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ABSTRACT

An increase in the total quantity of waste produced on a global
scale has severe repercussions for the ecosystem, including
health risks for individuals and environmental damage. This
increase is directly correlated with urban development in
recent decades, making all member states of the European
Union (EU) responsible for complying with waste manage-
ment regulations. The detection of waste dumps represents
the essential component of waste management, and satellite
data provide the ability to monitor it. However, expensive,
very high-resolution images are needed for proper identifica-
tion. This paper proposes a super-resolution (SR) workflow
to increase the readability of low-resolution but accessible
satellite data (Sentinel-2). We assess the workflow for the
specific use case of waste dump detection in Romania (in-
cluding seven major cities). We also analyze several dataset
pre-processing techniques and 18 popular Deep Learning
(DL) models, providing valuable insight into super-resolution
applications for waste management.

Index Terms— super-resolution, waste management,
deep learning, Sentinel-2, Spot 6/7.

1. INTRODUCTION

The increased quantity of waste has become a prominent con-
cern at a global level. One reason waste accumulates is ris-
ing income in industrialized countries, which leads to increas-
ing product consumption. Waste management was addressed
at the EU level to reduce municipal waste to 10% at most.
Therefore, action should be taken in conjunction with each
municipality. Romania faces similar challenges as other EU
countries, as waste detection on site is laborious or even inac-
cessible in some regions.

Earth Observation (EO) data offers a viable solution for
waste detection due to its temporal and spatial resolution.
Several research studies applied Artificial Intelligence (AI)
techniques for waste detection, with good results obtained
from high-resolution data. Illegal waste is the most difficult
type of garbage dump to identify due to its small area and ir-
regular shape. Nevertheless, it is a priority to detect to prevent
further damage created by it.

However, the high cost and low temporal resolution of
commercial high-spatial-resolution satellite imagery have
made it challenging to develop and implement an operational
waste identification/monitoring service based on satellite
imagery. Therefore, generating synthetic high-resolution im-
ages using super-resolution techniques solves this issue. By
improving the visual experience while decreasing pixelation,
these models provide experts with actionable data, allowing
them to distinguish more minor features on the ground and
contributing to more effective decision-making.

The goal of this paper is to provide support for the ac-
tual task of waste detection, by super-resolving the images.
We created the dataset around the use-case of interest, and it
incorporates satellite images of urban periphery and agricul-
tural areas, that include areas with waste dumps. Next, we
conducted an analysis and established a benchmark of super-
resolution methods applied to satellite data, focusing on the
performance of the super-resolved waste areas. However, we
argue that the results obtained in this paper may also be ap-
plicable in other contexts, with similar particularities of the
data.

Even though numerous approaches have been proposed
in the super-resolution field (especially in Computer Vision),
the remote sensing (RS) community still lacks benchmark
datasets and results, which are both greatly needed to assess
the efficacy of super-resolution models on EO data. The cur-
rent use-case alongside its data particularities, is not repre-
sented at the moment, to the best of our knowledge. The
multispectral and temporal characteristics of EO data raise
additional challenges compared to classic Red, Green, Blue
(RGB) data. Therefore, specific guidelines and a baseline
must be established to progress in the EO super-resolution
domain. The main contributions of this paper are as follows:

1. We detail the steps of creating a regional dataset for SR,
including two sensors, making it easy to reproduce or
extend in any other area.

2. We assess the transformations needed to be applied on
the input pair of LR-HR to optimise the performance of
our models, resulting in valuable knowledge useful in
similar super-resolution applications.

3. We provide a benchmark of 18 popular DL models for
SR and create the first and most comprehensible bench-
mark on super-resolution using multisensor data.
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Fig. 1: Proposed workflow for applying super-resolution on Romania cities

4. We analyse the capabilities of the models to learn
colour mappings across sensors and to super-resolve
the input image for Romania and illegal waste dumps.

2. SUPER-RESOLUTION DATA

As with other DL methods, super-resolution algorithms re-
quire many sample data to train. Worldstrat[3] and MuS2[4]
are the largest two-sensor datasets for SR that permit an up-
sampling factor of 4. Both datasets use Sentinel-2 as their
LR image but differ in the choice of HR data. Worldstrat
uses Spot 6/7, and MuS2 is based on WordView-2. However,
the gap for a super-resolution dataset remains, as Worldstrat
and MuS2 are intended for noncommercial use only. Also, to
our knowledge, there is no open-source dataset for a specific
super-resolution use case ( e.g. waste detection) or a partic-
ular region (e.g. Romania). Therefore, super-resolution on
satellite data remains a challenging task. The following sec-
tions detail how we created our two sensors dataset for Ro-
mania, focusing on illegal waste dumps.

2.1. Study Area

In this study, we aim to super-resolve the illegal waste dumps
around the cities in Romania. The proposed study region in-
cludes seven cities in Romania (Alba Iulia, Brasov, Bucharest,
Deva, Sibiu, Sighisoara and Suceava). As Spot-6/7 has no
fixed rate of revisitation, we acquired a Spot-6/7 image for
each city in 2020 to meet our requirements. Next, we down-
loaded a corresponding Sentinel-2 L2A tile for each HR im-
age, with the closest acquisition time, to create our super-
resolution dataset pairs of LR and HR.

To our knowledge, there are no open datasets for illegal
waste dumps. Our experts have manually identified illegal
waste dumps in two cities (Alba Iulia and Bucharest). In our
experiments, we include all seven cities, as we argue that it
provides additional training information, which improves the
final performance of super-resolution.

2.2. Dataset Creation

Creating pairs of LR/HR images is challenging due to the
different acquisition sensors. Most SR applications follow a
downsampling technique applied to HR to obtain the LR im-
age. This technique is applied in the Computer Vision (CV)
and RS domains. Given the constraints of increased avail-
ability of LR input data instead of HR images, we proceed
with the use-case of SR across sensors. The challenges in
preprocessing the two data are 1)time matching; 2) spatial ex-
tend; 3) co-registration; 4) spectral differences. In the work-
flow proposed in Figure 1, we present the main steps to create
pairs of LR / HR images, that also incorporate the areas with
waste dumps. First, we applied pansharpening on the Spot 6/7
tile to obtain a 4-band (Red, Green, Blue, NIR) image at 1.5
m resolution. Second, we downsample the Spot data to 2.5
m spatial resolution. Doing so achieves the desired upsam-
pling factor of 4 between the Sentinel-2 tile at 10 m and Spot
6/7. The Spot 6/7 image covers a much smaller area than the
Sentinel-2 tile. Therefore, we cropped the Sentinel-2 images
to the same spatial extent as their corresponding HR. Finally,
since different sensors acquire the LR and HR images, we co-
register each pair to align pixels properly. We used Sentinel-2
as the reference image for each pair because the Spot image
is absent during the inference stage.

2.3. Data Pre-processing for Deep Learning

Patching & Splits Creation: Patching of the input data is
commonly used in CV, especially when working with DL
models, due to hardware memory limitations. For the exper-
iments carried out in this paper, we patch the original data
into 32 × 32-pixel size (LR image) and 128 × 128-pixel size
(HR image) without overlap. We randomly split the patches
into training, validation, and testing, keeping a proportion of
80%-10%-10% from the total patches for each city. By doing
so, we ensure to capture the characteristics of every city in
all the splits. Next, we redistribute the patches containing the
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illegal waste dumps (Alba Iulia and Bucharest) to ensure they
are present in all the splits (Table 1).

City No. train patches No. val patches No. test patches
Alba Iulia 244 (1) 31 31 (2)
Brasov 307 38 39
Bucharest 1120 (6) 140 (1) 140 (1)
Deva 156 20 20
Sibiu 374 47 47
Sighisoara 72 9 10
Suceava 153 19 20
Total 2426 (7) 304 (1) 307 (2)

Table 1: Patches distribution across splits (train, validation
and test) for each city. The number in parentheses represents
the number of illegal dumps for each split.

Spectral Transformations: Our LR and HR images have
different acquisition sensors, which results in a different band
number with a distinct value range, even for the common
bands. The SR model learns the mapping between the LR-
HR images, including colour mapping and super-resolve from
LR-HR. We have applied a normalisation step in all proposed
experiments to help the models converge faster and achieve
better results. Although standardisation or min/max normal-
isation are popular choices in CV, we apply linear normali-
sation using the 1st and 99th percentiles, with a range [0,1].
By doing so, the normalisation becomes less sensitive to the
outliers present in satellite data. Next, we apply a histogram
matching transformation to calibrate HR (Spot 6/7) to LR
(Sentinel-2). Figure 2 illustrates the range of values for the
Red channel and corresponding changes.

3. METHODS

3.1. Deep Learning for Super-Resolution

Super-resolution datasets are made up of pairs of a LR im-
age and an HR image. Applying super-resolution on RS data
usually involves a technique widely used in Computer Vision:
synthetically creating an LR image by downsampling the HR
image. However, this method is challenging to apply in real-
world scenarios where LR data is primarily available and ac-
cessible (such as Sentinel-2), with missing HR data (such as
Spot 6/7). Therefore, the deep learning network must learn
how to super-resolve the LR image and the colour mapping
between LR and HR.

Fig. 2: Histogram from one training sample patch: a) LR b)
HR c) HR after histogram matching (log scale)

Recent studies focused on assembling the advances in SR
for hyper-spectral data [2], which shows the need to estab-
lish a benchmark for super-resolution in RS. However, mul-
tispectral data, such as Sentinel-2, have different properties,
given fewer bands. Moreover, the previous reviews did not ac-
count for multi-sensor LR-HR. In the proposed experiments,
we pair two different sensors (Sentinel-2 and Spot 6/7); there-
fore, the task becomes more challenging.

Fig. 3: Analysed models grouped by categories as in [1]
This paper proposes the first benchmark experiments on

SR using 18 distinct models for single image super-resolution
(SISR) applied to multi-sensor remote sensing data. Models
differ by their main characteristics and are grouped into seven
different categories (Figure 3), as in [1]. We include models
from both categories of input handling: LR is first upsam-
pled and then fed into the network or directly using the LR as
input. The novelty of this work also comes from the experi-
mental setting, which includes three types of channel combi-
nations using the four common bands: Red (R), Green (G),
Blue (B), Nir (NIR). First, we experiment with each channel
individually to identify the possible problematic bands. This
experiment is also based on the idea that most models were
designed to work with one band (the Y channel from classic
RGB images). Second, we experiment with the correspond-
ing RGB channels and third, with the RGBNIR combination
to assess the model’s performance when the input consists of
multiple bands. To our knowledge, this paper presents the first
experimental evaluation of the necessity of including sensor
calibration (e.g. histogram matching) as preprocessing.

4. RESULTS

Table 2 presents the results of the proposed experiments, in-
cluding the 18 models, the three-channel-type combinations,
and without or with histogram matching as pre-processing
step. We present the results from both a visual perspective
and with popular SR metrics (PSNR and SSIM). We argue
that the results obtained in this study may be further applied
in illegal waste dumps or generic super-resolution as we pro-
pose a visual and metric baseline.

Single-band experiments reveal that the NIR band is prob-
lematic for all models, achieving the lowest score among all
bands. This indicates a larger difference between the repre-
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Model
l
Train
param

Red Green Blue NIR True Color True Color NIR
lin norm hst+lin norm lin norm hst+lin norm lin norm hst+lin norm lin norm hst+lin norm lin norm hst+lin norm lin norm hst+lin norm
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SRCNN 57.3 K 18.95 0.4337 19.9 0.4051 18.01 0.3572 19.06 0.3402 16.97 0.2499 19.31 0.2752 16.72 0.3873 14.57 0.2841 18.52 0.3721 20 0.3623 17.97 0.3736 16.84 0.3347
FSRCNN 12.8 K 18.46 0.3962 19.49 0.3825 17.7 0.3305 18.92 0.3237 16.69 0.2237 18.86 0.2619 15.73 0.3214 13.92 0.2462 17.89 0.331 19.68 0.3404 17.17 0.3156 15.64 0.3051
REDNet 1.0 M 18.95 0.4314 19.88 0.4072 17.82 0.3524 19.19 0.3464 16.99 0.2468 19.22 0.2735 16.68 0.3842 15.27 0.2878 18.33 0.3554 20.05 0.362 17.42 0.3627 15.8 0.3205
VDSR 664 K 17.42 0.4028 19.44 0.3848 16.04 0.3378 18.29 0.3204 15.88 0.2306 18.99 0.2596 15.64 0.384 14.3 0.2837 18.29 0.3633 19.992 0.3598 17.57 0.3679 16.27 0.3319
DRCN 423 M 16.56 0.2763 18.42 0.3129 16.8 0.2474 18.08 0.2733 16.13 0.1702 18.96 0.2311 14.88 0.2421 14.98 0.2169 16.91 0.2462 19.00130.3041 16.21 0.2426 17.29 0.3011
DRRN 297 K 17.28 0.39 19.33 0.3881 15.96 15.96 20.53 0.1695 15.73 0.2251 19.03 0.2681 15.78 0.3794 13.19 0.2755 18.01 0.3529 21.88270.1716 6.92 0.0474 16.59 0.1705
SRResNet 1.5 M 18.93 0.4294 19.79 0.383 18.1 0.3582 18.87 0.3261 17.19 0.2497 19.33 0.27 17.13 0.3793 15.26 0.2703 18.68 0.3577 20.039 0.3523 18.08 0.355 17.66 0.3408
SRGAN 6.7 M 19.33 0.4386 19.92 0.3989 18.46 0.3635 18.72 0.328 17.38 0.2592 18.72 0.272 17.3 0.3812 16.34 0.288 18.78 0.3706 20.288 0.36218 18.17 0.3733 17.72 0.3368
DnCNN 557 K 19.19 0.4356 20.22 0.3954 18.27 0.3638 18.19 0.3355 17.25 0.2568 19.28 0.2795 13.93 0.3827 15.52 0.2918 18.81 0.3656 20.177010.36 18 0.3628 16.4 0.3508
EDSR 43 M 19.22 0.442 20.11 0.4091 18.46 0.3723 19.25 0.3441 17.41 0.2627 19.44 0.274 16.54 0.392 15.89 0.304 18.94 0.3783 20.55620.3786 18.53 0.3888 18.31 0.38
MemNet 2.9 M 19.09 0.4348 19.69 0.391 18.14 0.3657 19 0.3404 17.12 0.2584 19.23 0.2756 17.08 0.3816 15.45 0.2916 18.59 0.366 20.128 0.3625 18.09 0.3727 17.92 0.3729
IDN 552 K 19.11 0.423 19.77 0.386 18.21 0.3456 18.86 0.309 17.13 0.2398 21.73 0.171 16.76 0.3146 15.38 0.2516 18.64 0.345 19.87810.34 17.88 0.3384 17.09 0.31
CARN 1.1 M 19.08 0.4269 19.55 0.395 18.26 0.3563 19 0.3316 17.25 0.2536 19.32 0.269 17.08 0.3733 15.46 0.2702 18.64 0.3521 20.03420.3475 17.9 0.3383 15.14 0.2377
SRDenseNet 2.7 M 19.26 0.4413 20.23 0.4148 18.31 0.3707 20.23 0.3428 16.19 0.2521 19.39 0.2718 16.59 0.3857 15.2 0.281 18.82 0.3717 20.21040.3611 18.41 0.3758 16.67 0.3352
RDN 22 M 19.3 0.4401 20 0.4118 18.33 0.3739 19.24 0.3416 17.45 0.263 19.48 0.2751 17.07 0.3897 16.23 0.304 18.93 0.3759 20.218 0.36478 18.4 0.3855 18.21 0.373
RRDB 16 M 18.96 0.4383 19.94 0.4052 18.37 0.3672 19.18 0.3426 17.32 0.257 19.18 0.2757 15.43 0.3706 15.86 0.2954 18.77 0.3714 20.088320.0883 18.18 0.3791 17.88 0.36977
ESRGAN 31 M 19.28 0.4427 19.9 0.409 18.33 0.3768 18.85 0.342 17.35 0.2637 19.417 0.28 17.13 0.3897 16.73 0.31 18.87 0.3824 20.191 0.3672 18.5 0.3888 18.12 0.37264
RCAN 15.9

M
19.17 0.4365 19.43 0.38 18.42 0.3608 19.09 0.334 17.33 0.2603 19.45 0.2727 17.1 0.3832 17.5 0.3147 18.86 0.372 20.76 0.3634 18.47 0.3771 20.44 0.3728

Table 2: Experimental results after 20 epochs of training

sentation of data on these two bands between the LR Sentinel-
2 and the HR Spot 6/7. A considerable increase in score was
obtained for both NIR and blue bands after histogram match-
ing. However, the NIR band still has a low score, and there-
fore should be further investigated. The RGB (True Color)
channel experiments achieved the best results, with a consid-
erable increase in score when histogram matching was ap-
plied. Even though on RGBNIR the models achieve a lower
score than on RGB, probably due to the NIR channel, it is still
an increase that the NIR-only experiments.

(a) LR (b) LR bicubic (c) HR (d) HR hist

(e) SRCNN 1 (f) SRCNN 2 (g) EDSR 1 (h) EDSR 2

Fig. 4: Visual comparison on a testing patch
Figure 4 visually compares our experiments on a test

patch. In the first row, we represent the input LR patch (Fig-
ures 4a, 4b) together with the original HR (Figure 4c) and its
corresponding histogram-matched version (Figure 4d). The
illegal dumps are represented by red stars. We observe the
difference between the LR and HR colours and the changes
in HR after matching it with LR. We illustrate the predic-
tion of two popular models with different input requirements.
SRCNN - LR bicubic, EDSR - LR. We denote with 1 the
experiments with linear normalisation and 2 with additional
histogram matching. As visible in the patches, histogram
normalisation enables the models to learn a smoother texture,
the results being visible closer to the HR. However, we argue

that even the simplest models (SRCNN) can learn a good
colour mapping between the LR and HR images.

5. CONCLUSIONS

In this paper, we propose an extensive benchmark of 18 SR
models applied on dual-sensor data. Sentinel-2 and Spot 6/7,
with various pre-processing techniques. We argue that the
synthetic data generated in this paper may be further used
for the waste detection use-case, as input for further seman-
tic segmentation. In addition to this, the results serve as a
benchmark for further development and revealed problematic
bands, such as NIR, which require further techniques devel-
opment.
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