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Abstract -- The ever-increasing penetration level of renewable 
energy and electric vehicles threatens the operation of the power 
grid. Dealing with uncertainty in smart grids is critical in order 
to mitigate possible issues. This paper proposes a two-stage 
stochastic model for large-scale energy resources scheduling 
problem of aggregators in a smart grid. The idea is to address 
the challenges brought by the variability of demand, renewable 
energy, electric vehicles, and market price variations while 
minimizing the total operation cost. Benders’ decomposition 
approach is implemented to improve the tractability of the 
original model and its’ computational burden. A realistic case 
study is presented using a real distribution network in Portugal 
with high penetration of renewable energy and electric vehicles. 
The results show the effectiveness of the proposed approach 
when compared with a deterministic model. They also reveal 
that demand response and storage systems can mitigate the 
uncertainty. 
 

Index Terms--Benders decomposition, Energy management, 
Energy resources, Large-scale systems, Optimization methods, 
Power generation scheduling, Stochastic systems, Uncertainty 

NOMENCLATURE 
Indices  
b,w Electrical buses 
e Energy storage systems (ESSs) 
i Distributed generation units (DG) 
l Loads 
s Scenarios 
sp External suppliers 
t Timeslot 
v Electric vehicles (EVs)  
Parameters  
  
DGC  Generation cost of DG units [m.u./kWh] 

DischargeC  Discharging cost of ESSs/EVs [m.u./kWh] 

GCPC  Curtailment cost of DG units [m.u./kWh] 

LoadDRC  Load reduction cost [m.u./kWh] 
  
NSDC  Non-supplied demand cost [m.u./kWh] 

SupplierC  External suppliers cost [m.u./kWh] 

BatCapE  Capacity of ESSs/EVs batteries [kWh] 
MinChargeE  Minimum energy stored in ESSs/EVs 

[kWh] 
MP  Market price [m.u./kWh] 

iN  Number of DG units 

eN  Number of ESSs 

lN  Number of loads 
NL  Number of lines 
sN  Number of external electricity suppliers 

vN  Number of EVs 

ChargeLimitP  Maximum charge rate of ESSs/EVs [kW] 

 DGScenarioP  Forecasted generation of non-dispatchable 
DG [kW] 

DGMinLimitP  Min. active power of dispatchable DG [kW]  
DGMaxLimitP  Max. active power of dispatchable DG [kW] 

argDisch eLimitP  Maximum discharge rate of ESSs/EVs [kW] 
LoadDRMaxLimitP  Maximum power reduction of loads [kW] 
MarketOfferMaxP  Maximum offer allowed in market [kW] 
MarketOfferMinP  Minimum offer allowed in market [kW] 
MarketBuyMaxP  Maximum buy allowed in market [kW] 
MarketBuyMinP  Minimum buy allowed in market [kW] 
SMinLimitP  Minimum active power of suppliers [kW] 
SMaxLimitP  Maximum active power of suppliers [kW] 
T  Number of time periods 
Z  Number of scenarios 

1mλ −   Lagranges from slave in m-1 iteration 
∆t Duration of period t (1 = hour) 
π Occurrence probability of scenarios 
cη  Charging efficiency of ESSs/EVs 
dη  Discharging efficiency of ESSs/EVs 

Variables  
StoredE  Energy stored in ESS/EVs [kWh] 
BuyP  Active power bid in market [kW] 
argCh ep  Active power charging of ESSs/EVs [kW] 

Dischargep  Active power discharge of ESSs/EVs [kW] 

DGp  Active power of dispatchable DG [kW] 

LoadDRp  Active power reduction of loads [kW] 

GCPp  Generation curtailment power of DG [kW] 

NSDp  Active power of NSD of load [kW] 

SellP  Active power offer in market [kW] 
  
Supplierp  Active power of external suppliers [kW] 



 

 

 

DGx  Binary variable of state of DG units 
/ESS EVx  Binary variable representing discharging 

state of ESSs/EVs 
Marketx  Binary variable that represents the choice of 

markets 
Supplierx  Binary variable of choosing suppliers 

/ESS EVy  Binary variable representing charging state 
of ESSs/EVs 

ZA Relaxation variable in Benders slave (bus) 
ZF Relaxation variable in Benders slave (lines) 
Sets  

d

DGΩ  Dispatchable DG units 
nd

DGΩ  Non-dispatchable DG units 
b

DGΩ  DG units connected to bus b 
b

EΩ  ESSs connected to bus b 
b

LΩ  Loads connected to bus b 
b

SPΩ   External suppliers in bus b 
b

VΩ  EVs connected to bus b 

I.   BACKGROUND 
Renewable energy sources present a high level of 

variability concerning energy generation. This 
unpredictability should be managed efficiently by smart grid 
(SG) technologies to accommodate high penetration of 
renewable energy. Transactive energy systems can contribute 
to providing the flexibility required by the smart grid, e.g. 
controllable loads, including electric vehicles (EVs) under 
interoperable architectures [1], [2]. This flexibility can be 
provided through energy aggregators, which are meaningful 
for small producers under market-oriented environments [3]. 
To allow efficient and cost effective operation, energy 
aggregators require suitable energy resources management 
(ERM) tools to deal with the increasing number of resources 
and its underlying uncertainty, e.g. EVs and renewables [4], 
[5]. The day-ahead energy scheduling is an important part of 
an ERM system to obtain the expected operation cost (or 
profit) while providing adequate decisions one day in 
advance. However, the energy scheduling is quite challenging 
due to the inherent uncertainties and the high number of 
resources. 

Adopting advanced energy management models that 
consider uncertainty factors are critical for successful 
implementation of SGs. The United States Department of 
Energy (DOE) has identified predictive models to deal with 
stochastic behavior and uncertainty as a top R&D priority [6]. 

The day-ahead problem tackled by this paper is a 
combinatorial problem of large-scale nature when many 
distributed energy resources (DERs) are considered. Due to 
nonlinearity features of the problem, it is usually classified as 
mixed integer nonlinear programming (MINLP). MINLP 
techniques require significant computer resources. The 
computation time needed for solving these types of problems 
is not compatible with the time limitations of short-term 
energy scheduling [7].  

To overcome the computational burden issue, some 
approaches have been proposed in previous research. The 

work developed in [8] adopts Benders’ decomposition 
approach to solve a multi-objective model in day-ahead 
context. The authors were able to reduce the complexity of 
the original MINLP scheduling problem compared to a 
previous formulation proposed in [7]. However, it was found 
later in [9], that the slave problem formulated as an hourly 
distribution power flow in [8] leads to sub-optimal solutions, 
due to temporal dependencies in distributed energy resources. 
Therefore, the work in [9] proposes a multi-period model to 
obtain better results. Furthermore, the work in [8] seems 
limited in the sense that it does not consider demand response 
(DR), renewable generation such as wind or PV, and energy 
storage systems (ESS), which are increasingly important in 
SGs. Although the proposed works have contributed to 
reducing the original problem complexity, uncertainty factors 
have not been considered in the mentioned works [7]–[9] and 
many others presented in the literature [10]–[15]. 

Energy scheduling models that incorporate stochasticity 
have been studied in the literature. In [16], a dispatch 
scheduling approach is proposed for a wind farm using ESSs. 
The results indicate that the ESS can be used to perform a 
joint production schedule and address the forecasting errors 
during the real-time operation. Stochastic energy 
management with compressed air storage integrated with 
renewable generation has demonstrated to be effective in 
[17]. The models developed in [18], [19] focus on 
aggregator’s market strategies and the risks associated with 
their portfolio optimization problems. The authors suggest 
that the model may be decomposable and subject of future 
research [19]. In [20], a stochastic model is proposed to 
address the ERM in hybrid AC/DC microgrids considering 
DERs and uncertainty in EV demand, renewable generation, 
and electricity price. However, DR is not considered in the 
work above and it only considers a small power system (38-
bus) with 8 DG units. The model is adequate for small hybrid 
AC/DC grids whereas the proposed model in this paper is 
targeted to deal with larger grids. In [21], authors present a 
stochastic day-ahead scheduling to address carbon emission, 
generation fuel costs and uncertainties in microgrid operation. 
The work does not incorporate network constraints and the 
experiments are based on a small 3 generator system. The 
work presented in [22] tackles the ERM problem of a 
renewable-based virtual power plant. These models consider 
the uncertainty in electricity prices and renewables, but the 
consideration of resources such as DR, EVs, and V2G 
capacity have been overlooked. The use of energy resources 
(e.g. ESS) can mitigate system uncertainties as demonstrated 
in [4], [16], [17], [22], [23]. Nevertheless, these works do not 
consider EVs and related uncertainties, which are expected to 
grow considerably in next decade. Other works consider the 
EV uncertainty [20], [24] but do not incorporate grid 
constraints. When the grid is included in the stochastic 
models, it is either decoupled or only suited for a small grid 
system with few scheduling units. In this paper, the proposed 
model attempts to overcome this issue by using a stochastic 
Benders’ decomposition, which allows to include network 
constraints, a high number of DERs, EVs and several sources 
of uncertainty in the same model without requiring external 
validation, while still allowing scalability and good results. 



 

 

 

The present research paper takes into account the lessons 
learned from [9], where Benders’ decomposition is proposed 
to address energy resources scheduling considering several 
kinds of DERs and network constraints. In the current 
research, a two-stage stochastic model research is developed 
to incorporate the ability to handle uncertainty factors, which 
were not tackled in [9]. The Benders’ decomposition scheme 
is applied to the two-stage stochastic model to reduce the 
computational burden of the large-scale problem. In addition, 
several modifications to the original optimization model have 
been undertaken to allow the method to handle several 
representative scenarios efficiently. A realistic case study 
using a real 180-bus grid from Portugal with high penetration 
of DERs is used to demonstrate the application of the 
method.  

This paper is structured as follows: Section II represents 
the problem formulations; Section III presents the case study 
used in this work, while Section IV presents the results and 
respective discussion. Finally, the last section presents the 
main conclusions of the paper. 

II.   PROBLEM FORMULATION 
In this section, the two-stage stochastic formulations are 

represented after introducing the approach used for 
uncertainty modeling. 

A.   Uncertainty representation 
The aggregator in this model faces several sources of 

uncertainty, namely the forecast errors of EV fleet 
characteristics, hourly load demands and the generation 
profile of the renewable sources [25]. The uncertainties 
related with these inputs are taken into account in the model 
and the scheduling problem is developed as a stochastic 
scenario-based optimization model. The uncertainties 
associated with the EV fleet characteristics is caused by the 
random driving pattern of the EV drivers and their uncertain 
behavior [25]. 

In this form of problems, where a set of scenarios needs to 
be handled, the main issue is to generate a set of realizations 
for the random variable, which can adequately represent the 
probabilistic characteristics of the data [26]. The initial set of 
scenarios is a large data set generated by the Monte Carlo 
Simulation (MCS) technique for representing power system 
uncertainties. The MCS parameters are the probability 
distribution functions of the forecast errors, which obtained 
from the historical data [26][27]. In order to include the 
forecast error, an additional term which can be positive or 
negative is added to the forecasted profile (xforecasted) 

,( ) ( ) ( ),                 , .s forecasted error sx t x t x t t s= + ∀ ∀
 

(1) 

The error term (xerror,s) is a zero-mean noise with standard 
deviation σ [26], [28]. Scenarios are represented with xs. In 
this model, the forecast errors for the uncertain inputs are all 
represented by normal distribution functions. 

The scenario tree concept can clearly illustrate how the 
discrete outcome for each stochastic input can be combined 
to construct the larger set of scenarios. A scenario tree 
consists nodes that represent the states of the random variable 

at particular time points, branches to show different 
realizations of the variable and the root which shows the 
beginning point where the first stage decisions are made [26]. 
Fig. 1 shows the scenario tree model for the proposed 
scenario-based stochastic programming model [26]. s

nx  refers 
to the nth random variable. Variables can have different 
natures. For instance, 1

sx  may represent load demand and 2
sx  

can denote market prices. The number of the nodes at the 
second stage is equal to the total number of scenarios. The 
occurrence probability of each scenario is equal to the 
product of the branches’ probabilities [26]. 

 
Fig. 1.  Scenario tree representation 

Including all the generated scenarios in the optimization 
problem results in a large-scale optimization problem [26]. 
Generally, there should be a tradeoff between model accuracy 
and computation speed [25], [29]. In order to handle the 
computational tractability of the problem, the standard 
scenario reduction techniques developed in [30] is used. 
These scenario reduction algorithms exclude the scenarios 
with low probabilities and combines those that are close to 
each other in terms of statistic metrics [30]. They determine a 
scenario subset of the prescribed cardinality and probability 
which is closest to the initial distribution in terms of a 
probability metric [27]. The main purpose of scenario 
reduction is to reduce the size of the problem. The number of 
variables and equations are reduced after applying these 
algorithms. Consequently, the solutions can be found more 
efficiently, without losing the main statistical characteristics 
of the initial dataset [31]. However, the potential cost of 
applying these approaches is introducing imprecision in the 
final solution [29]. The reduction algorithms proposed in [30] 
consists of algorithms with different computational 
performance and accuracy, namely fast backward method, 
fast backward/forward method and fast backward/backward 
method.  The selection of the algorithms depends on the 
problem size and the expected solution accuracy [27], [30]. 
For instance, the best computational performance with the 
worst accuracy can be provided by the fast backward method 
for large scenario tress. Furthermore, the forward method 
provides best accuracy and highest computational time. Thus, 
it is usually used where the size of reduced subset is small 
[27]. 

The main decision variables are the optimal day-ahead 
market transactions and the generation scheduling of the 
controllable sources (first stage). They are made taking into 
account possible deviations in the operation, like wind and 
solar power and EVs (second stage). The first-stage decisions 



 

 

 

do not change across the scenarios in the second stage. In 
other words, the decisions to be made one day in advance 
remain unchanged. 

The two-stage stochastic model is decomposed into two 
smaller problems, the master problem and the slave problem. 
The Benders’ decomposition approach is used for 
decomposition to make the model computationally tractable, 
as discussed in subsection B. 

B.   Two-stage stochastic model 
The outputs of this optimization model are the decision 

variables regarding the purchases from the external suppliers, 
optimal bids to the wholesale market and the dispatch of the 
controllable DG units. The total expected operation cost for 
the day-ahead operation, D+1, is represented by (2), 
corresponding to the first-stage operation costs (OC1) and 
second-stage operation costs (OC2) and market transactions 
(MT). Theoretical background on stochastic programming 
models can be found in [32]. 

( ) ( )1 1 2Minimize D
TotalE OC OC E OC MT+ = + +  (2) 

The expected operation cost in the first stage, OC1, is 
represented by (3), which includes the cost of controllable 
DG units and external suppliers’ electricity acquisition: 
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The expected operation cost in the second stage, OC2, is 
represented by (4), which includes the cost of non-
dispatchable DG units, demand response, ESS/EVs 
discharge, non-supplied demand (NSD) and generation 
curtailment power (GCP).  
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The expected cost of the market transactions are 
represented as: 
( )

( )( ) ( , ) ( ) ( , )
1 1

( )
S T

Buy t t s Sell t t s
s t

E MT

p MP p MP s tπ
= =

=

⎡ ⎤⋅ − ⋅ ⋅ ⋅Δ⎣ ⎦∑∑
  (5) 

The “here and now” variables, which are known as first 
stage variable, are pBuy, pSell, pDG, and pSupplier. They are 
determined before the actual uncertainty is revealed. 

    1)   Network grid constraints 
The DC power flow constraints are considered in the 

optimization model (6). The usage of a DC model is justified 
because in many countries, like in Portugal, the distribution 
networks have voltage regulators and capacitors banks 
carefully positioned along the grid in order to keep the 
voltage and reactive power between the desire limits. Thus, in 
this case the complete model would only make the method 
more complex and computationally intractable. Usually, the 
voltage stability is placed at the HV/MV substation level. 
However, in the Portuguese case the MV/LV transformers 
also have voltage regulators. When b=1 in (6), the term 
( )( ) ( )Sell t Buy tp p− is subtracted to the left part of the equation. 
It is assumed that the upstream grid is connected to the 
distribution network at b=1. 
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The maximum admissible line flow is expressed by (7). 

( , )( , , , ) ,
b w

Max
b w t sp p t s≤ ∀  (7) 

    2)   Controllable DG units and the external supplier 

DGx is a binary decision variable, which is 1 when the 
controllable DG unit is determined to be online. Maximum 
and minimum limits for active power in each period t are 
formulated as: 

( , ) ( , ) ( , ) , d
DG i t DG i t DGMinLimit i t DGp x P t i≥ ⋅ ∀ ∀ ∈Ω  (8) 

( , ) ( , ) ( , )           , d
DG i t DG i t DGMaxLimit i t DGp x P t i≤ ⋅ ∀ ∀ ∈Ω  (9) 

The upstream supplier limits in each period t regarding 
active power can be formulated as: 

( , ) Supplier( , ) ( , )    ,Supplier sp t sp t SMinLimit sp tp x P t sp≥ ⋅ ∀ ∀   (10) 

( , ) Supplier( , ) ( , )        ,Supplier sp t sp t SMaxLimit sp tp x P t sp≤ ⋅ ∀ ∀   (11) 

    3)   Energy storage systems constraints 

The charging and discharging status of the ESSs are 
respectively represented by ESSx  and ESSy . Charging and 
discharging cannot occur simultaneously: 

( , , ) ( , , ) 1      , ,ESS e t s ESS e t sx y t e s+ ≤ ∀ ∀ ∀   (12) 



 

 

 

The state of charge of the ESS is characterized as 
follows: 

( )

( , ,z) ( , 1, )

( , , ) ( , , )

( )

1
       , ,

c e

Stored e t Stored e t s

Charge e t s Discharge e t s
d e

E E

p t p t t e sη
η

−= +

Δ − Δ ∀ ∀ ∀⋅ ⋅ ⋅ ⋅
 (13) 

The maximum discharge limit for each ESS is 
represented by: 

( , , ) ( , ) ( , , )         , ,Discharge e t s DischargeLimit e t ESS e t sp P x t e s≤ ⋅ ∀ ∀ ∀   (14) 
The maximum charge limit for each ESS is represented 

by: 

( , , ) ( , ) ( , , )    , ,Charge e t s ChargeLimit e t ESS e t sp P y t e s≤ ⋅ ∀ ∀ ∀  (15) 
The maximum battery capacity limit for each ESS is 

represented by: 
( , , ) ( )           , ,Stored e t s BatCap eE E t e s≤ ∀ ∀ ∀  (16) 

Minimum stored energy to be guaranteed at the end of 
period t is represented by: 

( , , ) ( , ) , ,Stored e t s MinCharge e tE E t e s≥ ∀ ∀ ∀   (17) 

    4)   Electric vehicles constraints 

The EVs are treated as virtual batteries in the proposed 
model. A virtual battery can represent a parking lot or a set of 
EVs located in a given network point, which can be estimated 
in advance. The considered technical constraints are very 
similar to the set of formulations provided for the ESSs. 
However, EVs related constraints are distinguished from ESS  
because some parameters present source of uncertainty due to 
EVs randomness behavior. 

The charge and discharge cannot be simultaneous. 
Therefore, two binary variables guarantee this condition for 
each virtual battery v: 

( , , ) ( , , ) 1      , ,EV v t s EV v t sx y t v s+ ≤ ∀ ∀ ∀   (18) 
The battery balance for each virtual battery v is: 

( « )

( , ,z) ( , 1, )

( , , ) ( , , )

( )

1
       , ,

c e v

Stored v t Stored v t s

Charge v t s Discharge v t s
d v

E E

p t p t t v sη
η

−= +

Δ − Δ ∀ ∀ ∀⋅ ⋅ ⋅ ⋅
 (19) 

The virtual battery charge and discharge limit varies for 
each scenario s, as well as its capacity. This depends on the 
number of EVs in each bus on a given period t. The 
maximum discharge limit for each virtual battery v is 
represented by: 

( , , ) ( , , ) ( , , )         , ,Discharge v t s DischargeLimit v t s EV v t sp P x t v s≤ ⋅ ∀ ∀ ∀   (20) 
The maximum charge limit for each virtual battery v is 

represented by: 

( , , ) ( , , ) ( , , ) , ,     Charge v t s ChargeLimit v t s EV v t s t v sp P y ∀ ∀ ∀≤ ⋅  (21) 
The maximum battery capacity limit for each virtual 

battery v is represented by: 
( , , ) ( , ) , ,          Stored v t s BatCap v s t v sE E ∀ ∀ ∀≤  (22) 

The minimum stored energy to be guaranteed at the end 
of period t is stochastic and is represented by: 

( , , ) ( , , ) , ,Stored v t s MinCharge v t s t v sE E ∀ ∀ ∀≥  (23) 

    5)   Demand response constraints 

Equation (24) formulates a DR load model, namely the 
direct load control. The maximum amount that each load l 
can be reduced in each period t in scenario s is formulated as: 

( , , ) ( , ) , ,         LoadDR l t s LoadDRMaxLimit l t t l sp P ∀ ∀ ∀≤  (24) 

    6)   Electricity market constraints 

The stochastic energy scheduling model is compatible 
with the possibility to make bids (buy or sell) to a wholesale 
market [33]. The energy aggregator may limit the bids within 
certain bounds. In certain electricity markets, there is a 
minimum required amount to access. 

The market offers are constrained by (25) and (26), 
namely maximum and minimum offer: 

( ) ( ) ( )          Sell t MarketOfferMax t MarketSell t tp P x ∀≤ ⋅  (25) 

( ) ( ) ( )          Sell t MarketOfferMin t MarketSell t tp P x ∀≥ ⋅  (26) 
The market bids (buy) are constrained by (27) and (28), 

namely by maximum and minimum amount: 

( ) ( ) ( )          Buy t MarketBuyMax t MarketBuy t tp P x ∀≤ ⋅  (27) 

( ) ( ) ( )          Buy t MarketBuyMin t MarketBuy t tp P x ∀≥ ⋅  (28) 
The market transactions in each period are unique: 

( ) ( )  1      MarketBuy t MarketSell t tx x ∀+ ≤  (29) 

    7)   Non-supplied demand constraint 

The NSD cannot be higher than the forecasted demand in 
scenario s: 

( , , ) ( , , ) ( , , ) , ,         ENS l t s Load l t s LoadDR l t s t l sp p p ∀ ∀ ∀≤ −  (30) 

    8)   Generation curtailment power 

The generation curtailment power of non-dispatchable 
DG units cannot be higher than the predicted amount of 
generation: 

( , , ) ( , , ) , ,              nd
GCP i t s DGScenario i t s DGt sp P i∀ ∀≤ ∀ ∈Ω  (31) 

C.   Benders’ decomposition approach 
J. F. Benders [34] presented in 1962 a decomposition 

methodology to solve mixed integer problems. This method 
is based on the principle of the main problem decomposition 
into sub-problems. Benders decomposition method uses 
duality theory [35] in linear and nonlinear mathematical 
programming to divide a problem whose resolution is 
difficult in sub-problems. These sub-problems consider 
specific variables that are solved iteratively until the optimal 
solution is obtained [34]. The Benders’ decomposition 
approach usually converges in one iteration when the master 
problem is feasible or close to be feasible, i.e. adjusting some 
continuous variables in slave problem to become feasible. 

Benders decomposition technique is adequate to solve 
large-scale problems like the ERM problem. The problem can 
be divided into a master problem and one or more slave 
problems. The master problem is usually classified as a linear 
or mixed integer problem including fewer technical 
constraints. The slave problems are linear or nonlinear and 



 

 

 

attempt to validate if the solution of the master problem is 
technically feasible. In this level, the network technical 
constraints are considered (lines flow (put here the variables) 
and also the thermal line limits (equations (6) and (7))). 

The master problem consists in finding the optimal 
solution without technical validation of the grid constraints, 
namely the lines flow and their thermal limits. A simple 
balance equation is considered instead in the master, i.e. 
generation and consumption must match in each period. In 
the master problem, the binary variables are considered. The 
objective function of the master problem can be formulated 
as (32). In the case that any infeasibilities are found, one 
variable is added to the master problem, namely α, which is 
designated by Benders’ cuts. 

1Minimize ( )D
TotalE OC α+ +   (32) 

The Benders’ cut is added in each iteration m if any 
infeasibility is found in the slave problem. It is represented 
as: 
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(33) 

The objective function of the slave problem is represented 
by (34), where the operation cost (1) and the relaxation 
variables ZA and ZF are minimized. 
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Slack variables ZA (for power balance – first Kirchhoff 
law) and ZF (thermal line capacity) can take any value to 
make the optimization problem feasible. The value of these 
variables represents how much some constraints are being 
violated. The slave sub-problem cannot change the binary 
variables but is free to explore the continuous variables in 
order to satisfy the several constraints, while minimizing the 
objective function and the value of the slack variables. 

The slave problem (35) represents the power flow balance. 
When b=1, the term ( )( ) ( )Sell t Buy tp p− is subtracted to the left 
part of the equation. 
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In, addition the line power flow is relaxed by ZF if 
congestion is verified as shown in (36): 

( , )( , , ) ( , , ) b w

Max
b w t b w tp ZF p t+ ≤ ∀  (36) 

D.   Evaluation metrics 
The benefits of the stochastic programming are evaluated 

through well-known indices, such as the expected value of 
perfect information (EVPI) and the value of stochastic 
solution (VSS) [35]. The EVPI represents the amount that the 
decision maker is not able to gain due to the presence of 
imperfect information, e.g. forecasts. It is useful to evaluate 
how the uncertainty factors affect the evaluated optimal 
problem. On the other hand, the VSS represents the 
advantage of using stochastic programming over a 
deterministic approach [35]. EVPI for minimization problems 
can be represented by (37). The stochastic solution, 
represented by ZS* is calculated by the stochastic 
programming approach and represents the total expected cost 
(1). ZP* represents the wait-and-see solution (WSS). The WSS 
can be obtained by using the deterministic approach for each 
scenario. Then, WSS is computed by multiplying the 
individually obtained cost by each scenario probability. 

S* P*EVPI z z= −  (37) 
The VSS for minimization problems is represented as 

follows:  
D* S*VSS z z= −  (38) 

where ZD* is the optimal value of the modified stochastic 
problem. It is a deterministic version of the original problem 
with an average scenario. The optimal decision variables of 
the original stochastic problem are considered as input in the 
modified problem. 

III.   CASE STUDY 
In this section, a case study is presented to demonstrate 

how the proposed methodology is applied. A real distribution 
network from Portugal with 180 buses, 30kV and one 
substation [9] adapted to a future scenario is used in this 
paper. The network presents 90 load points, 5 parking lots for 
EVs, 116 DGs, one external supplier and 7 ESSs. The 
parking lots are distributed per 5 buses (3, 69, 96, 107 and 
161). A subset of the original data was used from previous 
work [9], in which the EVs have been aggregated by bus, 
namely the aforementioned electrical buses. The external 



 

 

 

supplier is located at bus 1 corresponding to the substation 
location. DR with DLC contracts is considered in the case 
study. DLC cost considered is 0.02 m.u./kWh. The discharge 
prices of the EVs and ESSs are respectively 0.18 m.u./kWh 
and 0.01 m.u./kWh. The ESSs’ initial energy level is 
considered zero. The considered wholesale market price 
forecast is presented in Fig. 2. The uncertainty of the market 
price forecast1 is also illustrated in the figure. The prices and 
the capacities of DGs are based on the projections presented 
in [36]. Wind and solar power forecast, as well as the demand 
forecast are presented in Fig. 3. 

5000 initial scenarios are generated and reduced to 150 
scenarios using GAMS/SCENRED. As shown in Fig. 3, the 
wind and solar power generation forecast for period 12 varies 
between 2.59 MW and 3.01 MW, based on the generated 
scenarios. The maximum standard deviation values for the 
considered uncertainty variables (demand, electricity market 
price, parking lots capacities, parking lots charge and 
discharge) are 15%, 10%, 35%, 35% and 35% respectively. 
The minimum values are respectively 8%, 6%, 20%, 20%, 
20%.  
 

 
Fig. 2.  External supplier price and forecast of wholesale market price 

 
Fig. 3.  Wind, solar and demand forecast 

Fig. 4 depicts the box plot for the EVs battery capacity 
uncertainty in period 18. For instance, at parking lot 1, 
located at bus 3, it is possible to see a considerable 
uncertainty, varying between 0.05MW and a little more than 
0.45MW. Around 50% of the values are located between 
0.20MW and around 0.30MW, corresponding to the 
interquartile range. 25% of the values varying between 
0.05MW and 0.20MW are located in the first quartile (Q1). 
Values between 0.05MW and 0.30MW (75% of the values) 
are in the third quartile (Q3). 

The energy resources data and prices are shown in Table I. 
                                                             

1 The electricity market price has been obtained in http://www.omie.es  

The market amount is set to 2 MW in to limit the exposure of 
the energy aggregator to higher levels of uncertainty. 

The following four case studies are presented to show the 
impact of using storage and DR in the ERM, regarding the 
mitigation of uncertainty: A – ESS and DR are considered; B 
– ESS and DR are not considered; C – ESS is considered and 
DR is not; D – DR is considered ESS is not. 

 
Fig. 4.  Uncertainty of EVs battery capacity for period 18 

The proposed research work was developed in MATLAB 
R2014b and TOMLAB 8.1 64 bits with CPLEX solver 
(version 12.5) using a computer with one Intel Xeon E5-2620 
v2 processor and 16 GB of RAM running Windows 10 Pro. 

 
TABLE I 

CHARACTERIZATION OF 180-BUS DISTRIBUTION NETWORK 

Energy resources Prices 
(m.u./MWh) 

Capacity 
(MW) 

Forecast 
(MW) Units 

 min–max min–max min-max 
Biomass 130–130 0.02–6.23  17 

Photovoltaic 150–150  0.00–0.36 44 
Wind 90–90 0.00–0.69 55 

External Supplier 100–160 0.05–5.00  1 

Storage Charge 0–0 0.00–1.20 7 Discharge 10–10 0.00–1.20 
Parking 

lots 
Charge 130–130 0.31–1.01 5 Discharge 180–180 0.31–1.00 

Demand 
Response 

Reduce 
program 20–20 0.00–5.64 90 

Load 160–160  0.56–14.09 90 
Market buy and sell 45–84 0.00–2.00  1 

IV.   RESULTS AND DISCUSSION 
The proposed two-stage stochastic model is applied to 

solve the ERM problem in the case studies. The optimization 
problem with 150 scenarios deals with 1,239,721 variables, 
of which 86,832 are integer variables and 215,188 
constraints. 

Table II presents the peak memory and the execution time 
for stochastic Benders’ decomposition. The execution times 
are compatible for the available timeframe in the decision-
making process. Each case presents an execution time less 
than an hour. To evaluate the impact on computer system 
resources, a memory test was made. The used tool for this 
test was MATLAB memory profiler. This command report 
the peak memory for each function used in the methodology 
developed code. As shown in Table II, higher peak memory 
was verified in case A. Even the peak memory doesn’t 
exceed 1GB in this case. So, the proposed research work is 
compatible with a wide range of available computers in the 
market. 



 

 

 

TABLE II.  
PEAK MEMORY AND EXECUTION TIME FOR EACH CASE 

Case Peak memory 
(MB) 

Execution time  
(seconds) 

A 960 3,351 
B 687 2,154 
C 895 2,676 
D 890 2,618 

Fig. 5 and 6 respectively present the biomass and external 
supplier generation power for the four considered cases. 
Regarding biomass generation, the most considerable 
changes are during the periods 1-2, 8-9 and 23-24. Regarding 
the external supplier, the changes are verified for the cases 
without ESSs (i.e., B and D). The change is a reduction of the 
generated power in some periods of the day, because the ESS 
is not charged in these cases.  

 
Fig. 5.  Biomass generated power for the considered cases 

 
Fig. 6.  External supplier generated power for the considered cases 

The values of the quality indices are shown in Fig. 7. The 
cost for stochastic and deterministic models are also shown in 
this figure. It is possible to see that the lower cost is verified 
when ESS and DR are available. The case without both 
resources have higher costs for both stochastic (47,208 m.u.) 
and deterministic (48,668 m.u.) models. For cases C and D, 
the costs for stochastic model are similar, but in the 
deterministic model the costs are 8.85% higher when the ESS 
is not available. Results also suggest that ESS contributes to 
avoid a higher cost when the deterministic model is used 
(case C). In case D, the DR resource is not as effective as 
ESS in case C. The comparison between cases C and D is a 
good proof of the previous statement, where the VSS is 
higher in case D (11.75%) which means that without ESS the 
stochastic model is more important to achieve lower expected 
costs mitigating the uncertainty. 

Fig. 8 depicts the results of the stochastic scheduling of 
energy resources for cases A and B. Regarding the wind and 
solar, the quantified uncertainty is 6.4MWh (cases A and B). 

This quantity represents the most probable variable amount. 
In case A, the ESS and parking lots discharge and DR 
presents an uncertainty of 11.29MWh, 1.24MWh and 
7.81MWh respectively. The minimum expected values are 
0.47MWh for ESS discharge and zero for the other two 
resources. For case B, the uncertainty of parking lot discharge 
is 2.8MWh and the minimum expected value is zero. In this 
case study, it was verified that the market results do not 
change. The market bid result is 2 MW during each period, 
which corresponds to the maximum amount that it can bid in 
the market (imposed in this case study). 

 

 
Fig. 7.  EVPI and VSS for the considered cases 

 
Fig. 8.  Stochastic scheduling of energy resources for the case A and B) 

V.   CONCLUSIONS 
A two-stage stochastic model using Benders’ 

decomposition was proposed to solve the challenging 
problem of considering several sources of uncertainty in an 
integrated model and with network validation. The network 
constraints are validated for each scenario in the Benders’ 
slave problem. The results indicate that the problem 
complexity can be reduced if the EVs are adequately 
aggregated instead of decentralized control. Therefore, it is 
possible to increase the scalability of the model and consider 
several uncertainty sources. The results also reveal that the 
increasing levels of uncertainty can be mitigated either with 
ESS or DR. In fact, the costs have been decreased by around 
40% when ESS and DR have been both considered in the 
case study. In this particular case, the ESS also reduced the 
impact of uncertainty more effectively than DR.  

Future work should address how the nonlinearities can be 
tackled in the proposed stochastic model. New research may 
be based on hybrid versions of decomposition approaches, 
such as Dantzig-Wolfe or even evolutionary algorithms. 
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