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1 Comparisons with other software7

PhyloJunction’s (PJ) simulation code was compared to independently implemented counterparts whenever8

possible, which in some cases included multiple software packages. The latter included packages written in9

R, such as geiger [6], diversitree [2], phytools [7], TreeSim [9], and FossilSim [1], as well as in Java,10

such as MASTER [11]. As mentioned in the main text, each of those tools is unique in its conditioning of11

diversification models and filtering of simulated output.12

Comparisons under different models (Supplementary Figs. 1, 2, 3, 4, 5, and 6) were carried out in13

multiple arbitrary regions of parameter space (Supplementary Tables 1 to 4). Deciding which programs to14

compare in each scenario was largely determined by our perceived ability to match the model assumptions15

and output parsing of different simulators.16

2 Machine learning example with PhyloJunction17

We used phyddle [4] to train neural networks for phylogenetic parameter estimation using PhyloJunction18

as a simulator. phyddle is a Python package to design, manage, and deploy deep learning pipelines for19

phylogenetic modeling tasks.20

Phylogenetic trees were simulated under a piecewise constant time-heterogeneous BiSSE model (Supple-21

mentary Table 5). The BiSSE process was set to start at t = 0.0 and terminate at t = 10.0, with the lineage22

1PJ implements the “simple sampling approach” (SSA; see Stadler, 2011)
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Supplementary Figure 1: Summaries of data sets simulated under the birth-death model with PhyloJunction

(PJ), and the geiger, phytools and diversitree R packages. Quantities are summarized from complete
(i.e., including extinct taxa) trees, assuming perfect sampling. Summaries include (a, c) root ages, and (b,
d) total taxon count. Each violin plot comprises 100 values, each corresponding to the focal statistic (e.g,
root age) averaged over 100 trees. Parameter settings are detailed in Supplementary Table 1.

birth rate in state 0 differing before and after time t = 8.0. Only extant taxa were retained for training.23

Datasets with fewer than 10 or more than 500 taxa were rejected and re-simulated.24

We used phyddle to run a standard phylogenetic deep learning pipeline. Our pipeline used a small25

Python script and PhyloJunction to simulate 100,000 datasets and then converted them into tensor-format26

using a compact phylogenetic-state vector representation. This representation uses a compact diversity-based27

ladderization for extant-only phylogenies and an expansion of character state rows [12, 3, 10]. A subset of28

examples were next used to train a neural network to estimate λ0 in epochs 1 (0 ≤ t < 8)) and 2 (t ≥ 8)29

using a mean-squared error loss function, as well their corresponding conformalized prediction intervals using30

a pinball loss function [8]. phyddle used its default settings with PyTorch [5] to design the network layers,31
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Supplementary Figure 2: Summaries of data sets simulated under the fossilized birth-death (FBD) model
with PhyloJunction (PJ) and the FossilSim R package. Quantities are summarized from complete (i.e.,
including extinct taxa) trees, assuming perfect sampling. Summaries include (a) root ages, and (b) direct
ancestor taxon count. Each violin plot comprises 100 values, each corresponding to the focal statistic (e.g,
root age) averaged over 100 trees. Parameter settings are detailed in Supplementary Table 1.

apply activation functions, and train the network. Training was terminated when the summed loss score of32

a separate validation dataset increased across three consecutive training epochs, i.e., to prevent overfitting.33

We then used the trained network to estimate model parameters and prediction intervals for a batch of new34

250 simulated data points that were withheld from the training procedure.35

Neural networks trained using phyddle with PhyloJunction as a simulator accurately estimated the two36

targeted birth rate parameter values (Supplementary Fig 7).37
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Supplementary Table 1: Model configurations used in PhyloJunction validation. Dots denote parameters
that do not apply to a given model. “BD” stands for birth-death, “FBD” for fossilized birth-death and
“BiSSE” for binary state-dependent speciation and extinction models.

Tree
model

Parameter
setting

λ or λ0, λ1 µ ψ q01, q10
Max.
age

Max.
extant
taxon
count1

Start
from

BD 1 1.0 0.8 · · · 10 Root
2 1.0 0.8 · · · 30 Root
3 1.0 0.5 · · · 10 Root
4 1.0 0.5 · · · 30 Root
5 1.0 0.8 · · 1.0 · Origin
6 1.0 0.8 · · 2.0 · Origin
7 1.0 0.5 · · 1.0 · Origin
8 1.0 0.5 · · 2.0 · Origin

FBD 1 1.0 1.0 2.0 · 1.0 · Origin
2 2.0 1.0 2.0 · 1.0 · Origin
3 1.0 1.0 4.0 · 1.0 · Origin
4 2.0 1.0 4.0 · 1.0 · Origin

BiSSE 1 1.0, 0.75 0.5 · 0.25, 0.75 5.0 · Origin
2 1.0, 0.75 0.5 · 0.5, 0.5 5.0 · Origin
3 1.0, 0.75 0.5 · 0.75, 0.25 5.0 · Origin
4 1.0, 0.75 0.5 · 1.0, 0.0 5.0 · Origin

Supplementary Table 2: Geographic state-dependent speciation and extinction (GeoSSE) model configura-
tions used in PhyloJunction validation. Processes started at the origin, stopped at a maximum age of 4.0,
and were conditioned on the survival of at least one living taxon. (parameter names within parentheses
follow ‘diversitree”s notation).

Tree
model

Parameter
setting

λ1 (sA) λ2 (sB) λ0,1,2 (sAB) µ1 (xA) µ2 (xB) q1,0 (dA) q2,0 (dB)

GeoSSE 1 1.25 1.25 0.75 1.0 1.0 1.0 1.0
2 1.25 1.25 1.0 1.0 1.0 1.0 1.0
3 1.25 1.25 1.25 1.0 1.0 1.0 1.0
4 1.25 1.25 1.5 1.0 1.0 1.0 1.0

Supplementary Table 3: Time-heterogeneous Yule model configurations used in PhyloJunction validation.
All model configurations specified processes starting at the origin, and stopping at a maximum age of 6.0.
All epoch starting times t are defined in forward time units, with t0, t1 and t2 corresponding to the starts of
the first, second and third epochs, respectively. Each epoch, from oldest to youngest, was specified its own
birth-rate, λ0, λ1, and λ2.

Tree
model

Parameter
setting

t0 t1 t2 λ0 λ1 λ2

Yule 1 0.0 1.0 2.0 2.0 0.5 0.1
2 0.0 1.0 3.0 2.0 0.5 0.1
3 0.0 1.0 4.0 2.0 0.5 0.1
4 0.0 1.0 5.0 2.0 0.5 0.1
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Supplementary Figure 3: Summaries of data sets simulated under the binary state-dependent speciation
and extinction (BiSSE) model with PhyloJunction (PJ) and the diversitree R package. Quantities are
summarized from complete (i.e., including extinct taxa) trees, assuming perfect sampling. Summaries include
(a) number of taxa at state 0, (b) number of taxa at state 1, and (c) root ages. Each violin plot comprises 100
values, each corresponding to the focal statistic (e.g, root age) averaged over 100 trees. Parameter settings
are detailed in Supplementary Table 1.

Supplementary Table 4: Time-heterogeneous binary state-dependent speciation and extinction (BiSSE)
model configurations used in PhyloJunction validation. All model configurations specified processes starting
at the origin, and stopping at a maximum age of 6.0. All epoch starting times t are defined in forward time
units, with t0 and t1 corresponding to the starts of the first and second epochs, respectively. Birth-rates and
transition rates were kept contant across epochs. Each epoch, from oldest to youngest, was specified its own
death-rate for state 1, µ1

1.
Tree

model
Parameter

setting
t0 t1 λ00 λ00 µ0

0 µ0
1 µ1

0 µ1
1 q00,1 q00,1 q10,1 q10,1

BiSSE 1 0.0 2.0 1.1 1.2 1.0 0.0 1.0 0.85 0.0 0.0 1.0 0.5
2 0.0 3.0 1.1 1.2 1.0 0.0 1.0 0.9 0.0 0.0 1.0 0.5
3 0.0 4.0 1.1 1.2 1.0 0.0 1.0 0.95 0.0 0.0 1.0 0.5
4 0.0 5.0 1.1 1.2 1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.5
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Supplementary Figure 4: Summaries of data sets simulated under the geographic state-dependent speciation
and extinction (GeoSSE) model with PhyloJunction (PJ) and the diversitree R package. Quantities
are summarized from complete (i.e., including extinct taxa) trees, assuming perfect sampling. Summaries
include (a) root ages, (b) number of taxa at state 0, (c) number of taxa at state 1, and (d) number of taxa
at state 2. Each violin plot comprises 100 values, each corresponding to the focal statistic (e.g, root age)
averaged over 100 trees. Parameter settings are detailed in Supplementary Table 2.

Supplementary Table 5: Time-heterogeneous BiSSE model used in training data simulations. Birth rates for
state 1 (λ1), death rates (µ’s) and state transition rates (q’s) are the same across epochs.

Parameter Prior or value
λ0 (epoch 1) Uniform(0.5, 1.0)
λ0 (epoch 2) Uniform(1.0, 2.0)

λ1 0.5
µ0 = µ1 0.1
q01 = q10 0.2
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Supplementary Figure 5: Summaries of data sets simulated under a time-heterogeneous Yule model with
PhyloJunction (PJ) and the MASTER BEAST 2 package. Quantities are summarized from perfectly sampled
trees. Summaries include (a) root ages, and (b) total taxon count. Each violin plot comprises 100 values,
each corresponding to the focal statistic (e.g, root age) averaged over 100 trees. Parameter settings are
detailed in Supplementary Table 3.
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Supplementary Figure 6: Summaries of data sets simulated under a time-heterogeneous binary state-
dependent speciation and extinction (BiSSE) model with PhyloJunction (PJ) and the MASTER BEAST
2 package. Quantities are summarized from complete, perfectly sampled trees. Summaries include (a) root
ages, (b) number of taxa at state 0, (c) number of taxa at state 1. Each violin plot comprises 100 values, each
corresponding to the focal statistic (e.g, root age) averaged over 100 trees. Parameter settings are detailed
in Supplementary Table 4.
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Supplementary Figure 7: Neural network-based parameter estimates for a time-heterogeneous BiSSE model.
Results were produced using phyddle with PhyloJunction as the training dataset simulator. For the sake of
visual clarity, with show only the first 50 (out of 250) parameter estimates. Training examples were simulated
under a BiSSE process (starting at time t = 0.0 and ending at time t = 10.0) where lineage birth rates in
state 0 (λ0) differ between time interval 0.0 ≤ t < 8.0 (epoch 1) and t ≥ 8.0 (epoch 2). All remaining model
rates are constant within each time interval (details in text). Estimated birth rates (y-axis) predict true
simulated birth rates (x-axis) for a test dataset that was not used to train the network. The diagonal dashed
line is the identity line and represents perfect parameter estimation. Conformalized predictive intervals
(bars) were trained to contain the true simulated value with frequency 0.8. Individual intervals are colored
in blue if they contain the true value (i.e., if they cross the diagonal dashed line), and in red otherwise.
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