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Support Theory: A Nonextensional Representation
of Subjective Probability

Amos Tversky and Derek J. Koehler

This article presents a new theory of subjective probability according to which different descriptions
of the same event can give rise to different judgments. The experimental evidence confirms the major
predictions of the theory. First, judged probability increases by unpacking the focal hypothesis and
decreases by unpacking the alternative hypothesis. Second, judged probabilities are complementary
in the binary case and subadditive in the general case, contrary to both classical and revisionist
models of belief. Third, subadditivity is more pronounced for probability judgments than for fre-
quency judgments and is enhanced by compatible evidence. The theory provides a unified treatment
of a wide range of empirical findings. It is extended to ordinal judgments and to the assessment of

upper and lower probabilities.

Both laypeople and experts are often called upon to evaluate
the probability of uncertain events such as the outcome of a
trial, the result of a medical operation, the success of a business
venture, or the winner of a football game. Such assessments play
an important role in deciding, respectively, whether to go to
court, undergo surgery, invest in the venture, or bet on the home
team. Uncertainty is usually expressed in verbal terms (e.g., un-
likely or probable), but numerical estimates are also common.
Weather forecasters, for example, often report the probability
of rain (Murphy, 1985), and economists are sometimes required
to estimate the chances of recession (Zarnowitz, 1985). The the-
oretical and practical significance of subjective probability has
inspired psychologists, philosophers, and statisticians to inves-
tigate this notion from both descriptive and prescriptive
standpoints.

Indeed, the question of whether degree of belief can, or should
be, represented by the calculus of chance has been the focus of a
long and lively debate. In contrast to the Bayesian school, which
represents degree of belief by an additive probability measure,
there are many skeptics who question the possibility and the
wisdom of quantifying subjective uncertainty and are reluctant
to apply the laws of chance to the analysis of belief. Besides the
Bayesians and the skeptics, there is a growing literature on what
might be called revisionist models of subjective probability.
These include the Dempster-Shafer theory of belief (Dempster,
1967; Shafer, 1976), Zadeh’s (1978) possibility theory, and the
various types of upper and lower probabilities (e.g., see Suppes,
1974; Walley, 1991). Recent developments have been reviewed
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by Dubois and Prade (1988), Gilboa and Schmeidler (in press),
and Mongin (in press). Like the Bayesians, the revisionists en-
dorse the quantification of belief, using either direct judgments
or preferences between bets, but they find the calculus of chance
too restrictive for this purpose. Consequently, they replace the
additive measure, used in the classical theory, with a nonaddi-
tive set function satisfying weaker requirements.

A fundamental assumption that underlies both the Bayesian
and the revisionist models of belief is the extensionality princi-
ple: Events with the same extension are assigned the same prob-
ability. However, the extensionality assumption is descriptively
invalid because alternative descriptions of the same event often
produce systematically different judgments. The following
three examples illustrate this phenomenon and motivate the de-
velopment of a descriptive theory of belief that is free from the
extensionality assumption.

1. Fischhoff, Slovic, and Lichtenstein (1978) asked car me-
chanics, as well as laypeople, to assess the probabilities of
different causes of a car’s failure to start. They found that the
mean probability assigned to the residual hypothesis—“The
cause of failure is something other than the battery, the fuel sys-
tem, or the engine”—increased from .22 to .44 when the hy-
pothesis was broken up into more specific causes (e.g., the start-
ing system, the ignition system). Although the car mechanics,
who had an average of 15 years of experience, were surely aware
of these possibilities, they discounted hypotheses that were not
explicitly mentioned.

2. Tversky and Kahneman (1983) constructed many prob-
lems in which both probability and frequency judgments were
not consistent with set inclusion. For example, one group of
subjects was asked to estimate the number of seven-letter words
in four pages of a novel that end with ing. A second group was
asked to estimate the number of seven-letter words that end
with _n_. The median estimate for the first question (13.4) was
nearly three times higher than that for the second (4.7), presum-
ably because it is easier to think of seven-letter words ending
with ing than to think of seven-letter words with # in the sixth
position. It appears that most people who evaluated the second
category were not aware of the fact that it includes the first.

3. Violations of extensionality are not confined to probabil-
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ity judgments; they are also observed in the evaluation of un-
certain prospects. For example, Johnson, Hershey, Meszaros,
and Kunreuther (1993) found that subjects who were offered
(hypothetical) health insurance that covers hospitalization for
any disease or accident were willing to pay a higher premium
than subjects who were offered health insurance that covers hos-
pitalization for any reason. Evidently, the explicit mention of
disease and accident increases the perceived chances of hospi-
talization and, hence, the attractiveness of insurance.

These observations, like many others described later in this
article, are inconsistent with the extensionality principle. We
distinguish two sources of nonextensionality. First, extensional-
ity may fail because of memory limitation. As illustrated in Ex-
ample 2, a judge cannot be expected to recall all of the instances
of a category, even when he or she can recognize them without
error. An explicit description could remind people of relevant
cases that might otherwise slip their minds. Second, extension-
ality may fail because different descriptions of the same event
may call attention to different aspects of the outcome and
thereby affect their relative salience. Such effects can influence
probability judgments even when they do not bring to mind
new instances or new evidence.

The common failures of extensionality, we suggest, represent
an essential feature of human judgment, not a collection of iso-
lated examples. They indicate that probability judgments are
attached not to events but to descriptions of events. In this arti-
cle, we present a theory in which the judged probability of an
event depends on the explicitness of its description. This treat-
ment, called support theory, focuses on direct judgments of
probability, but it is also applicable to decision under uncer-
tainty. The basic theory is introduced and characterized in the
next section. The experimental evidence is reviewed in the sub-
sequent section. In the final section, we extend the theory to
ordinal judgments, discuss upper and lower indicators of belief,
and address descriptive and prescriptive implications of the
present development.

Support Theory

Let T be a finite set including at least two elements, inter-
preted as states of the world. We assume that exactly one state
obtains but it is generally not known to the judge. Subsets of T
are called events. We distinguish between events and descrip-
tions of events, called hypotheses. Let H be a set ofhypotheses
that deseribe the events in T. Thus, we assumerthat éach hy-
pothesis 4 € H corresponds to a unique event{d' C T. Thisisa
many-to-one mapping because different hypothesqsl,,,say A and
B, may have the same extension (i.e., A" = B’). For example,
suppose one rolls a pair of dice. The hypotheses “The sum is 3”
and “The product is 2™ are different descriptions of the same
event; namely, one die shows 1 and the other shows 2. We as-
sume that H is finite and that it includes at least one hypothesis
for.each event. The following relations on H are induced by the
corresponding relations on T. A4 is elententary if A' € T. A is null
if A/ = &. A and B are exclusive if A N B' = . If Aand B
are in H, and they are exclusive, then their expligit disjunction,
denoted A V B, is also in H. Thus, H is closed ander exclusive
disjunction. We assume that V is associative and commutative
andthat (4 V By =A'UB'.

A key feature of the present formulation is the distinction

between explicit and implicit disjunctions. A4 is an implicit dis-
Junction, or simply an implicit hypothesis, if it is neither ele-
mentary nor null, and it is not an explicit disjunction (i.e., there
are no exclusive nonnull B, C in H such that 4 = B V C). For
example, suppose A is “Ann majors in a natural science,” B is
“Ann majors in a biological science,” and C is ““Ann majors in
a physical science.” The explicit disjunction, B V C (*Ann ma-
jors in either a biological or a physical science”), has the same
extension as A (i.e., 4'= (BV CY = B'U ("), but 4 is an implicit
hypothesis because it is not an explicit disjunction. Note that
the explicit disjunction B V C is defined for any exclusive B, C
€ H, whereas a coextensional implicit disjunction may not exist
because some events cannot be naturally described without list-
ing their components. .

An evaluation frame (A, B) consists of a pair of exclusive
hypotheses: The first element A is the focal hypothesis that the
Judge evaluates, and the second element B is the alternative hy-
pothesis. To simplify matters, we assume that when 4 and B are
exclusive, the judge perceives them as such, but we do not as-
sume that the judge can list all of the constituents of an implicit
disjunction. In terms of the above example, we assume that the
judge knows, for instance, that genetics is a biological science,
that astronomy is a physical science, and that the biological and
the physical sciences are exclusive. However, we do not assume
that the judge can list all of the biological or the physical sci-
ences. Thus, we assume recognition of inclusion but not perfect
recall.

We interpret a person’s probability judgment as a mapping P
from an evaluation frame to the unit interval. To simplify
matters we assume that P(A, B) equals zero if and only if 4 is
null and that it equals one if and only if B is null; we assume that
A and B are not both null. Thus, P(A4, B) is the judged probabil-
ity that A rather than B holds, assuming that one and only one
of them is valid. Obviously, 4 and B may each represent an ex-
plicit or an implicit disjunction. The extensional counterpart of
P(A4, B) in the standard theory is the conditional probability
P(A'{A'U B'). The present treatment is nonextensional because
it assumes that probability judgment depends on the descrip-
tions 4 and B, not just on the events 4’ and B’. We wish to em-
phasize that the present theory applies to the hypotheses enter-
tained by the judge, which do not always coincide with the given
verbal descriptions. A judge presented with an implicit disjunc-
tion may, nevertheless, think about it as an explicit disjunction,
and vice versa.

Support theory assumes that there is a ratio scale s (inter-
preted as degree of support) that assigns to each hypothesis in
H a nonnegative real number such that, for any pair of exclusive
hypotheses A, BE H,

s(4)

P B) = o r 5B

4y

If B and C are exclusive, A4 is implicit, and A'= (B V CY, then
s(4) < s(BV C) = s(B) + s(C). (2)

Equation 1 provides a representation of subjective probability
in terms of the support of the focal and the alternative hypothe-
ses. Equation 2 states that the support of an implicit disjunction
A is less than or equal to that of a coextensional explicit disjunc-
tion B Vv Cthat equals the sum of the support of its components.
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Thus, support is additive for explicit disjunctions and subaddi-
tive for implicit ones.

The subadditivity assumption, we suggest, represents a basic
principle of human judgment. When people assess their degree
of belief in an implicit disjunction, they do not normally un-
pack the hypothesis into its exclusive components and add their
support, as required by extensionality. Instead, they tend to
form a global impression that is based primarily on the most
representative or available cases. Because this mode of judg-
ment is selective rather than exhaustive, unpacking tends to in-
crease support. In other words, we propose that the support of
a summary representation of an implicit hypothesis is generally
less than the sum of the support of its exclusive components.
Both memory and attention may contribute to this effect. Un-
packing a category (e.g., death from an unnatural cause) into
its components (e.g., homicide, fatal car accidents, drowning)
might remind people of possibilities that would not have been
considered otherwise. Moreover, the explicit mention of an out-
come tends to enhance its salience and hence its support. Al-
though this assumption may fail in some circumstances, the
overwhelming evidence for subadditivity, described in the next
section, indicates that these failures represent the exception
rather than the rule.

The support associated with a given hypothesis is interpreted
as a measure of the strength of evidence in favor of this hypoth-
esis that is available to the judge. The support may be based on
objective data (e.g., the frequency of homicide in the relevant
population) or on a subjective impression mediated by judg-
mental heuristics, such as representativeness, availability, or an-
choring and adjustment (Kahneman, Slovic, & Tversky, 1982).
For example, the hypothesis “Bill is an accountant” may be
evaluated by the degree to which Bill’s personality matches the
stereotype of an accountant, and the prediction “An oil spill
along the eastern coast before the end of next year” may be as-
sessed by the ease with which similar accidents come to mind.
Support may also reflect reasons or arguments recruited by the
judge in favor of the hypothesis in question (e.g., if the defendant
were guilty, he would not have reported the crime). Because
judgments based on impressions and reasons are often nonex-
tensional, the support function is nonmonotonic with respect
to set inclusion. Thus, s(B) may exceed s(4) even though 4’ D
B'. Note, however, that s(B) cannot exceed s(B V C). For ex-
ample, if the support of a category is determined by the avail-
ability of its instances, then the support of the hypothesis that a
randomly selected word ends with ing can exceed the support of
the hypothesis that the word ends with _7_. Once the inclusion
relation between the categories is made transparent, the _n_
hypothesis is replaced by “ing or any other _n_." whose sup-
port exceeds that of the ing hypothesis.

The present theory provides an interpretation of subjective
probability in terms of relative support. This interpretation sug-
gests that, in some cases, probability judgment may be pre-
dicted from independent assessments of support. This possibil-
ity is explored later. The following discussion shows that, under
the present theory, support can be derived from probability
judgments, much as utility is derived from preferences between
options.

Consequences

Support theory has been formulated in terms of the support
function s, which is not directly observable. We next character-

ize the theory in terms of the observed index P. We first exhibit
four consequences of the theory and then show that they imply
Equations ! and 2. An immediate consequence of the theory is
binary complementarity:

P(4,B)+ P(B,A)=1. 3)
A second consequence is proportionality:

P(4,B) _PUA,BV C)
P(B,A) P(B,AVC)’

4

provided that 4, B, and C are mutually exclusive and B is not
null. Thus, the “odds™ for 4 against B are independent of the
additional hypothesis C.

To formulate the next condition, it is convenient to introduce
the probability ratio R(4, B) = P(4, B)/P(B, A4), which is the
odds for A against B. Equation 1 implies the following product
rule:

R(A, B)R(C, D) = R(4, D)R(C, B), (5)

provided that 4, B, C, and D are not null and the four pairs
of hypotheses in Equation 5 are pairwise exclusive. Thus, the
product of the odds for 4 against B and for C against D equals
the product of the odds for 4 against D and for C against B. To
see the necessity of the product rule, note that, according to
Equation [, both sides of Equation 5 equal s(4)s(C)/s(B)s(D).
Essentially the same condition has been used in the theory of
preference trees (Tversky & Sattath, 1979).

Equations 1 and 2 together imply the unpacking principle.
Suppose B, C, and D are mutually exclusive, 4 is implicit, and
A =(BV CY. Then

P4,D)<P(BV C,D)=P(B,CV D)+ P(C,BV D). (6)

The properties of s entail the corresponding properties of P:
Judged probability is additive for explicit disjunctions and
subadditive for implicit disjunctions. In other words, unpacking
an implicit disjunction may increase, but not decrease, its
judged probability. Unlike Equations 3-5, which hold in the
standard theory of probability, the unpacking principle (Equa-
tion 6) generalizes the classical model. Note that this assump-
tion is at variance with lower probability models, including
Shafer’s (1976), which assume extensionality and superadditiv-
ity (i.e.,, P(A U B')= P(A)+ P(B)iIf AN B = &).

There are two conflicting intuitions that yield nonadditive
probability. The first intuition, captured by support theory, sug-
gests that unpacking an implicit disjunction enhances the sa-
lience of its components and consequently increases support.
The second intuition, captured by Shafer’s (1976) theory,
among others, suggests that—in the face of partial ignorance—
the judge holds some measure of belief “in reserve” and does
not distribute it among all elementary hypotheses, as required
by the Bayesian model. Although Shafer’s theory is based on a
logical rather than a psychological analysis of belief, it has also
been interpreted by several authors as a descriptive model.
Thus, it provides a natural alternative to be compared with the
present theory.

Whereas proportionality (Equation 4) and the product rule
(Equation 5) have not been systematically tested before, a num-
ber of investigators have observed binary complementarity
(Equation 3) and some aspects of the unpacking principle
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(Equation 6). These data, as well as several new studies, are re-
viewed in the next section. The following theorem shows that
the above conditions are not only necessary but also sufficient
for support theory. The proof is given in the Appendix.

Theorem 1: Suppose P(4, B) is defined for all exclusive 4, BE H
and that it vanishes if and only if 4 is null. Equations 3-6 hold if
and only if there exists a nonnegative ratio scale s on H that satisfies
Equations | and 2.

The theorem shows that if probability judgments satisfy the re-
quired conditions, it is possible to scale the support or strength
of evidence associated with each hypothesis without assuming
that hypotheses with the same extension have equal support. An
ordinal generalization of the theory, in which P is treated as an
ordinal rather than cardinal scale, is presented in the final sec-
tion. In the remainder of this section, we introduce a represen-
tation of subadditivity and a treatment of conditioning.

Subadditivity

We extend the theory by providing a more detailed represen-
tation of subadditivity. Let 4 be an implicit hypothesis with the
same extension as the explicit disjunction of the elementary
hypotheses A, ..., A,;thatis, 4' = (4, V --- V 4,). Assume
that any two elementary hypotheses, B and C, with the same
extension have the same support; thatis, B, C'€ Tand B’ = C'
implies s(B) = s(C). It follows that, under this assumption we
can write

S(A) = wias(A) + -+ wees(4,),

O=swy=<1,
i=1,...,n (7)

In this representation, the support of each elementary hypoth-
esis is ““discounted” by its respective weight, which reflects the
degree to which the judge attends to the hypothesis in question.
If wy = 1 for all i, then s(4) is the sum of the support of its
elementary hypotheses, as in an explicit disjunction. On the
other hand, w;, = 0 for some j indicates that 4; is effectively
ignored. Finally, if the weights add to one, then s(4) is a
weighted average of the 5(4;), 1 < i/ < n. We hasten to add that
Equation 7 should not be interpreted as a process of deliberate
discounting in which the judge assesses the support of an im-
plicit disjunction by discounting the assessed support of the cor-
responding explicit disjunction. Instead, the weights are meant
to represent the result of an assessment process in which the
judge evaluates 4 without explicitly unpacking it into its ele-
mentary components. It should also be kept in mind that ele-
mentary hypotheses are defined relative to a given sample space.
Such hypotheses may be broken down further by refining the
level of description.

Note that whereas the support function is unique, except for
a unit of measurement, the “local” weights w;, are not uniquely
determined by the observed probability judgments. These data,
however, determine the “global” weights w, defined by

S(A) = wuls(4)+ - - +5(4,)], O0=<w,=<1. (8)

The global weight w,, which is the ratio of the support of
the corresponding implicit (4) and explicit (4, V ... V 4,)
disjunctions, provides a convenient measure of the degree of
subadditivity induced by 4. The degree of subadditivity, we pro-

pose, is influenced by several factors, one of which is the inter-
pretation of the probability scale. Specificalty, subadditivity is
expected to be more pronounced when probability is inter-
preted as a propensity of an individual case than when it is
equated with, or estimated by, relative frequency. Kahneman
and Tversky (1979, 1982) referred to these modes of judgment
as singular and distributional, respectively, and argued that the
latter is usually more accurate than the former' (see also Reeves
& Lockhart, 1993). Although many events of interest cannot be
interpreted in frequentistic terms, there are questions that can
be framed in either a distributional or a singular mode. For ex-
ample, people may be asked to assess the probability that an
individual, selected at random from the general population, will
die as a result of an accident. Alternatively, people may be asked
to assess the percentage (or relative frequency) of the population
that will die as a result of an accident. We propose that the im-
plicit disjunction “accident” is more readily unpacked into its
components (e.g., car accidents, plane crashes, fire, drowning,
poisoning) when the judge considers the entire population
rather than a single person. The various causes of death are all
represented in the population’s mortality statistics but not in
the death of a single person. More generally, we propose that the
tendency to unpack an implicit disjunction is stronger in the
distributional than in the singular mode. Hence, a frequentistic
formulation is expected to produce less discounting (i.e., higher
ws) than a formulation that refers to an individual case.

Conditioning

Recall that P(A4, B) is interpreted as the conditional probabil-
ity of A4, given 4 or B. To obtain a general treatment of condi-
tioning, we enrich the hypothesis set H by assuming that if 4
and B are distinct elements of H, then their conjunction, de-
noted 4B, is also in H. Naturally, we assume that conjunction
is associative and commutative and that (4B) = A'N B’. We also
assume distributivity, that is, A(B VV C) = AB Vv AC. Let P(A,
B| D) be the judged probability that A4 rather than B holds, given
some data D. In general, new evidence (i.e., a different state of
information) gives rise to a new support function s, that de-
scribes the revision of s in light of D. In the special case in which
the data can be described as an element of H, which merely
restricts the hypotheses under consideration, we can represent
conditional probability by

s(AD)

P, BID) = ) ¥ s(BD)’

%
provided that 4 and B are exclusive but 4 VV B and D are not.

Several comments on this form are in order. First, note that if
s is additive, then Equation 9 reduces to the standard definition
of conditional probability. If s is subadditive, as we have as-
sumed throughout, then judged probability depends not only
on the description of the focal and the alternative hypotheses
but also on the description of the evidence D. Suppose D' = (D,
V D,Y, D, and D, are exclusive, and D is implicit. Then

! Gigerenzer (1991) has further argued that the biases observed in
probability judgments of unique events disappear in judgments of fre-
quency, but the data reviewed here and elsewhere are inconsistent with
this claim.
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s(AD, Vv ADy)
S(AD] \Y% ADz) + S(BD1 \2 BDz) ’

P(4,B|D,V Dy) =

But because s(4D) < s(4D, V AD,)and s(BD) < s(BD, V BD,)
by subadditivity, the unpacking of D may favor one hypothesis
over another. For example, the judged probability that a woman
earns a very high salary given that she is a university professor
is likely to increase when “university” is unpacked into “law
school, business school, medical school, or any other school”
because of the explicit mention of high-paying positions. Thus,
Equation 9 extends the application of subadditivity to the rep-
resentation of evidence. As we show later, it also allows us to
compare the impact of different bodies of evidence, provided
they can be described as elements of H.

Consider a collection of 7 = 3 mutually exclusive and exhaus-
tive (nonnull) hypotheses, 4, - - - A,, and let 4; denote the ne-
gation of 4, that corresponds to an implicit disjunction of the
remaining hypotheses. Consider two items of evidence, B, C €
H, and suppose that each A4; is more compatible with B than
with Cin the sense that s(BA;) = s(C4;), 1 =i < n. We propose
that B induces more subadditivity than C so that s(BA;) is dis-
counted more heavily than s(CA4;) (e, Wei, < Wci,; see Equa-
tion 7). This assumption called enhancement, suggests that the
assessments of P(4;, A;| B) will be generally higher than those of
P(A4;, 4;| C). More specifically, we propose that the sum of the
probabilities of 4, - .. A4,, each evaluated by different judges,?
is no smaller under B than under C. That is,

3 P4, 41 B)= 5 PA,, A\C). (10)

i=1 i=1

Subadditivity implies that both sums are greater than or equal
to one. The preceding inequality states that the sum is increased
by evidence that is more compatible with the hypotheses under
study. It is noteworthy that enhancement suggests that people
are inappropriately responsive to the prior probability of the
data, whereas base-rate neglect indicates that people are not
sufficiently responsive to the prior probability of the hypothe-
ses. The following schematic example illustrates an implication
of enhancement and compares it with other models.

Suppose that a murder was committed by one (and only one)
of several suspects. In the absence of any specific evidence, as-
sume that all suspects are considered about equally likely to
have committed the crime. Suppose further that a preliminary
investigation has uncovered a body of evidence (e.g., motives
and opportunities) that implicates each of the suspects to
roughly the same degree. According to the Bayesian model, the
probabilities of all of the suspects remain unchanged because
the new evidence is nondiagnostic. In Shafer’s theory of belief
functions, the judged probability that the murder was commit-
ted by one suspect rather than by another generally increases
with the amount of evidence; thus, it should be higher after the
investigation than before. Enhancement yields a different pat-
tern: The binary probabilities (i.e., of one suspect against an-
other) are expected to be approximately one half, both before
and after the investigation, as in the Bayesian model. However,
the probability that the murder was committed by a particular
suspect (rather than by any of the others) is expected to increase
with the amount of evidence. Experimental tests of enhance-
ment are described in the next section.

Data

In this section, we discuss the experimental evidence for sup-
port theory. We show that the interpretation of judged probabil-
ity in terms of a normalized subadditive support function pro-
vides a unified account of several phenomena reported in the
literature; it also yields new predictions that have not been
tested heretofore. This section consists of four parts. In the first
part, we investigate the effect of unpacking and examine factors
that influence the degree of subadditivity. In the second, we re-
late probability judgments to direct ratings of evidence strength.
In the third, we investigate the enhancement effect and compare
alternative models of belief. In the final part, we discuss the con-
junction effect, hypothesis generation, and decision under
uncertainty.

Studies of Unpacking

Recall that the unpacking principle (Equation 6) consists of
two parts: additivity for explicit disjunctions and subadditivity
for implicit disjunctions, which jointly entail nonextensionality.
(Binary complementarity [Equation 3] is a special case of addi-
tivity.) Because each part alone is subject to alternative inter-
pretations, it is important to test additivity and subadditivity
simultaneously. For this reason, we first describe several new
studies that have tested both parts of the unpacking principle
within the same experiment, and then we review previous re-
search that provided the impetus for the present theory.

Study 1: Causes of Death

Our first study followed the seminal work of Fischhoff et al.
(1978) on fault trees, using a task similar to that studied by
Russo and Kolzow (1992). We asked Stanford undergraduates
(N = 120) to assess the likelihood of various possible causes of
death. The subjects were informed that each year approxi-
mately 2 million people in the United States (nearly 1% of the
population) die from different causes, and they were asked to
estimate the probability of death from a variety of causes. Half
of the subjects considered a single person who had recently died
and assessed the probability that he or she had died from each
in a list of specified causes. They were asked to assume that the
person in question had been randomly selected from the set of
people who had died the previous year. The other half, given a
frequency judgment task, assessed the percentage of the 2 mil-
lion deaths in the previous year attributable to each cause. In
each group, half of the subjects were promised that the 5 most
accurate subjects would receive $20 each.

Each subject evaluated one of two different lists of causes,
constructed such that he or she evaluated either an implicit hy-
pothesis (e.g., death resulting from natural causes) or a coexten-
sional explicit disjunction (e.g., death resulting from heart dis-
ease, cancer, or some other natural cause), but not both. The

2 Enhancement, like subadditivity, may not hold when a person eval-
uates these probabilities at the same time because this task introduces
additional constraints.
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Table |

Mean Probability and Frequency Estimates for Causes of
Death in Study 1, Comparing Evaluations of Explicit
Disjunctions With Coextensional Implicit Disjunctions

Mean estimate (%)

Actual
Hypothesis Probability Frequency %
Three-component

P(heart disease) 22 18 34,1
P(cancer) 18 20 23.1
P(other natural cause) 33 29 35.2

Z(natural cause) 73 67 924

P(natural cause) 58 56

Z/P 1.26 1.20
P(accident) 32 30 4.4
P(homicide) 10 11 1.1
Pother unnatural cause) 11 12 2.1

Z(unnatural cause) 53 53 7.6

P(unnatural cause) 32 39

Z/P 1.66 1.36

Seven-component

P(respiratory cancer|natural) 12 11 7.1
P(digestive cancer|natural) 8 7 59
P(genitourinary cancer | natural) 5 3 2.7
P(breast cancer|natural) 13 9 2.2
P(urinary cancer | natural) 7 3 1.0
P(leukemia | natural) 8 6 1.0
P(other cancer|natural) 17 10 5.1

Z(cancer | natural) 70 49 25.0

P(cancer|natural) 32 24

2/P 2.19 2.04
P(auto accident|unnatural) 33 33 30.3
P(firearm accident |unnatural) 7 12 1.3
Paccidental fall |unnatural) 6 4 7.9
P(death in fire|unnatural) 4 5 2.6
P(drowning | unnatural) 5 4 2.6
Placcidental poisoning | unnatural) 4 3 3.9
P(other accident |unnatural) 24 17 9.2

Z(accident|unnatural) 83 78 57.9

Placcident|unnatural) 45 48

z/P 1.84 1.62

Note. Actual percentages were taken from the 1990 U.S. Sratistical
Abstract. T = sum of mean estimates.

full set of causes considered is listed in Table 1. Causes of death
were divided into natural and unnatural types. Each type had
three components, one of which was further divided into seven
subcomponents. To avoid very small probabilities, we condi-
tioned these seven subcomponents on the corresponding type of
death (i.e., natural or unnatural). To provide subjects with some
anchors, we informed them that the probability or frequency of
death resulting from respiratory illness is about 7.5% and the
probability or frequency of death resulting from suicide is about
1.5%.

Table 1 shows that, for both probability and frequency judg-
ments, the mean estimate of an implicit disjunction (e.g., death
from a natural cause) is smaller than the sum of the mean esti-
mates of its components (heart disease, cancer, or other natural
causes), denoted X (natural causes). Specifically, the former
equals 58%, whereas the latter equals 22% + 18% + 33% = 73%.
All eight comparisons in Table 1 are statistically significant (p
< .05) by Mann-Whitney U test. (We used a nonparametric
test because of the unequal variances involved when comparing
a single measured variable with a sum of measured variables.)

Throughout this article, we use the ratio of the probabilities
assigned to coextensional explicit and implicit hypotheses as a
measure of subadditivity. The ratio in the preceding example is
1.26. This index, called the unpacking factor, can be computed
directly from probability judgments, unlike w, which is defined
in terms of the support function. Subadditivity is indicated by
an unpacking factor greater than 1 and a value of w less than 1.
It is noteworthy that subadditivity, by itseif, does not imply that
explicit hypotheses are overestimated or that implicit hypothe-
ses are underestimated relative to an appropriate objective cri-
terion. It merely indicates that the former are judged as more
probable than the latter,

In this study, the mean unpacking factors were 1.37 for the
three-component hypotheses and 1.92 for the seven-component
hypotheses, indicating that the degree of subadditivity in-
creased with the number of components in the explicit disjunc-
tion. An analysis of medians rather than means revealed a sim-
ilar pattern, with somewhat smaller differences between packed
and unpacked versions. Comparison of probability and fre-
quency tasks showed, as expected, that subjects gave higher and
thus more subadditive estimates when judging probabilities
than when judging frequencies, F(12, 101) = 2.03, p < .05. The
average unpacking factors were 1.74 for probability and 1.56 for
frequency.

The judgments generally overestimated the actual values, ob-
tained from the 1990 U.S. Statistical Abstract. The only clear
exception was heart disease, which had an actual probability of
34% but received a mean judgment of 20%. Because subjects
produced higher judgments of probability than of frequency,
the former exhibited greater overestimation of the actual values,
but the correlation between the estimated and actual values
(computed separately for each subject) revealed no difference
between the two tasks. Monetary incentives did not improve the
accuracy of people’s judgments.

The following design provides a more stringent test of support
theory and compares it with alternative models of belief. Sup-
pose Ay, A2, and B are mutually exclusive and exhaustive; 4’ =
(4, V A,); Aisimplicit; and 4 is the negation of 4. Consider the
following observable values:

a = P(A, B);

B=P(4,V 43, B);
v1= P4, 42V B), v2 = P(42, 4, V B), v = v, + v2; and
8 = P(Ay, Ay), 6= (Az, A3), 8 = 6, + 5,.

Different models of belief imply different orderings of these
values:

support theory, « < 8 = vy < §;
Bayesian model, a = 8 = y = §;

belief function, o = 8 = v = §; and
regressive model, « = 8 <y = 6.

Support theory predicts « < 8 and v < é due to the unpacking
of the focal and residual hypotheses, respectively; it also pre-
dicts 8 = ¥ due to the additivity of explicit disjunctions. The
Bayesian model implies « = 8 and ¥ = §, by extensionality, and
B8 = v, by additivity. Shafer’s theory of belief functions also as-
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Table 2
Mean and Median Probability Estimates for
Various Causes of Death
Probability judgments Mean Median
8 = P(accident or homicide, OUC) 64 70
v; = Placcident, homicide or OUC) 53 60
v, = P(homicide, accident or OUC) 16 10
Y=t 69 70
8, = Paccident, OUC) 56 65
8, = P(homicide, OUC) 24 18
6=26,+46; 80 83
Note. OUC = other unnatural causes.

sumes extensionality, but it predicts 8 = -y because of super-
additivity. The above data, as well as numerous studies reviewed
later, demonstrate that o < 8, which is consistent with support
theory but inconsistent with both the Bayesian model and Shaf-
er’s theory.

The observation that « < 8 could also be explained by a re-
gressive model that assumes that probability judgments satisfy
extensionality but are biased toward .5 (e.g., see Erev, Wallsten,
& Budescu, 1994). For example, the judge might start with a
“prior” probability of .5 that is not revised sufficiently in light
of the evidence. Random error could also produce regressive
estimates. If each individual judgment is biased toward .5, then
8, which consists of a single judgment, would be less than v,
which is the sum of two judgments. On the other hand, this
model predicts no difference between « and 8, each of which
consists of a single judgment, or between v and §, each of which
consists of two. Thus, support theory and the regressive model
make different predictions about the source of the difference
between « and §. Support theory predicts subadditivity for im-
plicit disjunctions (i.e., @« < 8 and v < §) and additivity for ex-
plicit disjunctions (i.e., 8 = ), whereas the regressive model
assumes extensionality (i.e., @« = 8 and y = §) and subadditivity
for explicit disjunctions (i.e., 8 < ¥).

To contrast these predictions, we asked different groups (of
25 to 30 subjects each) to assess the probability of various un-
natural causes of death. All subjects were told that a person had
been randomly selected from the set of people who had died the
previous year from an unnatural cause. The hypotheses under
study and the corresponding probability judgments are summa-
rized in Table 2. The first row, for example, presents the judged
probability 8 that death was caused by an accident or a homi-
cide rather than by some other unnatural cause. In accord with
support theory, § = 8, + 8, was significantly greater than v =
v: + v2, p < .05 (by Mann-Whitney U test), but ¥ was not
significantly greater than 3, contrary to the prediction of the
regressive model. Nevertheless, we do not rule out the possibil-
ity that regression toward .5 could yield 8 < v, which would
contribute to the discrepancy between « and 6. A generalization
of support theory that accommodates such a pattern is consid-
ered in the final section.

Study 2: Suggestibility and Subadditivity

Before turning to additional demonstrations of unpacking,
we discuss some methodological questions regarding the elicita-

tion of probability judgments. It could be argued that asking a
subject to evaluate a specific hypothesis conveys a subtle (or not
so subtle) suggestion that the hypothesis is quite probable. Sub-
jects, therefore, might treat the fact that the hypothesis has been
brought to their attention as information about its probability.
To address this objection, we devised a task in which the as-
signed hypotheses carried no information so that any observed
subadditivity could not be attributed to experimental
suggestion.

Stanford undergraduates (N = 196) estimated the percentage
of U.S. married couples with a given number of children. Sub-
jects were asked to write down the last digit of their telephone
numbers and then to evaluate the percentage of couples having
exactly that many children. They were promised that the 3 most
accurate respondents would be awarded $10 each. As predicted,
the total percentage attributed to the numbers O through 9
(when added across different groups of subjects) greatly ex-
ceeded 1. The total of the means assigned by each group was
1.99, and the total of the medians was 1.80. Thus, subadditivity
was very much in evidence, even when the selection of focal
hypothesis was hardly informative. Subjects overestimated the
percentage of couples in all categories, except for childless cou-
ples, and the discrepancy between the estimated and the actual
percentages was greatest for the modal couple with 2 children.
Furthermore, the sum of the probabilities for 0, 1, 2, and 3 chil-
dren, each of which exceeded .25, was 1.45. The observed
subadditivity, therefore, cannot be explained merely by a ten-
dency to overestimate very small probabilities.

Other subjects (N = 139) were asked to estimate the percent-
age of U.S. married couples with “less than 3,” “3 or more,”
“less than 3,” or “5 or more” children. Each subject considered
exactly one of the four hypotheses. The estimates added to
97.5% for the first pair of hypotheses and to 96.3% for the sec-
ond pair. In sharp contrast to the subadditivity observed earlier,
the estimates for complementary pairs of events were roughly
additive, as implied by support theory. The finding of binary
complementarity is of special interest because it excludes an
alternative explanation of subadditivity according to which the
evaluation of evidence is biased in favor of the focal hypothesis.

Subadditivity in Expert Judgments

Is subadditivity confined to novices, or does it also hold for
experts? Redelmeier, Koehler, Liberman, and Tversky (1993)
explored this question in the context of medical judgments.
They presented physicians at Stanford University (N = 59) with
a detailed scenario concerning a woman who reported to the
emergency room with abdominal pain. Half of the respondents
were asked to assign probabilities to two specified diagnoses
(gastroenteritis and ectopic pregnancy) and a residual category
(none of the above); the other half assigned probabilities to five
specified diagnoses (including the two presented in the other
condition) and a residual category (none of the above). Subjects
were instructed to give probabilities that summed to one be-
cause the possibilities under consideration were mutually exclu-
sive and exhaustive. If the physicians’ judgments conform to the
classical theory, then the probability assigned to the residual
category in the two-diagnosis condition should equal the sum
of the probabilities assigned to its unpacked components in the
five-diagnosis condition. Consistent with the predictions of sup-
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port theory, however, the judged probability of the residual in
the two-diagnosis condition (mean = .50) was significantly
lower than that of the unpacked components in the five-diagno-
sis condition (mean = .69), p < .005 (Mann-Whitney U test).

In a second study, physicians from Tel Aviv University (N =
52) were asked to consider several medical scenarios consisting
of a one-paragraph statement including the patient’s age, gen-
der, medical history, presenting symptoms, and the results of
any tests that had been conducted. One scenario, for example,
concerned a 67-year-old man who arrived in the emergency
room suffering a heart attack that had begun several hours ear-
lier. Each physician was asked to assess the probability of one of
the following four hypotheses: patient dies during this hospital
admission (4); patient is discharged alive but dies within 1 year
(B); patient lives more than | but less than 10 years (C); or pa-
tient lives more than 10 years (D). Throughout this article, we
refer to these as elementary judgments because they pit an ele-
mentary hypothesis against its complement, which is an im-
plicit disjunction of all of the remaining elementary hypotheses.
After assessing one of these four hypotheses, all respondents as-
sessed P(A4, B), P(B, C), and P(C, D) or the complementary set.
We refer to these as binary judgments because they involve a
comparison of two elementary hypotheses.

As predicted, the elementary judgments were substantially
subadditive. The means of the four groups in the preceding ex-
ample were 14% for A4, 26% for B, 55% for C, and 69% for D, all
of which overestimated the actual values reported in the medi-
cal literature. In problems like this, when individual compo-
nents of a partition are evaluated against the residual, the de-
nominator of the unpacking factor is taken to be 1; thus, the
unpacking factor is simply the total probability assigned to the
components (summed over different groups of subjects). In this
example, the unpacking factor was 1.64. In sharp contrast, the
binary judgments (produced by two different groups of physici-
ans) exhibited near-perfect additivity, with a mean total of
100.5% assigned to complementary pairs.

Further evidence for subadditivity in expert judgment has
been provided by Fox, Rogers, and Tversky (1994), who inves-
tigated 32 professional options traders at the Pacific Stock Ex-
change. These traders made probability judgments regarding
the closing price of Microsoft stock on a given future date (e.g.,
that it will be less than $88 per share). Microsoft stock is traded
at the Pacific Stock Exchange, and the traders are commonly
concerned with the prediction of its future value. Nevertheless,
their judgments exhibited the predicted pattern of subadditivity
and binary complementarity. The average unpacking factor for
a fourfold partition was 1.47, and the average sum of comple-
mentary binary events was 0.98. Subadditivity in expert judg-
ments has been documented in other domains by Fischhoff et
al. (1978), who studied auto mechanics, and by Dube-Rioux
and Russo (1988), who studied restaurant managers.

Review of Previous Research

We next review other studies that have provided tests of sup-
port theory. Tversky and Fox (1994) asked subjects to assign
probabilities to various intervals in which an uncertain quan-
tity might fall, such as the margin of victory in the upcoming
Super Bowl or the change in the Dow-Jones Industrial Average
over the next week. When a given event (e.g., “Buffalo beats
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Figure 1. Unpacking factors from Tversky and Fox’s (1994) data. SFO

= San Francisco temperature; BJG = Beijing temperature; NFL = 1991
National Football League Super Bowl; NBA = National Basketball As-
sociation playoff, DOW = weekly change in Dow-Jones index.

Washington™) was unpacked into individually evaluated com-
ponents (e.g., “Buffalo beats Washington by less than 7 points”
and *“‘Buffalo beats Washington by at least 7 points”), subjects’
judgments were substantially subadditive. Figure 1 plots the un-
packing factor obtained in this study as a function of the num-
ber of component hypotheses in the explicit disjunction. Judg-
ments for five different types of event are shown: future San
Francisco temperature (SFO), future Beijing temperature
(BJG), the outcome of the Super Bowl of the National Football
League (NFL), the outcome of a playoff game of the National
Basketball Association (NBA), and weekly change in the Dow—
Jones index (DOW). Recall that an unpacking factor greater
than 1 (i.e., falling above the dashed line in the plot) indicates
subadditivity. The results displayed in Figure 1 reveal consistent
subadditivity for all sources that increases with the number of
components in the explicit disjunction.

Figure 2 plots the median probabilities assigned to comple-
mentary hypotheses. (Each hypothesis is represented twice in
the plot, once as the focal hypothesis and once as the comple-
ment.) As predicted by support theory, judgments of intervals
representing complementary pairs of hypotheses were essen-
tially additive, with no apparent tendency toward either subad-
ditivity or superadditivity.

Further evidence for binary complementarity comes from an
extensive study conducted by Wallsten, Budescu, and Zwick
(1992),® who presented subjects with 300 propositions concern-
ing world history and geography (e.g., ““The Monroe Doctrine
was proclaimed before the Republican Party was founded™) and
asked them to estimate the probability that each was true. True
and false (complementary) versions of each proposition were
presented on different days. Figure 3 plots the mean probabili-
ties assigned to each of the propositions in both their true and

* We thank the authors for making their data available to us.
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Figure2. A test of binary complementarity based on Tversky and Fox
(1994).

false versions using the format of Figure 2. Again, the judgments
are additive (mean = 1.02) through the entire range.

We next present a brief summary of the major findings and
list both current and previous studies supporting each
conclusion.

Subadditivity, Unpacking an implicit hypothesis into its
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Figure 3. A test of binary complementarity based on Wallsten, Bude-
scu, and Zwick (1992).

component hypotheses increases its total judged probability,
yielding subadditive judgments. Tables 3 and 4 list studies that
provide tests of the unpacking condition. For each experiment,
the probability assigned to the implicit hypothesis and the total
probability assigned to its components in the explicit disjunc-
tion are listed along with the resulting unpacking factor. All of
the listed studies used an experimental design in which the im-
plicit disjunction and the components of the explicit disjunc-
tion were evaluated independently, either by separate groups of
subjects or by the same subjects but with a substantial number
of intervening judgments. The probabilities are listed as a func-
tion of the number of components in the explicit disjunction
and are collapsed over all other independent variables. Table 3
lists studies in which subjects evaluated the probability of qual-
itative hypotheses (e.g., the probability that Bill W. majors in
psychology); Table 4 lists studies in which subjects evaluated
quantitative hypotheses (e.g., the probability that a randomly
selected adult man is between 6 ft and 6 ft 2 in. tall).

The tables show that the observed unpacking factors are,
without exception, greater than one, indicating consistent
subadditivity. The fact that subadditivity is observed both for
qualitative and for quantitative hypotheses is instructive.
Subadditivity in assessments of qualitative hypotheses can be
explained, in part at least, by the failure to consider one or more
component hypotheses when the event in question is described
in an implicit form. The subadditivity observed in judgments
of quantitative hypotheses, however, cannot be explained as a
retrieval failure. For example, Teigen (1974b, Experiment 2)
found that the judged proportion of college students whose
heights fell in a given interval increased when that interval was
broken into several smaller intervals that were assessed sepa-
rately. Subjects evaluating the implicit disjunction (i.e., the large
interval), we suggest, did not overlook the fact that the interval
included several smaller intervals; rather, the unpacking manip-
ulation enhanced the salience of these intervals and, hence, their
judged probability. Subadditivity, therefore, is observed even in
the absence of memory limitations.

Number of components. The degree of subadditivity in-
creases with the number of components in the explicit disjunc-
tion. This follows readily from support theory: Unpacking an
implicit hypothesis into exclusive components increases its to-
tal judged probability, and additional unpacking of each com-
ponent should further increase the total probability assigned to
the initial hypothesis. Tables 3 and 4 show, as expected, that the
unpacking factor generally increases with the number of com-
ponents (see also Figure 1).

Binary complementarity. The judged probabilities of com-
plementary pairs of hypotheses add to one. Table 5 lists studies
that have tested this prediction. We considered only studies in
which the hypothesis and its complement were evaluated inde-
pendently, either by different subjects or by the same subjects
but with a substantial number of intervening judgments. (We
provide the standard deviations for the experiments that used
the latter design.) Table 5 shows that such judgments generally
add to one. Binary complementarity indicates that people eval-
uate a given hypothesis relative to its complement. Moreover, it
rules out alternative interpretations of subadditivity in terms of
a suggestion effect or a confirmation bias. These accounts imply
a bias in favor of the focal hypothesis yielding P(4, B) + P(B,
A) > 1, contrary to the experimental evidence. Alternatively,
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Table 3

Results of Experiments Using Qualitative Hypotheses: Average Probability Assigned to
Coextensional Implicit and Explicit Disjunctions and the Unpacking Factor

Measuring the Degree of Subadditivity.

Unpacking
Study and topic n Explicit P Implicit P factor
Fischhoff, Slovic, & Lichtenstein
(1978)

Car failure, Experiment 1 4 0.54 .18 3.00

Car failure, Experiment 5 2 0.27 20 1.35

Car failure, Experiment 6 (experts) 4 0.44 22 2.00
Mehle, Gettys, Manning, Baca, &

Fisher (1981): college majors 6 0.27 .18 1.50
Russo & Kolzow (1992)

Causes of death 4 0.55 45 1.22

Car failure 4 0.55 27 2.04
Koehler & Tversky (1993)

College majors 4 1.54 1.00° 1.54

College majors 5 2.51 1.007 2.51
Study 1: causes of death 3 0.61 46 1.33

7 0.70 .37 1.86

Study 4: crime stories 4 1.71 1.00? [.71
Study $: college majors 4 1.76 1.00* 1.76

Note.
citation refer to the present article.

The number of components in the explicit disjunction is denoted by n. Numbered studies with no

# Because the components partition the space, it is assumed that a probability of 1.00 would have been

assigned to the implicit disjunction.

one might be tempted to attribute the subadditivity observed
in probability judgments to subjects’ lack of knowledge of the
additivity principle of probability theory. This explanation,
however, fails to account for the observed subadditivity in fre-
quency judgments (in which additivity is obvious) and for the
finding of binary complementarity (in which additivity is con-
sistently satisfied).

The combination of binary complementarity and subadditive
elementary judgments, implied by support theory, is inconsis-
tent with both Bayesian and revisionist models. The Bayesian
model implies that the unpacking factor should equal one be-
cause the unpacked and packed hypotheses have the same ex-
tension. Shafer’s theory of belief functions and other models of
lower probability require an unpacking factor of less than one,
because they assume that the subjective probability (or belief)
of the union of disjoint events is generaily greater than the sum
of the probabilities of its exclusive constituents. Furthermore,
the data cannot be explained by the dual of the belief function
(called the plausibility function) or, more generally, by an upper
probability (e.g., see Dempster, 1967) because this model re-
quires that the sum of the assessments of complementary events
exceed unity, contrary to the evidence. Indeed, if P(4, B) + P(B,
A) = 1 (see Table 5), then both upper and lower probability re-
duce to the standard additive model. The experimental findings,
of course, do not invalidate the use of upper and lower proba-
bility, or belief functions, as formal systems for representing un-
certainty. However, the evidence reviewed in this section indi-
cates that these models are inconsistent with the principles that
govern intuitive probability judgments.

Probability versus frequency. Of the studies discussed ear-
lier and listed in Tables 3 and 4, some (e.g., Fischhoff et al.,
1978) used frequency judgments and others (e.g., Teigen, 1974a,

1974b) used probability judgments. The comparison of the two
tasks, summarized in Table 6, confirms the predicted pattern:
Subadditivity holds for both probability and frequency judg-
ments, and the former are more subadditive than the latter.

Scaling Support

In the formal theory developed in the preceding section, the
support function is derived from probability judgments. Is it
possible to reverse the process and predict probability judg-
ments from direct assessments of evidence strength? Let §(4) be
the rating of the strength of evidence for hypothesis 4. What is
the relation between such ratings and the support estimated
from probability judgments? Perhaps the most natural assump-
tion is that the two scales are monotonically related; that is, §(4)
= s(B) if and only if (iff)s(4) = s(B). This assumption implies,
for example, that P(4, B) = Y iff §(4) = §(B), but it does not
determine the functional form relating § and s. To further spec-
ify the relation between the scales, it may be reasonable to as-
sume, in addition, that support ratios are also monotonically
related. That is, §(A4)/S(B) = $(C)/$(D) iff s(4)/s(B) = s(C)/
s(D).

It can be shown that if the two monotonicity conditions are
satisfied, and both scales are defined, say, on the unit interval,
then there exists a constant & > 0 such that the support function
derived from probability judgments and the support function
assessed directly are related by a power transformation of the
form s = §*. This gives rise to the power model

R(4, B) = P(4, B)/P(B, 4) = [S(4A)/5(B)Y,

vielding



SUPPORT THEORY

Table 4

Results of Experiments Using Quantitative Hypotheses: Average Probability Assigned to
Coextensional Implicit and Explicit Disjunctions and the Unpacking Factor

Measuring the Degree of Subadditivity

Unpacking
Study and topic n Explicit P Implicit P factor
Teigen (1974b) Experiment 1:
binomial outcomes 2 0.66 .38 1.73
3 0.84 .38 2.21
5 1.62 1.00* 1.62
9 2.25 1.00* 2.25
Teigen (1974b) Experiment 2:
heights of students 2 0.58 .36 1.61
4 1.99 .76 2.62
5 2.31 5 3.07
6 2.55 1.00* 2.55
Teigen (1974a) Experiment 2:
binomial outcomes 11 4.25 1.00* 4.25
Olson (1976) Experiment 1:
gender distribution 2 0.13 .10 1.30
3 0.36 21 1.71
S 0.68 .40 1.70
9 0.97 .38 2.55
Peterson and Pitz (1988)
Experiment 3: baseball
victories 3 1.58 1.00* 1.58
Tversky and Fox (1994):
uncertain quantities 2 0.77 .62 1.27
3 1.02 72 1.46
4 1.21 .79 1.58
5 1.40 .84 1.27
Study 2: number of children 10 1.99 1.00* 1.99

Note. The number of components in the explicit disjunction is denoted by #. Numbered Study with no

citation refers to the peresent article.

% Because the components partition the space, it is assumed that a probability of 1.00 would have been

assigned to the implicit disjunction.

Table 5

Results of Experiments Testing Binary Complementarity:
Average Total Probability Assigned to Complementary Pairs
of Hypotheses, Between-Subjects Standard Deviations,

and the Number of Subjects in the Experiment

Study and topic Mean total P SD N

Wallsten, Budescu, & Zwick
(1992): general

knowledge 1.02 0.06 23
Tversky & Fox (1994)
NBA playoff 1.00 0.07 27
Super Bowl 1.02 0.07 40
Dow-Jones 1.00 0.10 40
San Francisco temperature 1.02 0.13 72
Beijing temperature 0.99 0.14 45
Koehler & Tversky (1993):
college majors® 1.00 170
Study 2: number of children® 0.97 139
Study 4: crime stories® 1.03 60
Study 5: college majors® 1.05 115

Note. Numbered studies with no citation refer to the present article.
NBA = National Basketball Association.

* A given subject evaluated either the event or its complement, but not
both.

Table 6
Results of Experiments Comparing Probability and Frequency

Judgments: Unpacking Factor Computed From Mean

Probability Assigned to Coextensional Explicit
and Implicit Disjunctions

557

Unpacking factor

Study and topic n Probability Frequency
Teigen (1974b)
Experiment |: binomial
outcomes 2 1.73 1.26
S 2.21 1.09
9 2.25 1.24
Teigen (1974b)
Experiment 2: heights of
students 6 2.55 1.68
Koehler & Tversky (1993):
college majors 4 1.72 1.37
Study 1: causes of death 3 1.44 1.28
7 2.00 1.84

Note.

cle.

The number of components in the explicit disjunction is de-
noted by n. Numbered studies with no citation refer to the present arti-
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log R(A, B) = k log[5§(4)/5(B)].

We next use this model to predict judged probability from
independent assessments of evidence strength obtained in two
studies.

Study 3: Basketball Games

Subjects (N = 88) were NBA fans who subscribe to a com-
puter news group. We posted a questionnaire to this news group
and asked readers to complete and return it by electronic mail
within | week. In the questionnaire, subjects assessed the prob-
ability that the home team would win in each of 20 upcoming
games. These 20 outcomes constituted all possible matches
among five teams (Phoenix, Portland, Los Angeles Lakers,
Golden State, and Sacramento) from the Pacific Division of the
NBA, constructed such that, for each pair of teams, two games
were evaluated (one for each possible game location). Use of
this “expert” population yielded highly reliable judgments, as
shown, among other things, by the fact that the median value of
the correlation between an individual subject’s ratings and the
set of mean judgments was .93.

After making their probability judgments, subjects rated the
strength of each of the five teams. The participants were
instructed:

First, choose the team you believe is the strongest of the five, and
set that team’s strength to 100. Assign the remaining teams ratings
in proportion to the strength of the strongest team. For example, if
you believe that a given team is half as strong as the strongest team
(the team you gave a 100), give that team a strength rating of 50.

We interpreted these ratings as a direct assessment of support.

Because the strength ratings did not take into acesunt the
home court effect, we collapsed the probability judgments
across the two possible locations of the match The slope of the
regression line predicting log R(4, B) from log[§(A4)/5(B)] pro-
vided an estimate of & for each subject. The median estimate of
k was 1.8, and the mean was 2.2; the median R? for this analysis
was .87. For the aggregate data, k was 1.9 and the resulting R?
was .97. The scatterplot in Figure 4 exhibits excellent corre-
spondence between mean prediction based on team strength
and mean judged probability. This result suggests that the power
model can be used to predict judged probability from assess-
ments of strength that make no reference to chance or uncer-
tainty. It also reinforces the psychological interpretation of s as
a measure of evidence strength.

Study 4: Crime Stories

This study was designed to investigate the relation between
judged probability and assessed support in a very different
context and to explore the enhancement effect, described in the
next subsection. To this end, we adapted a task introduced by
Teigen (1983) and Robinson and Hastie (1985) and presented
subjects with two criminal cases. The first was an embezzlement
at a computer-parts manufacturing company involving four
suspects (a manager, a buyer, an accountant, and a seller). The

econd case was a murder that also involved four suspects (an
activist, an artist, a scientist, and a writer). In both cases, sub-
jects were informed that exactly one suspect was guilty. In the
low-information condition, the four suspects in each case were
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Figure4. Judged probability for basketball games as a function of nor-
malized strength ratings.

introduced with a short description of their role and possible
motive. In the high-information condition, the motive of each
suspect was strengthened. In a manner resembling the typical
mystery novel, we constructed each case so that all the suspects
seemed generally more suspicious as more evidence was
revealed.

Subjects evaluated the suspects after reading the low-infor-
mation material and again after reading the high-information
material. Some subjects (N = 60) judged the probability that a
given suspect was guilty. Each of these subjects made two ele-
mentary judgments (that a particular suspect was guilty) and
three binary judgments (that Suspect A rather than Suspect B
was guilty) in each case. Other subjects (N = 55) rated the sus-
piciousness of a given suspect, which we took as a direct assess-
ment of support. These subjects rated two suspects per case by
providing a number between O (indicating that the suspect was
“not at all suspicious’) and 100 (indicating that the suspect was
“maximally suspicious™) in proportion to the suspiciousness of
the suspect.

As in the previous study, we assumed binary complementar-
ity and estimated k by a logarithmic regression of R(4, B)
against the suspiciousness ratio. For these data, k was estimated
to be .84, and R? was .65. Rated suspiciousness, therefore, pro-
vides a reasonable predictor of the judged probability of guilt.
However, the relation between judged probability and assessed
support was stronger in the basketball study than in the crime
study. Furthermore, the estimate of & was much smaller in the
latter than in the former. In the basketball study, a team that was
rated twice as strong as another was judged more than twice as
likely to win; in the crime stories, however, a character who was
twice as suspicious as another was judged less than twice as
likely to be guilty. This difference may be due to the fact that the
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judgments of team strength were based on more solid data than
the ratings of suspiciousness.

In the preceding two studies, we asked subjects to assess the
overall support for each hypothesis on the basis of all the avail-
able evidence. A different approach to the assessment of evi-
dence was taken by Briggs and Krantz (1992; see also Krantz,
Ray, & Briggs, 1990). These authors demonstrated that, under
certain conditions, subjects can assess the degree to which an
isolated item of evidence supports each of the hypotheses under
consideration. They also proposed several rules for the combi-
nation of independent items of evidence, but they did not relate
assessed support to judged probability.

The Enhancement Effect

Recall that assessed support is noncompensatory in the sense
that evidence that increases the support of one hypothesis does
not necessarily decrease the support of competing hypotheses.
In fact, it is possible for new evidence to increase the support of
all elementary hypotheses. We have proposed that such evi-
dence will enhance subadditivity. In this section, we describe
several tests of enhancement and compare support theory with
the Bayesian model and with Shafer’s theory.

We start with an example discussed earlier, in which one of
several suspects has committed a murder. To simplify matters,
assume that there are four suspects who, in the absence of spe-
cific evidence (low information), are considered equally likely
to be guilty. Suppose further evidence is then introduced (high
information) that implicates each of the suspects to roughly the
same degree, so that they remain equally probable. Let L and H
denote, respectively, the evidence available under low- and high-
information conditions. Let 4 denote the negation of 4, that is,
“Suspect 4 is not guilty.” According to the Bayesian model,
then, P(4, B|{H) = P(4, B|L) = 'h, P(4, A|H) = P(4, A|L) =
Vs, and so forth.

In contrast, Shafer’s (1976) belief-function approach requires
that the probabilities assigned to each of the suspects add to less
than one and suggests that the total will be higher in the pres-
ence of direct evidence (i.c., in the high-information condition)
than in its absence. As a consequence, V2 = P(4, B|H) = P(4,
B|L), % = P(4, A|H) = P(A4, A|L), and so forth. In other
words, both the binary and the elementary judgments are ex-
pected to increase as more evidence is encountered. In the limit,
when no belief is held in reserve, the binary judgments ap-
proach one half and the elementary judgments approach one
fourth.

The enhancement assumption yigld$ a different pattern,
namely-P(4, B|H) = P(4, B|L) = 2, P(4, A|H) = P(4, A|L)
2 v, and so forth. As in the Bayestan model, the binary judg-
ments are one half; in contrast to that model, however, the ele-
mentary judgments are expected to exceed one fourth and to
be greater under high- than under low-information conditions.
Although both support theory and the belief-function approach
yield greater elementary judgments under high- than under low-
information conditions, support theory predicts that they will
exceed one fourth in both conditions, whereas Shafer’s theory
requires that these probabilities be less than or equal to one
fourth.

The assumption of equally probable suspects is not essential
for the analysis. Suppose that initially the suspects are not

equally probable, but the new evidence does not change the bi-
nary probabilities. Here, too, the Bayesian model requires ad-
ditive judgments that do not differ between low- and high-infor-
mation conditions; the belief-function approach requires super-
additive judgments that become less superadditive as more
information is encountered; and the enhancement assumption
predicts subadditive judgments that become more subadditive
with the addition of (compatible) evidence.

Evaluating Suspects

With these predictions in mind, we turn to the crime stories
of Study 4. Table 7 displays the mean suspiciousness ratings and
elementary probability judgments of each suspect in the two
cases under low- and high-information conditions. The table
shows that, in all cases, the sums of both probability judgments
and suspiciousness ratings exceed one. Evidently, subadditivity
holds not only in probability judgment but also in ratings of
evidence strength or degree of belief (e.g., that a given subject is
guilty). Further examination of the suspiciousness ratings shows
that all but one of the suspects increased in suspiciousness as
more information was provided. In accord with our prediction,
the judged probability of each of these suspects also increased
with the added information, indicating enhanced subadditivity
(see Equation 10). The one exception was the artist in the mur-
der case, who was given an alibi in the high-information condi-
tion and, as one would expect, subsequently decreased both in
suspiciousness and in probability. Overall, both the suspicious-
ness ratings and the probability judgments were significantly
greater under high- than under low-information conditions (p
< .001 for both cases by ¢ test).

From a normative standpoint, the support (i.e., suspicious-
ness) of all the suspects could increase with new information,
but an increase in the probability of one suspect should be com-
pensated for by a decrease in the probability of the others. The
observation that new evidence can increase the judged proba-
bility of all suspects was made earlier by Robinson and Hastie
(1985; Van Wallendael & Hastie, 1990). Their method differed
from ours in that each subject assessed the probability of all
suspects, but this method too produced substantial subadditi-
vity, with a typical unpacking factor of about two. These au-
thors rejected the Bayesian model as a descriptive account and
proposed Shafer’s theory as one viable alternative. As was noted
earlier, however, the observed subadditivity is inconsistent with
Shafer’s theory, as well as the Bayesian model, but it is consistent
with the present account.

In the crime stories, the added evidence was generally com-
patible with all of the hypotheses under consideration. Peterson
and Pitz (1988, Experiment 3), however, observed a similar
effect with mixed evidence, which favored some hypotheses but
not others. Their subjects were asked to assess the probability
that the number of games won by a baseball team in a season
fell in a given interval on the basis of one, two, or three cues
(team batting average, earned run average, and total home runs
during that season). Unbeknownst to subjects, they were asked,
over a large number of problems, to assign probabilities to all
three components in a partition (e.g., less than 80 wins, between
80 and 88 wins, and more than 88 wins). As the number of cues
increased, subjects assigned a greater probability, on average,
to all three intervals in the partition, thus exhibiting enhanced
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Table 7
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Mean Suspiciousness Rating and Judged Probability of Each Suspect Under

Low- and High-Information Conditions

Suspiciousness

Probability

Case and suspect Low information

High information

Low information  High information

Case |: embezzlement

Accountant 41
Buyer 50
Manager 47
Seller 32

Total 170

Case 2: murder

Activist 32
Artist 27
Scientist 24
Writer 38

Total 122

53 40 45
58 42 48
51 48 59
48 37 42
210 167 194
57 39 57
23 37 30
43 34 40
60 33 54
184 143 181

subadditivity. The unpacking factors for these data were 1.26,
1.61, and 1.86 for one, two, and three cues, respectively. These
results attest to the robustness of the enhancement effect, which
is observed even when the added evidence favors some, but not
all, of the hypotheses under study.

Study 5. College Majors

In this study, we tested enhancement by replacing evidence
rather than by adding evidence as in the previous study. Follow-
ing Mehle, Gettys, Manning, Baca, and Fisher (1981), we asked
subjects (N = 115) to assess the probability that a social science
student at an unspecified midwestern university majored in a
given field. Subjects were told that, in this university, each social
science student has one and only one of the following four ma-
Jors: economics, political science, psychology, and sociology.

Subjects estimated the probability that a given student had a
specified major on the basis of one of four courses the student
was said to have taken in his or her 2nd vear. Two of the courses
(statistics and Western civilization) were courses typically taken
by social science majors; the other two (French literature and
physics) were courses not typically taken by social science ma-
jors. This was confirmed by an independent group of subjects
(N = 36) who evaluated the probability that a social science
major would take each one of the four courses. Enhancement
suggests that the typical courses will yield more subadditivity
than the less typical courses because they give greater support
to each of the four majors.

Each subject made both elementary and binary judgments.
As in all previous studies, the elementary judgments exhibited
substantial subadditivity (mean unpacking factor 1.76),
whereas the binary judgments were essentially additive (mean
unpacking factor = 1.05). In the preceding analyses, we have
used the unpacking factor as an overall measure of subadditivity
associated with a set of mutually exclusive hypotheses. The
present experiment also allowed us to estimate w (see Equation
8), which provides a more refined measure of subadditivity be-
cause it is estimated separately for each of the implicit hypoth-
eses under study. For each course, we first estimated the support
of each major from the binary judgments and then estimated w

for each major from the elementary judgments using the
equation

5(4)
s(A) + wxls(B) + s(C) = s(D)]’

P4, A) =

where 4, B, C, and D denote the four majors.

This analysis was conducted separately for each subject. The
average value of w across courses and majors was .46, indicating
that a major received less than half of its explicit support when
it was included implicitly in the residual. Figure 5 shows the
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Figure 5. Median value of w for predictions of college majors, plotted
separately for each course. Lit = literature; Civ = civilization; Poli Sci
= political science.
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median value of w (over subjects) for each major, plotted sepa-
rately for each of the four courses. In accord with enhancement,
the figure shows that the typical courses, statistics and Western
civilization, induced more subadditivity (i.e., lower w) than the
less typical courses, physics and French literature. However, for
any given course, w was roughly constant across majors. Indeed,
a two-way analysis of variance yielded a highly significant effect
of course, F(3, 112) = 31.4, p < .001, but no significant effect of
major, F(3,112) < 1.

Implications

To this point, we have focused on the direct consequences
of support theory. We conclude this section by discussing the
conjunction effect, hypothesis generation, and decision under
uncertainty from the perspective of support theory.

The Conjunction Effect

Considerable research has documented the conjunction
effect, in which a conjunction 4B is judged more probable than
one of its constituents A. The effect is strongest when an event
that initially seems unlikely (e.g., a massive flood in North
America in which more than 1,000 people drown) is supple-
mented by a plausible cause or qualification (e.g., an earthquake
in California causing a flood in which more than 1,000 people
drown), yielding a conjunction that is perceived as more proba-
ble than the initially implausible event of which it is a proper
subset (Tversky & Kahneman, 1983). Support theory suggests
that the implicit hypothesis 4 is not unpacked into the coexten-
sional disjunction AB V AB of which the conjunction is one
component. As a result, evidence supporting 4B is not taken to
support 4. In the flood problem, for instance, the possibility of
a flood caused by an earthquake may not come readily to mind;
thus, unless it is mentioned explicitly, it does not contribute
any support to the (implicit) flood hypothesis. Support theory
implies that the conjunction effect would be eliminated in these
problems if the implicit disjunction were unpacked before its
evaluation (e.g., if subjects were reminded that a flood might be
caused by excessive rainfall or by structural damage to a reser-
voir caused by an earthquake, an engineering error, sabotage,
etc.).

The greater tendency to unpack either the focal or the resid-
ual hypothesis in a frequentistic formulation may help explain
the finding that conjunction effects are attenuated, though not
eliminated, when subjects estimate frequency rather than prob-
ability. For example, the proportion of subjects who judged the
conjunction “X is over 55 years old and has had at least one
heart attack” as more probable than the constituent event “X
has had at least one heart attack™ was significantly greater in
a probabilistic formulation than in a frequentistic formulation
(Tversky & Kahneman, 1983).

It might be instructive to distinguish two different unpacking
operations. In conjunctive unpacking, an (implicit) hypothesis
(e.g., nurse) is broken down into exclusive conjunctions (e.g.,
male nurse and female nurse). Most, but not all, initial demon-
strations of the conjunction effect were based on conjunctive
unpacking. In categorical unpacking, a superordinate category
(e.g., unnatural death) is broken down into its “natural” com-
ponents (e.g., car accident, drowning, and homicide). Most of

the demonstrations reported in this article are based on cate-
gorical unpacking. A conjunction effect using categorical un-
packing has been described by Bar-Hillel and Neter (1993), who
found numerous cases in which a statement (e.g., “Daniela’s
major is literature”) was ranked as more probable than a more
inclusive implicit disjunction (e.g., “Daniela’s major is in hu-
manities”). These results held both for subjects’ direct estimates
of probabilities and for their willingness to bet on the relevant
events.

Hypothesis Generation

All of the studies reviewed thus far asked subjects to assess
the probability of hypotheses presented to them for judgment.
There are many situations, however, in which a judge must gen-
erate hypotheses as well as assess their likelihood. In the current
treatment, the generation of alternative hypotheses entails some
unpacking of the residual hypothesis and, thus, is expected to
increase its support relative to the focal hypothesis. In the ab-
sence of explicit instructions to generate alternative hypotheses,
people are less likely to unpack the residual hypothesis and thus
will tend to overestimate specified hypotheses relative to those
left unspecified.

This implication has been confirmed by Gettys and his col-
leagues (Gettys, Mehle, & Fisher, 1986; Mehle et al., 1981), who
have found that, in comparison with veridical values, people
generally tend to overestimate the probability of specified
hypotheses presented to them for evaluation. Indeed, overcon-
fidence that one’s judgment is correct (e.g., Lichtenstein, Fisch-
hoff, & Phillips, 1982) may sometimes arise because the focal
hypothesis is specified, whereas its alternatives often are not.
Mehle et al. (1981) used two manipulations to encourage un-
packing of the residual hypothesis: One group of subjects was
provided with exemplar members of the residual, and another
was asked to generate its own examples. Both manipulations
improved performance by decreasing the probability assigned
to specified alternatives and increasing that assigned to the re-
sidual. These results suggest that the effects of hypothesis gener-
ation are due to the additional hypotheses it brings to mind,
because simply providing hypotheses to the subject has the
same effect. Using a similar manipulation, Dube-Rioux and
Russo (1988) found that generation of alternative hypotheses
increased the judged probability of the residual relative to that
of specified categories and attenuated the effect of omitting a
category. Examination of the number of instances generated by
the subjects showed that, when enough instances were pro-
duced, the effect of category omission was eliminated
altogether.

Now consider a task in which subjects are asked to generate a
hypothesis (e.g., to guess which film will win the best picture
Oscar at the next Academy Awards ceremony) before assessing
its probability. Asking subjects to generate the most likely hy-
pothesis might actually lead them to consider several candidates
in the process of settling on the one they prefer. This process
amounts to a partial unpacking of the residual hypothesis,
which should decrease the judged probability of the focal hy-
pothesis. Consistent with this prediction, a recent study
(Koehler, 1994) found that subjects asked to generate their own
hypotheses assigned them a lower probability of being true than
did other subjects presented with the same hypotheses for eval-
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uation. The interpretation of these results—that hypothesis
generation makes alternative hypotheses more salient—was
tested by two further manipulations. First, providing a closed
set of specified alternatives eliminated the difference between
the generation and evaluation conditions. In these circum-
stances, the residual should be represented in the same way in
both conditions. Second, inserting a distracter task between hy-
pothesis generation and probability assessment was sufficient
to reduce the salience of alternatives brought to mind by the
generation task, increasing the judged probability of the focal
hypothesis.

Decision Under Uncertainty

This article has focused primarily on numerical judgments of
probability. In decision theory, however, subjective probabilities
are generally inferred from preferences between uncertain pros-
pects rather than assessed directly. It is natural to inquire, then,
whether unpacking affects people’s decisions as well as their nu-
merical judgments. There is considerable evidence that it does.
For example, Johnson et al. (1993) observed that subjects were
willing to pay more for flight insurance that explicitly listed cer-
tain events covered by the policy (e.g., death resulting from an
act of terrorism or mechanical failure) than for a more inclusive
policy that did not list specific events (e.g., death from any
cause).

Unpacking can affect decisions in two ways. First, as has been
shown, unpacking tends to increase the judged probability of
an uncertain event. Second, unpacking can increase an event’s
impact on the decision, even when its probability is known. For
example, Tversky and Kahneman (1986) asked subjects to
choose between two lotteries that paid different amounts de-
pending on the color of a marble drawn from a box. (As an
inducement to consider the options with care, subjects were in-
formed that one tenth of the participants, selected at random,
would actually play the gambles they chose.) Two different ver-
sions of the problem were used, which differed only in the de-
scription of the outcomes. The fully unpacked Version 1 was as
follows:

Box A:  90% white 6% red 1%green 1%blue 2% yellow
$0 win $45  win $30 lose$15 lose $15

Box B:  90% white 6% red 1%green 1%blue 2% yellow
$0 win $45  win $45 lose $10  lose $15

It is not difficult to see that Box B dominates Box A; indeed, all
subjects chose Box B in this version. Version 2 combined the
two outcomes resulting in a loss of $15 in Box A (i.e., blue and
yellow) and the two outcomes resulting in a gain of $45 in Box
B (i.e., red and green):

Box A:  90% white 6% red 1% green 3% yellow/blue
$0 win $45 win $30 lose $15

Box B:  90% white 7% red/green 1% blue 2% yellow
$0 win $45 lose $10 lose $15

In accord with subadditivity, the combination of events yielding
the same outcome makes Box A more attractive because it
packs two losses into one and makes Box B less attractive be-
cause it packs two gains into one. Indeed, 58% of subjects chose

Box A in Version 2, even though it was dominated by Box B.
Starmer and Sugden (1993) further investigated the effect of un-
packing events with known probabilities (which they called an
event-splitting effect) and found that a prospect generally be-
comes more attractive when an event that yields a positive out-
come is unpacked into two components. Such results demon-
strate that unpacking affects decisions even when the probabili-
ties are explicitly stated.

The role of unpacking in choice was further illustrated by
Redelmeier et al. (in press). Graduating medical students at the
University of Toronto (N = 149) were presented with a medical
scenario concerning a middle-aged man suffering acute short-
ness of breath. Half of the respondents were given a packed de-
scription that noted that “obviously, many diagnoses are possi-
ble . . . including pneumonia.” The other half were given an
unpacked description that mentioned other potential diagnoses
(pulmonary embolus, heart failure, asthma, and lung cancer) in
addition to pneumonia. The respondents were asked whether or
not they would prescribe antibiotics in such a case, a treatment
that is effective against pneumonia but not against the other
potential diagnoses mentioned in the unpacked version. The
unpacking manipulation was expected to reduce the perceived
probability of pneumonia and, hence, the respondents’ inclina-
tion to prescribe antibiotics. Indeed, a significant majority
(64%) of respondents given the unpacked description chose not
to prescribe antibiotics, whereas respondents given the packed
description were almost evenly divided between prescribing
(47%) and not prescribing them. Singling out pneumonia in-
creased the tendency to select a treatment that is effective for
pneumonia, even though the presenting symptoms were clearly
consistent with a number of well-known alternative diagnoses.
Evidently, unpacking can affect decisions, not only probability
assessments.

Although unpacking plays an important role in probability
judgment, the cognitive mechanism underlying this effect is
considerably more general. Thus, one would expect unpacking
effects even in tasks that do not involve uncertain events. For
example, van der Pligt, Eiser, and Spears (1987, Experiment 1)
asked subjects to assess the current and ideal distribution of five
power sources (nuclear, coal, oil, hydro, solar/wind/wave) and
found that a given power source was assigned a higher estimate
when it was evaluated on its own than when its four alternatives
were unpacked (see also Fiedler & Armbruster, 1994; Pelham,
Sumarta, & Myaskovsky, 1994). Such results indicate that the
effects of unpacking reflect a general characteristic of human
judgment.

Extensions

We have presented a nonextensional theory of belief in which
Jjudged probability is given by the relative support, or strength
of evidence, of the respective focal and alternative hypotheses.
In this theory, support is additive for explicit disjunctions of
exclusive hypotheses and subadditive for implicit disjunctions.
The empirical evidence confirms the major predictions of sup-
port theory: (a) Probability judgments increase by unpacking
the focal hypothesis and decrease by unpacking the alternative
hypothesis; (b) subjective probabilities are complementary in
the binary case and subadditive in the general case; and (c¢)
subadditivity is more pronounced for probability than for fre-
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quency judgments, and it is enhanced by compatible evidence.
Support theory also provides a method for predicting judged
probability from independent assessments of evidence strength.
Thus, it accounts for a wide range of empirical findings in terms
of a single explanatory construct.

In this section, we explore some extensions and implications
of support theory. First, we consider an ordinal version of the
theory and introduce a simple parametric representation. Sec-
ond, we address the problem of vagueness, or imprecision, by
characterizing upper and lower probability judgments in terms
of upper and lower support. Finally, we discuss the implications
of the present findings for the design of elicitation procedures
for decision analysis and knowledge engineering.

Ordinal Analysis

Throughout the article, we have treated probability judgment
as a quantitative measure of degree of belief. This measure is
commonly interpreted in terms of a reference chance process.
For example, assigning a probability of two thirds to the hy-
pothesis that a candidate will be elected to office is taken to
mean that the judge considers this hypothesis as likely as draw-
ing a red ball from an urn in which two thirds of the balls are
red. Probability judgment, therefore, can be viewed as an out-
come of a thought experiment in which the judge matches de-
gree of belief to a standard chance process (see Shafer & Tver-
sky, 1985). This interpretation, of course, does not ensure either
coherence or calibration.

Although probability judgments appear to convey quantita-
tive information, it might be instructive to analyze these judg-
ments as an ordinal rather than a cardinal scale. This interpreta-
tion gives rise to an ordinal generalization of support theory.
Suppose there is a nonnegative scale s defined on H and a
strictly increasing function F such that, for all 4, Bin H,

s(A) )

P(A,B)=F( (1)

s(A4) + s(B)
where s(C) < s(4 V B) = s(A4) + s(B) whenever A and B are
exclusive, Cis implicit, and C' = (4 Vv BY.

An axiomatization of the ordinal model lies beyond the scope
of the present article. It is noteworthy, however, that to obtain
an essentially unique support function in this case, we have to
make additional assumptions, such as the following solvability
condition (Debreu, 1958): If P(4, B) = z = P(A, D), then there
exists C € H such that P(4, C) = z. This idealization may be
acceptable in the presence of a random device, such as a chance
wheel with sectors that can be adjusted continuously. The fol-
lowing theorem shows that, assuming the ordinal model and the
solvability condition, binary complementarity and the product
rule yield a particularly simple parametric form that coincides
with the model used in the preceding section to relate assessed
and derived support. The proofis given in the Appendix.

Theorem 2: Assume the ordinal model (Equation 1 1) and the solv-
ability condition. Binary complementarity (Equation 3) and the
product rule (Equation 5) hold if and only if there exists a constant
k = 0 such that

s(A)

B SGr s

(12)

This representation, called the power model, reduces to the
basic model if k = 1. In this model, judged probability may be
more or less extreme than the respective relative support de-
pending on whether k is greater or less than one. Recall that the
experimental data, reviewed in the preceding section, provide
strong evidence for the inequality « < &. That is, P(4, B) <
P(A,, B) + P(4,, B) whenever 4,, 4>, and B are mutually ex-
clusive; A is implicit; and 4’ = (4, V 4;). We also found evi-
dence (see Table 2) for the equality 8 = v, thatis, P(4; V 4, B)
= P(4,, A, V B) + P(42, 4, V B), but this property has not
been extensively tested. Departures from additivity induced, for
example, by regression toward .5 could be represented by a
power model with k < 1, which implies & < 8 <y < 4. Note
that, for explicit disjunctions of exclusive hypotheses, the basic
model (Equations 1 and 2), the ordinal model (Equation 11),
and the power model (Equation 12) all assume additive support,
but only the basic model entails additive probability.

Upper and Lower Indicators

Probability judgments are often vague and imprecise. To in-
terpret and make proper use of such judgments, therefore, one
needs to know something about their range of uncertainty. In-
deed, much of the work on nonstandard probability has been
concerned with formal models that provide upper and lower in-
dicators of degree of belief. The elicitation and interpretation of
such indicators, however, present both theoretical and practical
problems. If people have a hard time assessing a single definite
value for the probability of an event, they are likely to have an
even harder time assessing two definite values for its upper and
lower probabilities or generating a second-order probability dis-
tribution. Judges may be able to provide some indication re-
garding the vagueness of their assessments, but such judgments,
we suggest, are better interpreted in qualitative, not quantita-
tive, terms.

To this end, we have devised an elicitation procedure in which
upper and lower probability judgments are defined verbally
rather than numerically. This procedure, called the staircase
method, is illustrated in Figure 6. The judge is presented with
an uncertain event (e.g., an eastern team rather than a western
team will win the next NBA title) and is asked to check one of
the five categories for each probability value. The lowest value
that is not “clearly too low” (.45) and the highest value that is
not “clearly too high” (.80), denoted P, and P*, respectively,
may be taken as the lower and upper indicators. Naturally, al-
ternative procedures involving a different number of categories,
different wording, and different ranges could yield different in-
dicators. (We assume that the labeling of the categories is sym-
metric around the middle category.) The staircase method can
be viewed as a qualitative analog of a second-order probability
distribution or of a fuzzy membership function.

We model P, and P* in terms of lower and upper support
functions, denoted s, and s*, respectively. We interpret these
scales as low and high estimates of s and assume that, for any A4,
$4(A) < 5(A) < s%(A). Furthermore, we assume that P, and P*
can be expressed as follows:

54(4)

DT )

and
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Probability (%): | 0 | 5 110]15]120[25|30]35

45150(55])60|65;70{75]80)|85[90]95]|100

Clearly too high

Slightly too high

ABOUT RIGHT

Slightly too low

Clearlytoolow | x | x [ x [ x| x| x| x| x

Figure 6. Example of the staircase method used to elicit upper and lower probabilities.

s*A4)

P*A4,B)= ——L
5$(A4) + 5.(B)

According to this model, the upper and lower indicators are
generated by a slanted reading of the evidence; P*(4, B) can be
interpreted as a probability judgment that is biased in favor of
A and against B, whereas P,(4, B) is biased against 4 and in
favor of B. The magnitude of the bias reflects the vagueness as-
sociated with the basic judgment, as well as the characteristics
of the elicitation procedure. Within a given procedure, however,
we can interpret the interval (P,, P*) as a comparative index of
imprecision. Thus, we may conclude that one judgment is less
vague than another if the interval associated with the first as-
sessment is included in the interval associated with the second
assessment. Because the high and low estimates are unlikely to
be more precise or more reliable than the judge’s best estimate,
we regard P, and P* as supplements, not substitutes, for P,

To test the proposed representation against the standard the-
ory of upper and lower probability (e.g., see Dempster, 1967;
Good, 1962); we investigated people’s predictions of the out-
comes of the NFL playoffs for 1992-1993. The study was run
the week before the two championship games in which Buffalo
was to play Miami for the title of the American Football Con-
ference (AFC), and Dallas was to play San Francisco for the
title of the National Football Conference (NFC). The winners
of these games would play each other two weeks later in the
Super Bowl. The subjects were 135 Stanford students who vol-
unteered to participate in a study of football prediction in ex-
change for a single California Lottery ticket. Half of the subjects
assessed the probabilities that the winner of the Super Bowl
would be Buffalo, Miami, an NFC team. The other half of the
subjects assessed the probabilities that the winner of the Super
Bowl would be Dallas, San Francisco, an AFC team. All sub-
jects assessed probabilities for the two championship games.
The focal and the alternative hypotheses for these games were
counterbalanced. Thus, each subject made five probability as-
sessments using the staircase method illustrated in Figure 6.

Subjects’ best estimates exhibited the pattern of subadditivity
and binary complementarity observed in previous studies. The
average probabilities of each of the four teams winning the Su-
per Bowl added to 1.71; the unpacking factor was 1.92 for the
AFC teams and 1.48 for the NFC teams. In contrast, the sum of
the average probability of an event and its complement was
1.03. Turning to the analysis of the upper and the lower assess-
ments, note that the present model implies P,(4, B) + P*(B,
A) = 1, in accord with the standard theory of upper and lower
probability. The data show that this condition holds to a very
close degree of approximation, with an average sum of 1.02.

The present model, however, does not generally agree with
the standard theory of upper and lower probability. To illustrate
the discrepancy, suppose 4 and B are mutually exclusive and C”
= (A V BY. The standard theory requires that P,(4, ) + Py(B,
B) = P,(C, C), whereas the present account suggests the oppo-
site inequality when C is implicit. The data clearly violate the
standard theory: The average lower probabilities of winning the
Super Bowl were .21 for Miami and .21 for Buffalo but only .24
for their implicit disjunction (i.e., an AFC team). Similarly, the
average lower probabilities of winning the Super Bowl were .25
for Dallas and .41 for San Francisco but only .45 for an NFC
team. These data are consistent with the present model, assum-
ing the subadditivity of s,, but not with the standard theory of
lower probability.

Prescriptive Implications

Models of subjective probability or degree of belief serve two
functions: descriptive and prescriptive. The literature on non-
standard probability models is primarily prescriptive. These
models are offered as formal languages for the evaluation of ev-
idence and the representation of belief. In contrast, support the-
ory attempts to describe the manner in which people make
probability judgments, not to prescribe how people should
make these judgments. For example, the proposition that
Jjudged probability increases by unpacking the focal hypothesis
and decreases by unpacking the alternative hypothesis repre-
sents a general descriptive principle that is not endorsed by nor-
mative theories, additive or nonadditive.

Despite its descriptive nature, support theory has prescriptive
implications. It could aid the design of elicitation procedures
and the reconciliation of inconsistent assessments (Lindley,
Tversky, & Brown, 1979). This role may be illuminated by a
perceptual analogy. Suppose a surveyor has to construct a map
of a park on the basis of judgments of distance between land-
marks made by a fallible observer. A knowledge of the likely
biases of the observer could help the surveyor construct a better
map. Because observers generally underestimate distances in-
volving hidden areas, for example, the surveyor may discard
these assessments and compute the respective distances from
other assessments using the laws of plane geometry. Alterna-
tively, the surveyor may wish to reduce the bias by applying a
suitable correction factor to the estimates involving hidden ar-
eas. The same logic applies to the elicitation of probability. The
evidence shows that people tend to underestimate the probabil-
ity of an implicit disjunction, especially the negation of an ele-
mentary hypothesis. This bias may be reduced by asking the
judge to contrast hypotheses of comparable level of specificity
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instead of assessing the probability of a specific hypothesis
against its complement.

The major conclusion of the present research is that subjec-
tive probability, or degree of belief, is nonextensional and hence
nonmeasurable in the sense that alternative partitions of the
space can yield different judgments. Like the measured length
of a coastline, which increases as a map becomes more detailed,
the perceived likelihood of an event increases as its description
becomes more specific. This does not imply that judged proba-
bility is of no value, but it indicates that this concept is more
fragile than suggested by existing formal theories. The failures
of extensionality demonstrated in this article highlight what is
perhaps the fundamental problem of probability assessment,
namely the need to consider unavailable possibilities. The prob-
lem is especially severe in tasks that require the generation of
new hypotheses or the construction of novel scenarios. The ex-
tensionality principle, we argue, is normatively unassailable but
practically unachievable because the judge cannot be expected
to fully unpack any implicit disjunction. People can be encour-
aged to unpack a category into its components, but they cannot
be expected to think of all relevant conjunctive unpackings or
to generate all relevant future scenarios. In this respect, the as-
sessment of an additive probability distribution may be an im-
possible task. The judge could, of course, ensure the additivity
of any given set of judgments, but this does not ensure that ad-
ditivity will be preserved by further refinement.

The evidence reported here and elsewhere indicates that both
qualitative and quantitative assessments of uncertainty are not
carried out in a logically coherent fashion, and one might be
tempted to conclude that they should not be carried out at all.
However, this is not a viable option because, in general, there
are no alternative procedures for assessing uncertainty. Unlike
the measurement of distance, in which fallible human judg-
ment can be replaced by proper physical measurement, there
are no objective procedures for assessing the probability of
events such as the guilt of a defendant, the success of a business
venture, or the outbreak of war. Intuitive judgments of uncer-
tainty, therefore, are bound to play an essential role in people’s
deliberations and decisions. The question of how to improve
their quality through the design of effective elicitation methods
and corrective procedures poses a major challenge to theorists
and practitioners alike.
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Appendix

Theorem 1: Suppose P(A, B) is defined for all disjoint 4, B € H,
and it vanishes if and only if (iff) 4’ = . Equations 3-6 (see text) hold
iff there exists a nonnegative ratio scale s on H that satisfies Equations 1
and 2. '

Proof: Necessity is immediate. To establish sufficiency, we define s as
follows. Let E = {4 € H: A’ € T} be the set of elementary hypotheses.
Select some D € E and set s(D) = 1. For any other elementary hypothe-
sis C € E, such that C’' # D', define s(C) = P(C, D)/P(D, C). Given any
hypothesis 4 € H such that 4’ # T, &, select some C &€ E such that 4' N
C’ = ¢ and define s(A) through

s(4) _PA4,0) .
s(C)  P(C,4)°

that is,

P, CYP(C, D)

S = 5. HPD.C)

To demonstrate that s(4) is uniquely defined, suppose B€ Eand 4'N
B’ = (. We want to show that

P, CYP(C, D) _ P(4, B)P(B, D)
P(C,A)P(D,C) PB,APWD, B’

By proportionality (Equation 4), the left-hand ratio equals

P(4,CV B)P(C,D V B)
P(C,AV B)P(D,C V B)

and the right-hand ratio equals

P4,BVv CYP(B,DV C)
P(B,AV CYP(D,BV C)’

Canceling common terms, it is easy to see that the two ratios are equal
iff

P(C,DV B) _P(C,AV B)
P(B,DV C) P(B,AVC)

which hoids because both ratios equal P(C, B)/P(B, C), again by
proportionality.

To complete the definition of s, let s(4) = 0 whenever A’ = . For A’
= T, we distinguish two cases. If 4 is explicit, that is, 4 = B V C for some
exclusive B, C € H, set s(4) = s(B) + s(C). If A is implicit, let s(4) be
the minimum value of s over all explicit descriptions of T.

To establish the desired representation, we first show that for any ex-
clusive A, B€ H, such that 4', B’ # T, &, s(A4)/s(B) = P(A, B)/P(B, A).
Recall that T includes at least two elements. Two cases must be
considered.

First, suppose 4’ U B’ # T; hence, there exists an elementary hypoth-
esis Csuchthat AN C’' = BN C' = &. In this case,

s(4) _ P(4, C)/P(C,A) _ P(4.CV B)/P(C,AV B) _P(4,B)
s(B) P(B,C)/P(C,B) P(B,CV A)/P(C,BVA) P(B,A)

by repeated application of proportionality.

Second, suppose A’ U B’ = T. In this case, there is no C’' € T that is
not included in either A’ or B’, so the preceding argument cannot be
applied. To show that s(4)/s(B) = P(A4, B)/P(B, A), suppose C, DEE
and A NC' =B ND =& Hence,
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s(4) _ sA)sC)s(D)
s(B) s(C)s(D)s(B)

_ P4, O)P(C, D)P(D, B)
P(C, A)P(D, C)P(B, D)

= R(4, C)R(C, D)R(D, B)

= R(4, B) (by the product rule [Equation 5])
= P(A, B)/P(B, A) (as required).

For any pair of exclusive hypotheses, therefore, we obtain P(4, B)/
P(B, A) = s(A4)/s(B), and P(4, B) + P(B, A) = 1, by binary complemen-
tarity. Consequently, P(4, B) = s(4)/[s(4) + s(B)] and s is unique up to
a choice of unit, which is determined by the value of s(D).

To establish the properties of s, recall that unpacking (Equation 6)
yields P(D, C) < P(AV B,C) = P(4, BV C)+ P(B, AV C) whenever

"= A4'U B', A and B are exclusive, and D is implicit. The inequality on
the left-hand side implies that

sD) ____sAVB
s(D)+5(C)  s(AV By +s(C)’

hence, s(D) < s(4 V B). The equality on the right-hand side implies
that

s(AV B) _ s(A) _ s(B)
AV B +s(C) s +s(BVC) s(By+s(4VvC)’

To demonstrate that the additivity of P implies the additivity of s,
suppose A4, B, and C are nonnull and mutually exclusive. (IfA'U B’ =T,
the result is immediate.) Hence, by proportionality,

s(4) _ P(4,B) _ P(A, BV C) _ s(4)/ls(A) + s(BV C)]
s(B) P(B,A) P(B,AVC) sB)[s(B)+sAV O]

Consequently, s(4) + s(BV C) = s(B) + s(4A V C)=s(C) + s(4 V B).

Substituting these relations in the equation implied by the additivity
of P yields s(4 V B) = s(4) + s(B), which completes the proof of
Theorem 1.

Theorem 2: Assume the ordinal model (Equation 11) and the solv-
ability condition. Binary complementarity (Equation 3) and the prod-
uct rule (Equation 5) hold iff there exists a constant k > 0 such that

s(A)

P B) = (G + sBF

Proof: 1t is easy to verify that Equations 3 and 5 are implied by the
power model (Equation 12). To derive this representation, assume that
the ordinal model and the solvability condition are satisfied. Then there
exists a nonnegative scale s, defined on H, and a strictly increasing func-
tion F from the unit interval into itself such that forall 4, BE H,

s(A) ]

P, B) = F[S(A) + s(B)

By binary complementarity, P(4, B) = 1 — P(B, A); hence, F(z) = 1
— F(1 — 2),0 < z < 1. Define the function G by

P(4, B) _ F{s(A)/ls) + s(B)]} _ .
PB A FlsBs® + @y CSAsELE# D

Applying the product rule, with s(C) = s(D), yields G[s(4)/s(B)] =
Gls(A)/s(C)GIs(C)/s(B)}; hence, G(xp) = G(X)G(y), x, y = 0. This
is a form of the Cauchy equation, whose solution is G{(x) = x* (see
Aczel, 1966). Consequently, R(4, B) = s(A)*/s(B)* and, by binary
complementarity,

R(A, B) =

s(A)

P B =Sy + sBF

k = 0 (as required).
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