato's cusp conditions:

$$\left. \frac{\partial \hat{\Psi}}{\partial r_{ij}} \right|_{r_{ij}=0} = \mu_{ij} q_i \ q_j \Psi(r_{ij}=0)$$

where $\hat{\Psi}$ is a spherical average

Note: We assumed $\Psi(r_{ij}=0)\neq 0$

Cusp conditions: example

The condition for the local energy to be finite at r = 0 is

$$\frac{\Psi'}{\Psi} = \mu_{ij} q_i \, q_j$$

• Electron-nucleus:
$$\mu=1,\ q_i=1,\ q_j=-Z \Rightarrow \left|\left|\frac{\Psi'}{\Psi}\right|_{r=0}=-Z\right|$$

$$ullet$$
 Electron-electron: $\mu=rac{1}{2},\ q_i=1,\ q_j=1$ \Rightarrow $\left\lceil rac{\Psi'}{\Psi}
ight
vert_{r=0}=1/2
ight
vert$

Cusp conditions and QMC wave functions

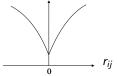
▷ Electron-electron cusps imposed through the Jastrow factor

Example: Simple Jastrow factor

$$\mathcal{J}(r_{ij}) = \prod_{i < j} \exp\left\{b_0 \, rac{r_{ij}}{1 + b \, r_{ij}}
ight\}$$

with
$$b_0^{\uparrow\downarrow}=rac{1}{2}$$
 or $b_0^{\uparrow\uparrow}=b_0^{\downarrow\downarrow}=rac{1}{4}$

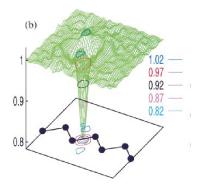
Imposes cusp conditions
+
keeps electrons apart



> Electron-nucleus cusps imposed through the determinantal part

The effect of the Jastrow factor

Pair correlation function for $\uparrow\downarrow$ electrons in the (110) plane of Si $g_{\uparrow\downarrow}(\mathbf{r},\mathbf{r}')$ with one electron is at the bond center



Hood et al. Phys. Rev. Lett. 78, 3350 (1997)

Why should $\Psi_{\mathrm{QMC}} = \mathcal{J}D$ work?

$\mathcal{H}_{\mathrm{eff}}$ weaker Hamiltonian than \mathcal{H}

- $\Rightarrow \Phi \approx$ non-interacting wave function D
- \Rightarrow Quantum Monte Carlo wave function $\Psi = \mathcal{J}D$

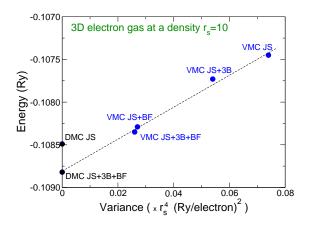
Beyond VMC?

Removing or reducing wave function bias?

⇒ Projection Monte Carlo methods

Why going beyond VMC?

Dependence of VMC from wave function Ψ



Kwon, Ceperley, Martin, Phys. Rev. B 58, 6800 (1998)

Why going beyond VMC?

What goes in, comes out! Can we remove wave function bias?

Projector (diffusion) Monte Carlo method

riangleright Construct an operator which inverts spectrum of ${\cal H}$

Diffusion Monte Carlo
$$ightarrow e^{- au(\mathcal{H}-E_{\mathrm{ref}})}$$

 \triangleright Use it to stochastically project the ground state of ${\cal H}$

Diffusion Monte Carlo

Consider initial guess $\Psi^{(0)}$ and repeatedly apply projection operator

$$\Psi^{(n)} = e^{-\tau(\mathcal{H} - E_{\text{ref}})} \Psi^{(n-1)}$$

Expand $\Psi^{(0)}$ on the eigenstates Ψ_i with energies E_i of \mathcal{H}

$$\Psi^{(n)} = e^{-n\tau(\mathcal{H} - E_{\mathrm{ref}})} \Psi^{(0)} = \sum_{i} \Psi_{i} \left\langle \Psi_{i} | \Psi^{(0)} \right\rangle e^{-n\tau(E_{i} - E_{\mathrm{ref}})}$$

and obtain in the limit of $n \to \infty$

$$\lim_{n\to\infty} \Psi^{(n)} = \Psi_0 \langle \Psi_0 | \Psi^{(0)} \rangle e^{-n\tau(E_0 - E_{\text{ref}})}$$

If we choose $E_{\mathrm{ref}} \approx E_0$, we obtain $\lim_{n \to \infty} \Psi^{(n)} = \Psi_0$

$$\lim_{n\to\infty} \Psi^{(n)} = \Psi_0$$

How do we perform the projection?

Rewrite projection equation in integral form

$$\Psi(\mathbf{R}',t+ au)=\int\!\mathrm{d}\mathbf{R}\,G(\mathbf{R}',\mathbf{R}, au)\Psi(\mathbf{R},t)$$

where
$$G(\mathbf{R}',\mathbf{R}, au)=\langle\mathbf{R}'|e^{- au(\mathcal{H}-E_{\mathrm{ref}})}|\mathbf{R}
angle$$

- ightharpoonup Can we sample the wave function? For the moment, assume we are dealing with bosons, so $\Psi>0$
- \triangleright Can we interpret $G(\mathbf{R}', \mathbf{R}, \tau)$ as a transition probability? If yes, we can perform this integral by Monte Carlo integration

VMC and DMC as power methods

VMC Distribution function is given
$$P(\mathbf{R}) = \frac{|\Psi(\mathbf{R})|^2}{\int d\mathbf{R} |\Psi(\mathbf{R})|^2}$$

$$P(\mathbf{R}) = \frac{|\Psi(\mathbf{R})|^2}{\int \mathrm{d}\mathbf{R} |\Psi(\mathbf{R})|^2}$$

Construct M which satisfies stationarity condition so that

$$\lim_{n\to\infty}\int \mathrm{d}\mathbf{R}_n\cdots\mathrm{d}\mathbf{R}_1M(\mathbf{R},\mathbf{R}_n)\cdots M(\mathbf{R}_3,\mathbf{R}_2)M(\mathbf{R}_2,\mathbf{R}_1)P_{\mathrm{init}}(\mathbf{R}_1)=P(\mathbf{R})$$

DMC Opposite procedure!

The matrix
$$M$$
 is given o $M \equiv G = \langle \mathbf{R}' | e^{-\tau (\mathcal{H} - \mathcal{E}_{\mathrm{ref}})} | \mathbf{R} \rangle$

We do not know |P|!

$$\lim_{n\to\infty}\int d\mathbf{R}_n\cdots d\mathbf{R}_1 G(\mathbf{R},\mathbf{R}_n)\cdots G(\mathbf{R}_3,\mathbf{R}_2)G(\mathbf{R}_2,\mathbf{R}_1)P_{\mathrm{init}}(\mathbf{R}_1)=\Psi_0(\mathbf{R})$$

In either case, we want to find the dominant eigenvector of M

What can we say about the Green's function?

$$G(\mathsf{R}',\mathsf{R}, au) = \langle \mathsf{R}'|e^{- au(\mathcal{H}-E_{\mathrm{ref}})}|\mathsf{R}
angle$$

 $G(\mathbf{R}',\mathbf{R}, au)$ satisfies the imaginary-time Schrödinger equation

$$(\mathcal{H} - E_{\text{ref}})G(\mathbf{R}, \mathbf{R}_0, t) = -\frac{\partial G(\mathbf{R}, \mathbf{R}_0, t)}{\partial t}$$

with
$$G(\mathbf{R}', \mathbf{R}, 0) = \delta(\mathbf{R}' - \mathbf{R})$$

Evolution equation of the probability distribution

We can understand the behavior of G which satisfies

$$(\mathcal{H} - E_{\mathrm{ref}})G(\mathbf{R}, \mathbf{R}_0, t) = -rac{\partial G(\mathbf{R}, \mathbf{R}_0, t)}{\partial t}$$

to understand evolution of the distribution Ψ

$$\Psi(\mathbf{R},t) = \int \mathrm{d}\mathbf{R}_0 \; G(\mathbf{R},\mathbf{R}_0,t) \Psi^{(0)}(\mathbf{R}_0)$$

which satisfies the imaginary-time Schrödinger equation

$$\left| (\mathcal{H} - E_{\mathrm{ref}}) \Psi(\mathbf{R}, t) = - \frac{\partial \Psi(\mathbf{R}, t)}{\partial t} \right|$$

$$|\mathcal{H} = \mathcal{T}|$$

Imaginary-time Schrödinger equation is a diffusion equation

$$-\frac{1}{2}\nabla^2 G(\mathbf{R},\mathbf{R}_0,t) = -\frac{\partial G(\mathbf{R},\mathbf{R}_0,t)}{\partial t}$$

The Green's function is given by a Gaussian

$$G(\mathbf{R}',\mathbf{R}, au) = (2\pi\tau)^{-3N/2} \exp\left[-\frac{(\mathbf{R}'-\mathbf{R})^2}{2\tau}\right]$$

Positive and can be sampled

$$\mathcal{H} = \mathcal{V}$$

$$(\mathcal{V}(\mathbf{R}) - E_{\text{ref}})G(\mathbf{R}, \mathbf{R}_0, t) = -\frac{\partial G(\mathbf{R}, \mathbf{R}_0, t)}{\partial t},$$

The Green's function is given by

$$G(\mathbf{R}', \mathbf{R}, \tau) = \exp\left[-\tau \left(\mathcal{V}(\mathbf{R}) - E_{\text{ref}}\right)\right] \delta(\mathbf{R} - \mathbf{R}'),$$

Positive but does not preserve the normalization

It is a factor by which we multiply the distribution $\Psi(\mathbf{R},t)$

$$\mathcal{H} = \mathcal{T} + \mathcal{V}$$
 and a combination of diffusion and branching

Let us combine previous results

$$G(\mathbf{R}',\mathbf{R}, au) pprox (2\pi au)^{-3N/2} \, \exp\left[-rac{(\mathbf{R}'-\mathbf{R})^2}{2 au}
ight] \, \exp\left[- au\left(\mathcal{V}(\mathbf{R})-E_{\mathrm{T}}
ight)
ight]$$

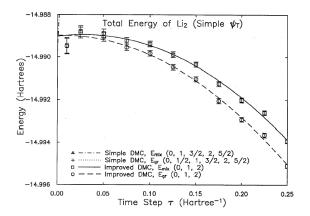
Diffusion + branching factor leading to survival/death/cloning

Why? Trotter's theorem
$$ightarrow e^{(A+B) au} = e^{A au}e^{B au} + \mathcal{O}(au^2)$$

ightarrow Green's function in the short-time approximation to $\mathcal{O}(au^2)$

Time-step extrapolation

Example: Energy of Li $_2$ versus time-step au



Umrigar, Nightingale, Runge, J. Chem. Phys. 94, 2865 (1993)

Diffusion Monte Carlo as a branching random walk

The basic DMC algorithm is rather simple:

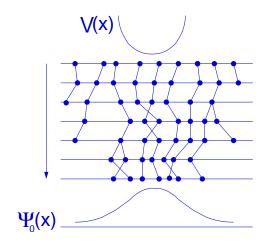
- 1. Sample $\Psi^{(0)}(\mathbf{R})$ with the Metropolis algorithm Generate M_0 walkers $\mathbf{R}_1,\ldots,\mathbf{R}_{M_0}$ (zeroth generation)
- 2. Diffuse each walker as $\mathbf{R}' = \mathbf{R} + \xi$ where ξ is sampled from $g(\xi) = (2\pi\tau)^{-3N/2} \exp\left(-\xi^2/2\tau\right)$
- 3. For each walker, compute the factor

$$p = \exp\left[- au(\mathcal{V}(\mathbf{R}) - E_{\mathrm{ref}})
ight]$$

p is the probability to survive/proliferate/die

- 4. Adjust $E_{\rm ref}$ so that population fluctuates around target M_0
- \rightarrow After many iterations, walkers distributed as $\Psi_0(\mathbf{R})$

Diffusion and branching in a harmonic potential



Walkers proliferate/die where potential is lower/higher than $E_{\rm ref}$

Problems with simple algorithm

The simple algorithm is inefficient and unstable

- ightharpoonup Potential can vary a lot and be unbounded e.g. electron-nucleus interaction ightharpoonup Exploding population
- > Branching factor grows with system size

Start from integral equation

$$\Psi(\mathbf{R}',t+ au) = \int \! \mathrm{d}\mathbf{R} \, G(\mathbf{R}',\mathbf{R}, au) \Psi(\mathbf{R},t)$$

Multiply each side by trial $\Psi_{
m T}$ and define $\pi({f R},t)=\Psi_{
m T}({f R})\Psi({f R},t)$

$$\pi(\mathsf{R}',t+ au) = \int\!\mathrm{d}\mathsf{R}\, ilde{G}(\mathsf{R}',\mathsf{R}, au)\pi(\mathsf{R},t)$$

where the importance sampled Green's function is

$$\left| \tilde{G}(\mathbf{R}', \mathbf{R}, au) = \Psi_{\mathrm{T}}(\mathbf{R}') \langle \mathbf{R}' | e^{- au(\mathcal{H} - \mathcal{E}_{\mathrm{ref}})} | \mathbf{R}
angle / \Psi_{\mathrm{T}}(\mathbf{R}) \right|$$

We obtain
$$\lim_{n \to \infty} \pi(\mathbf{R}) = \Psi_{\mathrm{T}}(\mathbf{R}) \Psi_{0}(\mathbf{R})$$

Importance sampled Green's function

The importance sampled $\tilde{G}(\mathbf{R},\mathbf{R}_0, au)$ satisfies

$$\boxed{-\frac{1}{2}\nabla^2 \tilde{G} + \nabla \cdot [\tilde{G} \mathbf{V}(\mathbf{R})] + [E_{\mathrm{L}}(\mathbf{R}) - E_{\mathrm{ref}}] \, \tilde{G} = -\frac{\partial \tilde{G}}{\partial \tau}}$$

with quantum velocity
$$\mathbf{V}(\mathbf{R}) = \frac{\nabla \Psi_{\mathrm{T}}(\mathbf{R})}{\Psi_{\mathrm{T}}(\mathbf{R})}$$
 and $E_{\mathrm{L}}(\mathbf{R}) = \frac{\mathcal{H}\Psi_{\mathrm{T}}(\mathbf{R})}{\Psi_{\mathrm{T}}(\mathbf{R})}$

We now have drift in addition to diffusion and branching terms

Trotter's theorem \Rightarrow Consider them separately for small enough au

The drift-diffusion-branching Green's function

Drift-diffusion-branching short-time Green's function is

$$\tilde{G}(\mathbf{R}', \mathbf{R}, \tau) = (2\pi\tau)^{-3N/2} \exp\left[-\frac{(\mathbf{R}' - \mathbf{R} - \tau \mathbf{V}(\mathbf{R}))^2}{2\tau}\right] \times \\ \times \exp\left\{-\tau \left(E_{\mathrm{L}}(\mathbf{R}) - E_{\mathrm{ref}}\right)\right\}$$

What is new in the drift-diffusion-branching expression?

- \triangleright **V**(**R**) pushes walkers where Ψ is large
- $hd E_{
 m L}({f R})$ is better behaved than the potential ${\cal V}({f R})$

Cusp conditions ⇒ No divergences when particles approach

As $\Psi_{\rm T} \to \Psi_0, \; E_{\rm L} \to E_0$ and branching factor is smaller

Basic DMC algorithm with importance sampling

- 1. Sample initial walkers from $|\Psi_{\rm T}(\mathbf{R})|^2$
- 2. Drift and diffuse the walkers as $\mathbf{R}' = \mathbf{R} + \tau \mathbf{V}(\mathbf{R}) + \xi$ where ξ is sampled from $g(\xi) = (2\pi\tau)^{-3N/2} \exp\left(-\xi^2/2\tau\right)$
- 3. Branching step as in the simple algorithm but with the factor

$$p = \exp\left\{-\tau[(E_{\mathrm{L}}(\mathbf{R}) + E_{\mathrm{L}}(\mathbf{R}'))/2 - E_{\mathrm{ref}}]\right\}$$

- 4. Adjust the trial energy to keep the population stable
- \rightarrow After many iterations, walkers distributed as $\Psi_{\rm T}({\bf R})\Psi_0({\bf R})$

Electrons are fermions!

We assumed that $\Psi_0>0$ and that we are dealing with bosons

Fermions $\rightarrow \Psi$ is antisymmetric and changes sign!

Fermion Sign Problem

All fermion QMC methods suffer from sign problems

These sign problems look different but have the same "flavour"

Arise when you treat something non-positive as probability density

The DMC Sign Problem

How can we impose antisymmetry in simple DMC method?

Idea | Evolve separate positive and negative populations of walkers

Simple 1D example: Antisymmetric wave function $\Psi(x, \tau = 0)$

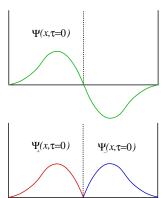
Rewrite
$$\Psi(x, \tau = 0)$$
 as

$$\Psi = \Psi_+ - \Psi_-$$

where

$$\begin{array}{rcl} \Psi_{+} & = & \frac{1}{2}(|\Psi| + \Psi) \\ \Psi_{-} & = & \frac{1}{2}(|\Psi| - \Psi) \end{array}$$

$$\Psi_{-} = \frac{1}{2}(|\Psi| - \Psi)$$



(1)

The imaginary-time Schrödinger equation

$$\mathcal{H}\Psi = -\frac{\partial\Psi}{\partial t}$$

is linear, so solving it with the initial condition

$$\Psi(x, t = 0) = \Psi_{+}(x, t = 0) - \Psi_{-}(x, t = 0)$$

is equivalent to solving

$$\left|\mathcal{H}\Psi_{+}=-rac{\partial\Psi_{+}}{\partial t}
ight|$$
 and $\left|\mathcal{H}\Psi_{-}=-rac{\partial\Psi_{-}}{\partial t}
ight|$

$$\mathcal{H}\Psi_{-} = -\frac{\partial\Psi_{-}}{\partial t}$$

separately and subtracting one solution from the other

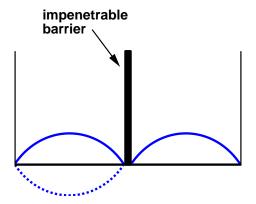
Antisymmetric component exponentially harder to extract

$$rac{|\Psi_+ - \Psi_-|}{|\Psi_+ + \Psi_-|} \propto rac{e^{-E_0^a t}}{e^{-E_0^s t}} \quad {
m as} \quad t o \infty$$

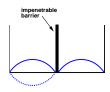
The Fixed-Node Approximation

Problem Small antisymmetric part swamped by random errors

Solution Fix the nodes! (If you don't know them, guess them)



Fixed-node algorithm in simple DMC



How do we impose this additional boundary condition?

- ▷ Annihilate walkers that bump into barrier (and into walls)
 - ightarrow This step enforces $\boxed{\Psi=0}$ boundary conditions
 - ightarrow In each nodal pocket, evolution to ground state in pocket

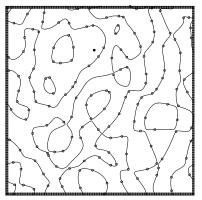
Numerically stable algorithm (no exponentially growing noise)

- → Solution is exact if nodes are exact
- → Best solution consistent with the assumed nodes

For many electrons, what are the nodes? A complex beast

Many-electron wave function $\Psi(\mathbf{R}) = \Psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N)$

Node \rightarrow surface where $\Psi = 0$ and across which Ψ changes sign



A 2D slice through the 321-dimensional nodal surface of a gas of 161 spin-up electrons.

Some known properties of the nodes

Physical space has d (=1,2,3) dimensions

- ▶ Node is (dN 1)-dimensional surface in dN dimensions
 - One constraint $(\Psi=0)\Rightarrow \boxed{(dN-1)}$ -dimensional node
- ▶ Equations as $\mathbf{r}_i = \mathbf{r}_j$ define (dN d)-dimensional <u>coincidence</u> surfaces and do not define the node completely if d > 1
- ▶ If d = 1, coincidence points $x_i = x_j$ define the ground-state node completely \rightarrow One-dim problems are easy to simulate

Start from R_0 and continously reach all points with $\Psi(R) \neq 0$

 \Rightarrow Nodal pocket accessible from R_0

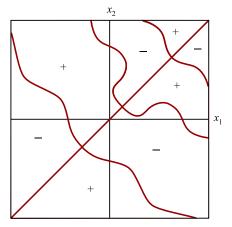


Figure courtesy of Matthew Foulkes

Start from R_0 and continously reach all points with $\Psi(R) \neq 0$

 \Rightarrow Nodal pocket accessible from R_0

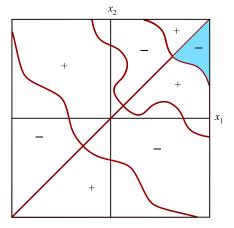


Figure courtesy of Matthew Foulkes

Start from \mathbf{R}_0 and continously reach all points with $\Psi(\mathbf{R}) \neq 0$

 \Rightarrow Nodal pocket accessible from R_0

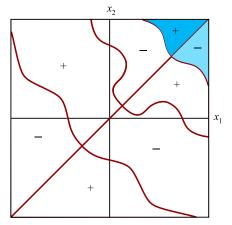


Figure courtesy of Matthew Foulkes

Start from R_0 and continously reach all points with $\Psi(R) \neq 0$

 \Rightarrow Nodal pocket accessible from R_0

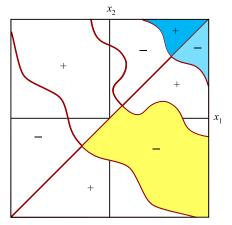


Figure courtesy of Matthew Foulkes

Start from R_0 and continously reach all points with $\Psi(R) \neq 0$

 \Rightarrow Nodal pocket accessible from R_0

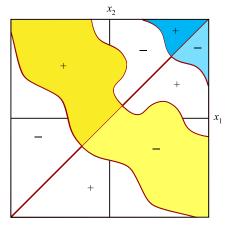


Figure courtesy of Matthew Foulkes

Start from R_0 and continously reach all points with $\Psi(R) \neq 0$

 \Rightarrow Nodal pocket accessible from R_0

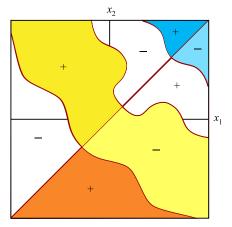


Figure courtesy of Matthew Foulkes

Start from R_0 and continously reach all points with $\Psi(R) \neq 0$

 \Rightarrow Nodal pocket accessible from R_0

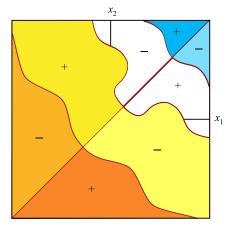


Figure courtesy of Matthew Foulkes

Start from R_0 and continously reach all points with $\Psi(R) \neq 0$

 \Rightarrow Nodal pocket accessible from R_0

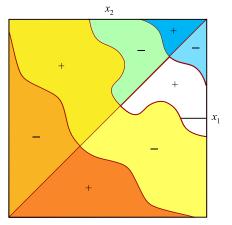


Figure courtesy of Matthew Foulkes

Start from R_0 and continously reach all points with $\Psi(R) \neq 0$

 \Rightarrow Nodal pocket accessible from R_0

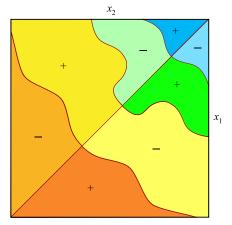


Figure courtesy of Matthew Foulkes

Consider Hamiltonian with a local potential

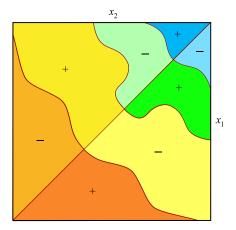


Figure courtesy of Matthew Foulkes

Consider Hamiltonian with a local potential

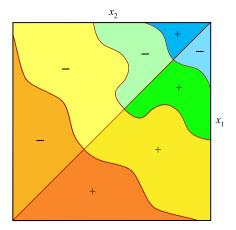


Figure courtesy of Matthew Foulkes

Consider Hamiltonian with a local potential

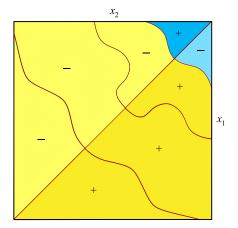


Figure courtesy of Matthew Foulkes

Consider Hamiltonian with a local potential

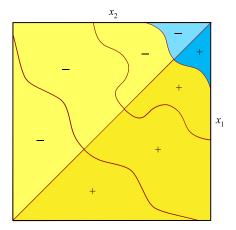


Figure courtesy of Matthew Foulkes

Consider Hamiltonian with a local potential

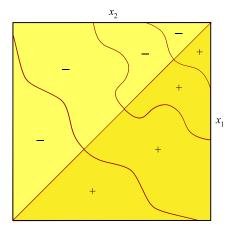
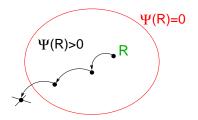


Figure courtesy of Matthew Foulkes

Use the nodes of trial $\Psi_{\rm T} \to {\sf Fixed}$ -node approximation

Use the nodes of the best available trial $\Psi_{\rm T}$ wave function



Find best solution with same nodes as trial wave function $\Psi_{\rm T}$

Fixed-node solution exact if the nodes of trial $\Psi_{\rm T}$ are exact

Easy to implement in DMC with importance sampling: $\pi \geq 0$

Fixed-node solution and importance-sampling DMC

Given trial
$$\Psi_{\mathrm{T}}(\mathbf{R})$$
, evolve $\boxed{\pi(\mathbf{R},t)=\Psi_{\mathrm{T}}(\mathbf{R})\Psi(\mathbf{R},t)}$ as
$$-\frac{1}{2}\nabla^2\pi+\nabla\cdot[\pi\,\mathbf{V}(\mathbf{R})]+[E_{\mathrm{L}}(\mathbf{R})-E_{\mathrm{ref}}]\,\pi=-\frac{\partial\pi}{\partial\tau}$$
 with $\mathbf{V}(\mathbf{R})=\frac{\nabla\Psi_{\mathrm{T}}(\mathbf{R})}{\Psi_{\mathrm{T}}(\mathbf{R})}$ and $E_{\mathrm{L}}(\mathbf{R})=\frac{\mathcal{H}\Psi_{\mathrm{T}}(\mathbf{R})}{\Psi_{\mathrm{T}}(\mathbf{R})}$

Fixed-node approximation $\rightarrow \boxed{\pi(\mathbf{R},t) \geq 0}$

Fixed-node solution and behavior at the nodes

Within the nodes
$$\mathcal{H}\Psi_{\mathrm{FN}}(\mathbf{R})=\mathcal{E}_{\mathrm{FN}}\Psi_{\mathrm{FN}}(\mathbf{R})$$

If the nodes not exact $\rightarrow~\Psi_{\rm FN}
eq \Psi_0$

If the nodes not exact \rightarrow Discontinuity of derivatives at the nodes

$$\mathcal{H}\Psi_{\mathrm{FN}}(\mathbf{R}) = \mathcal{E}_{\mathrm{FN}}\Psi_{\mathrm{FN}}(\mathbf{R}) + \delta$$
 for $\mathbf{R} \in \delta\Omega$

Note that the δ function does not affect the computed energy

$$\int \Psi_{FN} \mathcal{H} \Psi_{FN} = \int \Psi_{FN} (E_{FN} \Psi_{FN} + \delta) = \int \Psi_{FN} E_{FN} \Psi_{FN} = E_{FN}$$

Fixed-node solution is an upper bound to exact energy

In a nodal pocket Ω of the trial wave function Ψ

$$\mathcal{H}\Psi_{\mathrm{FN}}(\textbf{R}) = \textit{E}_{\mathrm{FN}}\Psi_{\mathrm{FN}}(\textbf{R}) \hspace{0.5cm} \textbf{R} \in \Omega$$

with $\Psi_{\mathrm{FN}}(\textbf{R})=0$ for $\textbf{R}
ot\in \Omega \ o \ \mathsf{Extend}$ solution over all space

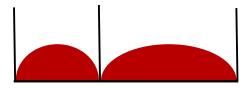
$$ilde{\Psi}_{\mathrm{FN}}(\mathbf{R}) = rac{1}{N!} \sum_{\mathrm{P}} (-1)^{\mathrm{P}} \Psi_{\mathrm{FN}}(\mathrm{P}\mathbf{R})$$

which satisfies

$$\left| \frac{\int \mathrm{d}\boldsymbol{\mathsf{R}}\, \tilde{\boldsymbol{\Psi}}_{\mathrm{FN}}^*(\boldsymbol{\mathsf{R}}) \mathcal{H} \tilde{\boldsymbol{\Psi}}_{\mathrm{FN}}(\boldsymbol{\mathsf{R}})}{\int \mathrm{d}\boldsymbol{\mathsf{R}}\, \tilde{\boldsymbol{\Psi}}_{\mathrm{FN}}^*(\boldsymbol{\mathsf{R}}) \tilde{\boldsymbol{\Psi}}_{\mathrm{FN}}(\boldsymbol{\mathsf{R}})} = \boldsymbol{\mathit{E}}_{\mathrm{FN}} \geq \boldsymbol{\mathit{E}}_{0} \right|$$

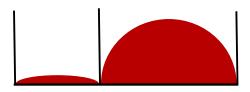
No general fixed-node variational principle for excited states

 $\tau = 0$:

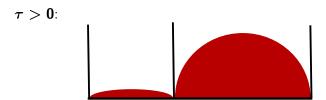


No general fixed-node variational principle for excited states

au > 0:



No general fixed-node variational principle for excited states



For $t \to \infty$, only pockets of the lowest energy class are occupied It can happen that $E_{\rm FN} < E_{\rm exact}$

Fixed-node diffusion Monte Carlo and excited states

(2)

Is fixed-node diffusion Monte Carlo variational?

For lowest state in each 1-dim irreducible representation

What about "real" excited states?

In general, <u>exact</u> excited state for <u>exact</u> nodal structure

For excited states, even bigger role of the trial wave function

ightarrow Enforces fermionic antisymmetry + selects the state

In practice, for reasonable wave function, no collapse

→ fixed-node DMC approaches excited state from above

Have we solved all our problems?

Results depend on the nodes of the trail wave function Ψ

Diffusion Monte Carlo as a black-box approach?

 ϵ_{MAD} for atomization energy of the G1 set

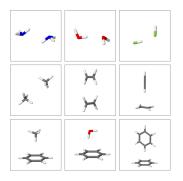
	DMC			CCSD(T)/aug-cc-pVQZ
	HF orb	Optimized orb	CAS	
$\epsilon_{ ext{MAD}}$	3.1	2.1	1.2	2.8 kcal/mol

Petruzielo, Toulouse, Umrigar, J. Chem. Phys. 136, 124116 (2012)

With "some" effort on Ψ , we can do rather well

Diffusion Monte Carlo as a black-box approach?

Non-covalent interaction energies for 9 compounds from S22 set DMC with B3LYP/aug-cc-PVTZ orbitals versus CCSD(T)/CBS



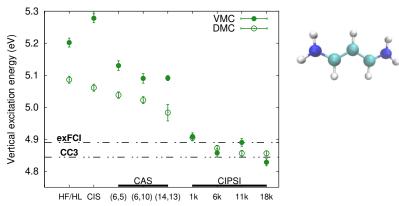
 $\Delta_{\rm MAD} = 0.058~\text{kcal/mol}$

Dubecky et al., JCTC 9, 4287 (2013)

With "practically no" effort on Ψ , we can do rather well

Diffusion Monte Carlo end excitation energy

Excitation energy and wave function dependence



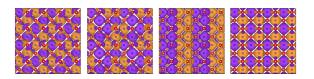
Cuzzocrea, Scemama, Briels, Moroni, Filippi, JCTC 16, 4203 (2020)

DMC is not a panacea but effort on Ψ pays off!

DMC and solid state calculations

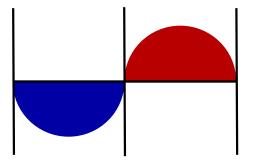
Example: Structural/magnetic properties of superconducting FeSe

- → Accurate lattice constants, bulk moduli, and band dispersion
- → Resolving relative energetics of different magnetic ordering

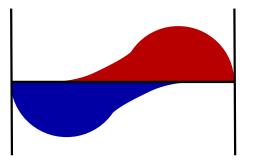


Busemeyer, Dagrada, Sorella, Casula, and Wagner PRB (2016)

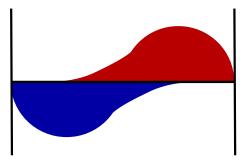
First do a fixed-node DMC simulation



Then release the nodes



Then release the nodes



- ► Red and blue solutions collapse to boson ground state, but their difference approaches the fermion ground state
- ▶ Back to the sign problem: exponentially growing noise

Given single-particle basis, perform projection in determinant space

Different way to deal with fermionic problem

- Determinantal QMC by Zhang and Krakauer
 Appears less plagued by fixed phase than DMC by FN
- Full-CI QMC by Alavi

Start from
$$\Psi_{\rm CI} = \sum_i c_i D_i$$

$$\mathcal{H}\Psi = -rac{\partial\Psi}{\partial t}
ightarrow H_{ij}c_j = -rac{\partial c_i}{\partial t}$$

DMC in summary

The fixed-node DMC method is (in general)

- ► Easy to do
- ▶ Stable
- ► Accurate enough for many applications in quantum chemistry . . . especially in large systems
- ► Accurate enough also for subtle correlation physics

Use of fixed-node DMC for computation of excited states

- ▶ In the general landscape, we are doing quite well!
- Sensitivity to wave function but relatively robust
 - \rightarrow basis, size of the determinantal expansion

Beauty of quantum Monte Carlo \rightarrow Highly parallelizable

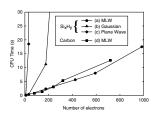
 $\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) o$ Ensemble of walkers diffusing in 3N dimensions

 $VMC \rightarrow Independent walkers \Rightarrow Trival parallelization$

 $\mathsf{DMC} \to \mathsf{Nearly}$ independent walkers $\Rightarrow \mathsf{Few}$ communications

Easily take great advantage of parallel supercomputers!

As early as 2001 ...



Williamson, Hood, Grossman (2001)

Up to $Si_{123}H_{100}$ and C_{180} !

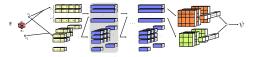
Human and computational cost of a typical QMC calculation

Task	Human time	Computer time
Choice of basis set, pseudo etc.	10%	5%
DFT/HF/CI runs for Ψ setup	65%	10%
Optimization of Ψ	20%	50%
DMC calculation	5%	35%

To conclude: ongoing research in QMC

Search for different forms of trial wave function

Neural network architecture $\rightarrow \Psi$ of multi-electron orbitals



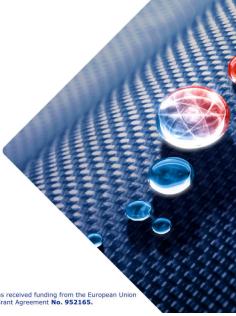
Pfau, Spencer, Matthews, Foulkes, Phys. Rev. Res. (2020)

- Push optimization techniques to larger systems
- ► More work on transition metals
- ► Alternatives to fixed-node diffusion Monte Carlo

Other applications of quantum Monte Carlo methods

- ► Electronic structure calculations
- ► Strongly correlated systems (Hubbard, t-J, ...)
- ▶ Quantum spin systems (Ising, Heisenberg, XY, ...)
- Liquid-solid helium, liquid-solid interface, droplets
- Atomic clusters
- ▶ Nuclear structure
- ► Lattice gauge theory

Both zero (ground state) and finite temperature



Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union Horizoon 2020 research and innovation programme under Grant Agreement No. 952165.