
A SCALABLE IMPLEMENTATION OF MAPPER FOR TOPOLOGICAL
DATA ANALYSIS VIA VANTAGE POINT TREES

LUCA SIMI

Abstract. The Mapper algorithm is a powerful tool used in Topological Data Analysis to ex-
tract valuable information about the shape of point clouds. One significant drawback of many
existing open-source libraries for Mapper is a suboptimal approach to constructing open covers.
This naive implementation does not scale well in high dimensions and hampers the overall per-
formance of Mapper. In this study, we propose a novel methodology for building open covers for
Mapper using vp-trees. By employing this approach, we develop a more efficient algorithm capa-
ble of handling high-dimensional data with improved scalability. Additionally, our methodology
produces a simplified and more concise Mapper Graph, enhancing the interpretability of the
results. To facilitate the adoption of our methodology, we introduce the tda-mapper Python
library. This library, hosted at https://github.com/lucasimi/tda-mapper-python, imple-
ments our proposed approach for building open covers. With tda-mapper, users can effortlessly
leverage the benefits of our methodology in their own analyses. Lastly, we conduct compre-
hensive benchmarks to assess the performance of tda-mapper in comparison to widely-used
open-source alternatives. These benchmarks provide quantitative evidence of the superior scal-
ability and efficiency of tda-mapper, further solidifying its position as a reliable and powerful
option for Mapper-based analyses.

1. Introduction

In recent years, Topological Data Analysis (TDA) has gained significant momentum in the
field of data science due to its ability to extract valuable insights from complex datasets. TDA
utilizes topological methods that are resilient to noise and dimensionality challenges, making it
a robust mathematical framework for data analysis. One particularly notable tool in TDA is the
Mapper algorithm [13]. Mapper is an efficient technique that constructs a graph from the given
data, revealing important topological properties of the underlying space. By estimating con-
nectivity features of data, Mapper provides a visual representation that facilitates exploration
and interpretation. The effectiveness of Mapper was initially demonstrated in the analysis of
medical data, as showcased in the pioneering work by Singh, Memoli and Carlsson [13]. Since
then, Mapper has proven to be a versatile and powerful tool for data visualization, capable of
uncovering hidden patterns even in high-dimensional datasets. Unlike conventional algorithms,
such as clustering algorithms or Principal Component Analysis (PCA), Mapper excels at visu-
alizing data by preserving the same number of connected components as the original dataset.
This feature alone renders Mapper more reliable and superior for shape exploration and pattern
extraction, especially when dealing with high dimensional data. Overall, Mapper’s ability to
handle complexity, extract meaningful insights, and provide a visual format for data exploration
makes it an invaluable tool in the field of data science.

Data exploration is inherently interactive, requiring a lot of tweaks and fine-tuning in order
to extract relevant information from data. For this reason, overall performance of software for
Mapper plays a crucial role in driving a widespread adoption across the industry. Although
there are a few widely-used libraries for Mapper, used both in reaserch and industry, they
predominantly prioritize correctness over performance.

The original description of Mapper in [13] includes what the authors refer to as statistical im-
plementation, which has now become a de-facto standard in several open source implementations
such as Python Mapper [11], Kepler Mapper [15], and giotto-tda [14]. However, the description
of the statistical implementation in [13] gives the definition of an open cover (often called cubical

Date: February 14, 2024.
1

https://github.com/lucasimi/tda-mapper-python

cover) but lacks an explicit algorithm for its construction. Regrettably, this critical step has
often been neglected both in the industry and in scientific production, resulting in the adoption
of naive procedures to implement it. Consequently, many open source libraries, including the
aforementioned ones, present significant performance drawbacks. In this study, we provide a
practical enhancement to address this issue and improve the performance of Mapper.

Recently, a number of alternative algorithms, known as Mapper-type algorithms, have been
developed. Two such algorithms, called Ball Mapper (abbreviated as BM) and Mapper on Ball
Mapper (abbreviated as MoBM), were introduced in [4] and [5] respectively. Also in the field
of neuroscience new Mapper-like algorithm came to light, for example NeuMapper introduced
in [7]. Unlike traditional Mapper algorithms that use rectangles to construct the open cover,
these new algorithms employ open balls. Although these alternative algorithms enhance the
construction of the open cover, they come at the cost of changing the shape of the open sets. In
our work, we present a novel and more efficient approach to compute Mapper-type algorithms,
including BM and MoBM, by utilizing vp-trees. Our methodology enables us to construct open
covers more effectively and efficiently.

This methodology has been implemented and released by the author as the Python package
called tda-mapper. It can be accessed at https://github.com/lucasimi/tda-mapper-python.
As far as the author knows, there is currently no other open source package available that con-
tains the same implementation as presented here. In the following sections, we will provide a
detailed explanation of the core ideas behind our methodology and shed light on the implemen-
tation of tda-mapper. We will introduce the fundamental mathematical and technical concepts
that form the basis of this software. Moreover, we will conduct benchmarks to compare the
performance of tda-mapper against [11], [15], and [14]. This will help us gauge the effectiveness
and efficiency of tda-mapper in relation to its counterparts.

Remark 1.1. Throughout our work, whenever we analyze a dataset denoted as X, we will assume
that it is a finite and discrete sample of an unknown topological space referred to as X̃. Studying
the topology of a finite, discrete topological space is a straightforward task, as its only topological
invariant is its cardinality. Therefore, when we examine the topology of a dataset X, our main
focus is actually on understanding the topology of X̃. In essence, when we mention our desire to
comprehend the shape of X, we truly aim to gain insights into the topology of X̃ by examining
the sample X.

2. The Mapper Algorithm

In this section, we provide a concise overview of Mapper, based on the work by [13]. Mapper
operates on a dataset X and its output is determined by the following steps:

(1) Let f be a lens, which we define as a continuous map f : X → Y , where Y is a parameter
space that can have a lower dimension than X, although this is not always the case. We
will work with the general setting where Y can have any dimension. Common choices
for the lens f include statistics of any order, projections, entropy, density, eccentricity,
and more. As an example, we chose X as an X-shaped point cloud in R2, and f as the
height function, which is the projection of X onto the y-axis.

2

https://github.com/lucasimi/tda-mapper-python

(2) Next, we proceed by constructing an open cover for f(X). In other words, we create a
collection {Uα}α of open sets such that their union covers the entire image f(X), i.e.,
f(X) =

⋃
α Uα. It is important to note that the sets in this open cover may intersect

with one another, and they inherit their topology from the parent space Y . In the picture
you can see an open cover of f(X) made by three colored open sets U1, U2 and U3.

(3) For each element Uα in the selected cover, we define Vα as the preimage of Uα under
the function f . It is clear that the collection Vαα forms an open cover of X. Next, we
proceed to partition each open set Vα into a disjoint union denoted as Vα = qβCα,β .
The clusters Cα,β are obtained from a chosen clustering algorithm. The resulting family
Cα,βα,β is referred to as a refined open cover for X. In the picture you can see the
pullbacks of U1, U2 and U3, with their corresponding colors. Moreover the pullbacks of
U1 and U3 has been split according to some possible clusters.

(4) We construct the Mapper Graph as the undirected graph G = (V,E) defined by the
following rule: the set V contains a vertex vα,β for every local cluster Cα,β , while the set
E contains the edge e = (vα1,β1 , vα2,β2) only if their corresponding local clusters intersect,
i.e., when Cα1,β1 ∩Cα2,β2 6= ∅. In the picture, by following colors, we can finally see how
clusters and intersections are summarized into the mapper graph.

3

The intuition around Mapper can be explained as follows: Steps 1 to 3 work together to create
an open cover for X, which can be visualized as a patchwork of smaller sets. These smaller sets
have a simpler shape compared to X, making them easier to analyze. Next, we apply the
pullback cover. By considering the pullbacks of these smaller sets, we can constrict the range of
values taken by the continuous map f . This simplifies the study of f . Once the pullback cover
is established, we proceed to clustering. This step involves grouping together similar elements
and constructing a graph that represents the connections between local clusters. In an ideal
scenario, we aim to prevent different connected components from merging into a single node in
the Mapper Graph.

The theoretical foundation of Mapper is rooted in the Nerve Theorem (see [1], [16]). According
to this theorem, it is required that each intersection of two different open sets is either empty or
simply connected (meaning it can be continuously deformed into a point without any holes) in
order to apply it. For Mapper, this condition translates to the requirement that each intersection
of any two clusters is either empty or simply connected. However, it is important to note that
the Mapper algorithm as a whole may not satisfy this condition. This is because clustering does
not guarantee that clusters correspond to connected components, and clustering algorithms do
not generally preserve simple-connectedness. Despite this limitation, whenever the hypothesis
of the Nerve Theorem holds, it can be claimed that X and its Mapper Graph have the same
number of connected components.

2.1. Cubical Cover. In the original definition of Mapper in [13], the authors utilize an open
cover consisting of consecutive intervals with fixed length and overlap. They introduce two
parameters to characterize this open cover. The first parameter is the length w of the intervals,
while the second parameter is the overlap p ∈ (0, 1); this denotes the fraction of w representing
the intersection length δ between any two consecutive intervals in the cover.

Definition 2.1. Let 0 < n ∈ N and p ∈ (0, 1).
(1) Consider the closed interval [m,M] ⊆ R and let w = M−m

n(1−p) and δ = pw. The cubical
cover of [m,M] is the collection of open sets

CC[m,M](n, p) = {I0, . . . , Ii, . . . , In−1}

such that Ii = [m,M] ∩ (ai, bi) with

ai = m+ i(w − δ)− δ/2
bi = m+ (i+ 1)(w − δ) + δ/2.

(2) Given X ⊆ R compact, the cubical cover of X is defined as

CCX(n, p) = CC[m,M](n, p)

where m = min(X) and M = max(X).
(3) Let X ⊆ Rk compact. The cubical cover of X

CCX(n, p) = {I1,j1 × . . .× Ik,jk |(I1,j1 , . . . , Ik,jk) ∈ CCX1(n, p)× . . .× CCXk
(n, p)}

where Xj ⊆ R is the projection of X on the j-axis.

Remark 2.2. We report here some facts that easily follow from the definition in the case X =
[m,M].

• bi − ai = w for every i = 0, . . . , n− 1
• a0 = m− δ/2 and bn−1 =M + δ/2
• ai+1 − bi = δ for every i = 0, . . . , n− 1.
• [m, b0 − δ/2), . . . , [ai + δ/2, bi − δ/2), . . . [an−1 + δ/2,M] is a partition of [m,M].

Example 2.3. Consider X = [0, 12], we have

CC[0,12] (4, 2/5) = {[0, 4), (2, 7), (5, 10), (8, 12]} .
4

From the definition of cubical cover it’s very easy to find an algorithm which constructs the
cubical cover on each projection separately and then build the open cover on X. This is what
we call naive cubical cover

Algorithm 1 Naive Cubical Cover
Input: Any integer n > 0, p ∈ (0, 1).
Output: CC(n, p).
for i = 1, . . . , k do

CCi(n, p)← {Ii,1, . . . , Ii,n} be the cubical cover on the projection of X on the j-axis;
end for
CC(n, p)← {R =

∏k
i=1 Ii,ji |R 6= ∅, 1 ≤ ji ≤ n}.

return CC(n, p)

Remark 2.4. Algorithm 1 presents a straightforward yet inefficient method for obtaining the
cubical cover. Indeed, this approach becomes computationally expensive for Mapper when
dealing with high-dimensional lenses, i.e. when f(X) ⊆ Y is high dimensions. Even when many
products are empty, their number can grow rapidly and introduce additional computational
overhead to the entire Mapper process. To illustrate this issue, consider the following example:
if f(X) ⊂ Rk lies along the diagonal, an appropriate cover for f(X) could be achieved using
a number of rectangles proportional to the number of intervals n. Nevertheless, Algorithm 1
would construct an open cover for each projection initially and then iterate through all possible
rectangles, resulting in a total of nk steps.

2.2. Ball Cover. When a dataset X is embedded in a Euclidean space, it is always possible
to construct an open cover using rectangles, as in cubical cover. However, in cases where
coordinates are not available, such as in a generic metric space, a different approach is required
since rectangles may not have a well-defined meaning. An alternative option in such cases is
to consider open balls as a suitable choice for constructing an open cover. We recall here some
basic definitions:

Definition 2.5. Let X be a topological space. A pseudometric on X is a map d : X ×X → R
such that

• d(x, y) ≥ 0 for every x, y ∈ X, and d(x, x) = 0 for every x ∈ X;
• d is symmetric, i.e. d(x1, x2) = d(x2, x1) for every x1, x2 ∈ X;
• d satisfies the triangle inequality, i.e.: d(x1, x3) ≤ d(x1, x2)+d(x2, x3) for every x1, x2, x3 ∈
X.

We say that d is a metric when d(x, y) = 0 implies x = y. An open ball of center p ∈ X and
radius ε > 0 is defined as Bd(p, ε) = {x ∈ X|d(p, x) < ε}.

Definition 2.6. Given a dataset X and a metric d on X, a ball cover of radius r > 0 on X is
any open cover where every set is an open ball of radius r.

The approach of building a ball cover in the context of Mapper is not new, it was presented
in [4] and [5], called ε-net, where the author introduced an alternative to Mapper, called Ball
Mapper. In that setting a ball cover of X is built by incrementally adding open balls of fixed
radius, until every point is covered by at least one open ball (See Algorithm 2).

5

Algorithm 2 ε-net
Input: Let X be a dataset, d a pseudometric on X, and let ε > 0.
Output: A ball cover of X.
S ← X, as a set
C ← ∅
while S 6= ∅ do

take a point p ∈ S
B ← Bd(p, ε) . the ball of radius ε, centered in p
Add B to C
for q ∈ B do

Remove q from S
end for

end while
return C

Remark 2.7. Covering a dataset X ⊆ Rk with open balls centered in X is enough to prevent
the flaw of Algorithm 1, because the number of open balls is expected to be proportional to nd,
where d is the dimension of X, which is typically lower than the representational dimension k.
This remark is also presented in [5], where the author introduces MoBM.

2.3. Proximity Net. In this work, we present a more flexible version of the ε-net concept that
we call proximity-net. This modified approach allows for a wider range of input parameters.
To achieve this, we introduce a new parameter known as the proximity function, denoted as
b : X → P(X). The proximity function, for any given point p ∈ X, returns a collection of points
b(p) (where p ∈ b(p)) that are considered to be near to p. Instead of constructing balls as in
the traditional ε-net approach, we modify the algorithm to collect the open sets obtained by
invoking the proximity function b. This modification allows us to construct a broader range of
potential open covers utilizing the same algorithm. In light of these modifications, we refer to
our algorithm as the proximity-net algorithm, as illustrated in Algorithm 3.

Algorithm 3 proximity-net
Input: Let X be a dataset, and let b be a proximity function
Output: An open cover of X
S ← X, as a set
C ← ∅
while S 6= ∅ do

take a point p ∈ S
B ← b(p)
Add B to C
for q ∈ B do

Remove q from S
end for

end while
return C

Remark 2.8. We can write an identity which models the time complexity of proximity-net. Let
T (Y) be the time complexity of running proximity-net on a dataset Y ⊆ Rk of dimension d ≤ k.
It’s easy to see that we can write T (Y) = T̃b(Y) +R(Y)Tb(Y), where

• T̃b(Y) is the time complexity of constructing the proximity function b;
• R(Y) is the number of open sets obtained from calling the proximity function b in order
to cover Y ;
• Tb(Y) is the time complexity of computing a single instance of the proximity function b.

6

Definition 2.9. Let (Y, d) be a pseudometric space. For each ε > 0 we define the ball proximity
function BP (d, ε) : Y → P(Y) by setting for every y ∈ Y

BP (d, ε)(y) = Bd(y, ε) = {u ∈ Y |d(y, u) < r} .

Remark 2.10. It’s clear to see that ε-net can be obtained from proximity-net by supplying the
map BP (d, ε) as the proximity function.

Definition 2.11. Let n be a positive integer and p ∈ (0, 1). Consider the interval [m,M] ⊆ R
and let w = M−m

n(1−p) and δ = pw. Let ai = m+i(w−δ)−δ/2 and bi = m+(i+1)(w−δ)+δ/2. We
define the cubical proximity function CP[m,M](n, p) : [m,M] → P([m,M]) by setting for every
x ∈ [m,M]

CP[m,M](n, p)(x) = [m,M] ∩ (ai, bi) ⇐⇒ ai + δ/2 ≤ x < bi − δ/2

For any X ⊆ Rk compact we can define for every x ∈ X
CPX(n, p)(x) = CPX1(n, p)(x1)× . . .× CPXk

(n, p)(xk)

where Xj is the projection of X on the j-axis.

3. Vantage Point Trees

A range query is a function that returns B(p, ε) for any p ∈ X, where p is the query point
and ε is the query radius. There are numerous algorithms and data structures available in
scientific literature for efficiently performing range queries. One popular example is kd-tree,
which effectively partition the space to minimize the computation of pairwise distances. However,
in the context of implementing Ball Mapper [4], the author has dismissed the use of kd-trees
due to their limited theoretical advantage in high-dimensional spaces. Since the cover in Ball
Mapper is typically constructed on X, which often involves high dimensions, the potential gain
from employing kd-trees is minimal. Conversely, when it comes to MoBM [5], using a specialized
data structure for range queries can prove advantageous. This is because the open cover for
MoBM is built on the (typically low-dimensional) space f(X). Therefore, using a dedicated
data structure for range queries can enhance the performance of MoBM.

In this study, our primary focus is to accommodate a wide range of scenarios and utilize a
general lens f : X → Y . It is important to note that the target space, Y , does not necessarily have
to be Euclidean or coordinate-based, but rather encompasses a broader category of pseudometric
spaces. To ensure maximum flexibility and suitability for our tasks involving range queries, we
have opted to utilize a metric tree data structure rather than a kd-tree. More specifically, we
have chosen the highly renowned and versatile Vantage Point Tree data structure, commonly
known as vp-tree. This decision was made due to its superior performance in high-dimensional
settings, proving to be more efficient compared to kd-trees. It is worth highlighting that vp-trees
transcend the constraints of a Euclidean space and are able to function effectively within any
pseudometric space. Consequently, they serve as an optimal choice for our purposes.

Remark 3.1. The ability to work with pseudometrics, rather than just metrics, is an invaluable
feature of vp-trees that we will leverage in our implementation.

In the following paragraphs, we will provide a concise overview of vp-trees tailored to our
specific requirements. For a detailed understanding of the original definitions and findings
regarding vp-trees, we point the interested readers to [17] and [2].

Remark 3.2. While we do have a preference for vp-trees, it is important to acknowledge that
in the context of Euclidean spaces, there are other data structures available for consideration,
apart from metric trees. One such alternative is range trees, which could potentially be useful in
constructing the cubical cover. Range trees are particularly well-suited for interval queries and
may be worth exploring.

For the sake of readability we include a definition of vp-trees that suits our needs.
7

Notation 3.3. In the following, we will introduce a recursive notation for binary trees. To
represent an empty tree, we will use the notation {}. For any non-empty binary tree T , we will
represent it as T = Tree{x, L,R}. Here, x represents a piece of information attached to the
node, L denotes the tree rooted at the left child of T , and R denotes the tree rooted at the right
child of T . When a tree T is terminal, it can be represented as T = Tree{x, {}, {}}. However,
for improved readability, we prefer to write T = Tree{x} in this case. In the case of a non-empty
binary tree T = Tree{x, L,R}, we will use the notation T.left to denote the tree rooted at the
left child of T , and T.right to denote the tree rooted at the right child of T . Finally, for any
tree T , we will use the notation T.leaves to represent its leaves.

Definition 3.4. Let X be a dataset, and d a pseudometric on X. A vp-tree on (X, d) is any
binary tree T which satisfies the following properties:

(1) For each x ∈ X there exists a leaf Tree{x} ∈ T.leaves.
(2) If T is non-terminal we have T = Tree{(p, ρ), L,R}, where p ∈ X and ρ > 0, such that:

• d(p, x) ≤ ρ whenever x ∈ L.leaves;
• d(p, x) ≥ ρ whenever x ∈ R.leaves.

We can summarize the most important features of vp-trees:
• Building a balanced vp-tree is achieved through recursive splitting of the dataset in
half at each step (refer to Algorithm 4). This process requires an asymptotic time of
O(|X| log(|X|)) in total.
• Range queries can be significantly more efficient with vp-trees than with linear scans.
When using a linear scan, which involves looping through all elements in X, it takes
|X| steps to find the points of B(q, ε). This results in an asymptotical time complexity
of O(|X|). On the other hand, by employing a well-balanced vp-tree, a range query
typically requires fewer steps. The triangle inequality satisfied by the metric allows
us to visit only a single child at each step when certain conditions are met (refer to
Figure 1). For this reason precisely estimating the average time complexity of range
queries is challenging due to its dependency on the dataset (see reference [2]), but we
can confidently state that it is bounded between O(log(|X|)) and O(|X|). In situations
where the query radius is sufficiently small, we expect the query radius to less likely fall
across two children at the same time. For this readon we expect that in such cases the
time complexity of range queries is comparable to O(log(|X|)). Additionally, vp-trees
often outperform kd-trees, particularly in high dimensions.

Figure 1. The only two possible settings when a branch can be skipped in
vptree.search, while visiting node Tree{(p, ρ), L,R}, wher q is the query point
and ε is the query radius.

Remark 3.5. The time complexity of executing a range query is influenced by the count of
computed pairwise distances. When utilizing vp-trees, this count is generally a fraction of the
upper bound |X|.

8

Remark 3.6. Using Remark 2.8, we can give a rough estimation of the time complexity of ball
cover in two different cases.

• In the first case, when range queries are performed with linear scans, we have

T (Y) = R(Y)TBP (Y) = O(nd · n) = O(nd+1).

• In the second case, when range queries are performed using vp-trees, we have

T (Y) = T̃b(Y) +R(Y)Tb(Y) = O(|Y | log |Y |) +O(nd)TBP (Y).

Since TBP (Y) is at most O(n) we can claim that vp-trees give (at worst) the same time com-
plexity as linear scans. However, when TBP (Y) = O(log |Y |) the asymptotic time complexity is
far lower with vp-trees.

To enhance readability, we provide the two primary algorithms related to vp-trees. The
first algorithm (Algorithm 4) constructs a vp-tree for a given dataset and metric. The second
algorithm (Algorithm 5) performs the actual range query for a given query point q and query
radius ε.

Algorithm 4 vp.build
Input: Let X = [x0, . . . , xn−1] be a dataset, and let d : X ×X → R be a metric.
Output: A vp-tree on (X, d).
if X = ∅ then:

T ← Tree{}, the empty tree
else

p← chose in X. Let ρ be the median of d(p, x) for x ∈ X.
Reorder X such that d(p, xi) ≤ ρ for i < n/2 and d(p, xi) ≥ ρ for every i ≥ n/2 (Use

quickselect)
L← vp.build([x0, . . . , xn/2−1])
R← vp.build([xn/2, . . . , xn−1])
T ← Tree{root = (p, ρ), left = L, right = R}

end if
return T

9

Algorithm 5 vp.search
Input: T = vp.build(X, d), where X is a dataset, and d a metric on X. Let q be a query point,
and ε > 0

Output: Bd(q, ε) = {x ∈ X|d(x, q) < ε}.
if T = Tree{} then

S ← ∅
else if T = Tree{root = x} then

if d(q, x) < ε then
S ← {x}

else
S ← ∅

end if
else

(p, ρ)← T.root
δ ← d(p, q)
if ρ ≥ δ + ε then

SR ← ∅
else

SR ← vp.search(T.right, q, ε)
end if
if ρ ≤ δ − ε then

SL ← ∅
else

SL ← vp.search(T.left, q, ε)
end if
S ← SL ∪ SR

end if
return S

4. Cubical Cover

By utilizing the definition of ball cover and the efficient computation method provided by
vp-trees, we can compute the cubical cover while eliminating the performance degradation en-
countered in Algorithm 1. Before delving into the specifics of this approach, it is necessary to
establish a set of notation. Initially, we define a helper function γn that takes a dataset Y and
projects it onto the hypercube [0, n]k.

Definition 4.1. Let X ⊆ Rk compact. Let mj = minx∈X xj , and Mj = maxx∈X xj . For every
integer n > 0 we define γn : X → [0, n]k as

γn(x)j = n
xj −mj

Mj −mj
, j = 1, . . . , k.

Remark 4.2. Given mj < Mj for j = 1, . . . , k, with Y =
∏k
j=1[mj ,Mj], the map γn : Y → [0, n]k

is a bijection. The map γ−1n : [0, n]k → Y is given by

γ−1n (x)j = mj + xj
Mj −mj

n
, j = 1, . . . , k.

Definition 4.3. Given a proximity function b : X → P (X) and a map f : Z → X, we can
consider the map c : Z → P (Z) defined by c(z) = f−1(b(f(z))). The map c is then a proximity
function for Z that we call pullback proximity function and denote with f∗b.

Definition 4.4. Let f : X → Y be a map of topological spaces. If d is a pseudometric on Y , the
pullback pseudometric of d under f is the pseudometric f∗d, defined by setting for each u, v ∈ X

f∗d(u, v) = d(f(u), f(v)).
10

Proposition 4.5. Let X ⊆ Rk compact. Let n be a positive integer and p ∈ (0, 1). Let
ρ : [0, n]k → [0, n]k defined by ρ(x)j = bxjc+ 1

2 . Then we have

CPX(n, p) = BPX

(
γ∗nd∞,

1

2− 2p

)
◦ γ−1n ◦ ρ ◦ γn.

Proof. Without repeting ourselves we will use the notation introduced within Definitions 2.1
and 4.1. We start the proof with a preliminary observation: for any x ∈ X we have

(ρ ◦ γn)(x)i = bγn(x)ic+
1

2

=

⌊
n
xi −mi

Mi −mi

⌋
+

1

2

=

⌊
xi −mi

wi − δi

⌋
+

1

2
,(1)

Take any x ∈ X and let CPX(n, p)(x) = I1,j1 × . . . × Ik,jk for some ji, . . . , jk (see Definition
2.1). Using the definition of Ii,ji , this condition can be written as the following inequality

aji +
δ

2
≤ xi < bji −

δ

2
,

which together with 1 is equivalent to (ρ ◦ γn)(x)i = ji +
1
2 . Moreover observe that

(γ∗nd∞)((γ−1n ◦ ρ ◦ γn)(x), y) = d∞((ρ ◦ γn)(x), γn(y))

= d∞

(
ji +

1

2
, γn(y)

)
.(2)

The proof then follows a double inclusion argument. In order to prove the first inclusion take
any y ∈ CPX(n, p)(x). Following the definition of CPX(n, p) we can write

aji < yi < bji .

Using the definition of γn we have
aji −mi

wi − δi
< γn(x)i <

bji −mi

wi − δi
which is equivalent to

− 1

2− 2p
< γn(x)i − ji −

1

2
<

1

2− 2p
and can be written as ∣∣∣∣γn(y)i − (ji + 1

2

)∣∣∣∣ < 1

2− 2p
.

Repeating this for every i and using 2, we obtain that y ∈ BPX
(
γ∗nd∞,

1
2−2p

)
((γ−1n ◦ρ◦γn)(x)).

In order to prove the other inclusion we can follow the same arguments in a backward direction,
and this concludes the proof. �

5. Development of tda-mapper

The development of tda-mapper [12] was primarly motivated by the exploration of alterna-
tive methods for constructing open covers for Mapper, driven by the goal of implementing a
more efficient approach. While major open-source implementations like Python Mapper [11],
Kepler Mapper [15], and giotto-tda [14] can in principle handle high-dimensional lenses, they
all fall short of usability, as they all rely on Algorithm 1 with its well-documented limitations
(discussed in Remark 2.4). Indeed, a common thread among them is the usage of a function call
to itertools.product, as seen in their source code. This function, described in Python’s
official documentation available at https://docs.python.org/3/library/itertools.html#
itertools.product, is used to perform a nested loop on each one-dimensional open cover,
which is exactly the essence of Algorithm 1.

11

https://docs.python.org/3/library/itertools.html#itertools.product
https://docs.python.org/3/library/itertools.html#itertools.product

5.1. Code Architecture. The library tda-mapper is designed to provide a comprehensive set
of modules through a single central package called tdamapper. These modules offer various
features and we will provide an overview of the architectural decisions made during development.
Throughout the development process, one of the objectives was to create an API that is easy
to understand and use. To achieve this, we adopted an object-oriented approach and took
inspiration from the well-respected scikit-learn APIs. This ensures familiarity for the intended
user base of tda-mapper. Additionally, we made efforts to keep the API of tda-mapper similar to
the APIs provided by other popular libraries such as giotto-tda and Kepler Mapper. This allows
users to smoothly transition between these libraries and leverage their existing knowledge. By
considering these factors, we aim to provide a user-friendly and seamless experience for users of
tda-mapper, making it easier for them to explore and utilize the library’s full potential.

5.1.1. Core module. In the module tdamapper.core, we have implemented the essential func-
tions responsible for computing the Mapper graph. Additionally, we have encapsulated the entire
logic of the Mapper within the MapperAlgorithm class for convenience.

5.1.2. Cover module. Inside the module tdamapper.cover, the implementation of proximity-
net (Algorithm 3) can be found in the function proximity_net. In addition, this module also
contains several cover algorithms based on proximity-net. These algorithms are implemented as
subclasses of ProximityNetCover, and are expected to implement the methods fit and search:

• The fit method is intended for fine-tuning internal parameters and structures that
enhance the execution efficiency of the search method. It works similarly to the fit
method of scikit-learn estimators.
• The search method is the actual proximity function employed as a parameter for
proximity-net.

We offer several cover algorithms, which are defined by the following classes within the
tdamapper.cover module:

• TrivialCover: This class implements the trivial proximity function, where the entire
dataset is returned for each input point.
• BallCover: This class implements the proximity function BP using vp-trees for efficient
computation.
• KNNCover: This implementation uses vp-trees for K-nearest neighbor (KNN) search.
• CubicalCover: This class implements the proximity function CP using BallCover as
stated in Proposition 4.5.

Remark 5.1. To compute the Mapper graph, the first step is to construct an open cover on the
image f(X). Subsequently, the pullback under f is performed to obtain an open cover of X.
In the case of BallCover, it is possible to obtain the pullback cover of X with a more direct
approach, by using the pullback of the metric.

To understand this, suppose we have an open cover U = {Bd(yi, ε)|i = 1, . . . ,m} for f(Y),
where yi = f(pi) for i = 1, . . . ,m. In this scenario we can write f∗U = {f−1Bd(yi, ε)|i =
1, . . . ,m} = {Bf∗d(pi, ε)|i = 1, . . . ,m}. Therefore, it is feasible to construct f∗U by employing
proximity-net directly on X by using the pseudo-metric f∗d, without constructing the pullback
of the open cover.

However, in our code, we chose not to follow this approach since it would only be applicable
for BallCover. We want all the different classes in tdamapper.cover to share the same API,
which suggests a more generic approach. For this reason, to compute pullbacks with minimal
overhead, we opted for the search method to return indices instead of points.

5.1.3. VPTree. We have implemented our own version of the vp-tree data structure within the
tdamapper.utils.vptree module to optimize it for our specific use-case. Our implementation
allows each leaf of the vp-tree to contain multiple items by stopping the construction when the
splitting circle is small, either in terms of its cardinality or in terms of its radius (smaller than
a given threshold). This optimization is beneficial both for range queries and for K-nearest

12

neighbor (KNN) queries. When the visited node during a search becomes smaller than the
query, the search operation collapse into a faster brute force linear scan. Currently, there are
two different implementations available for vp-trees in our codebase:

• tdamapper.utils.vptree: This module implements the VPTree class using a binary tree
structure and utilizes recursive methods for construction and search operations. Both
range search and KNN search methods are implemented by providing different arguments
to the same recursive method. This implementation was the first implementation of vp-
trees in tda-mapper and serves as a reference implementation for regression testing.
• tdamapper.utils.vptree_flat: This module implements the VPTree class by using an
array and utilizes iterative methods for construction and search operations.

Since iterative methods are generally considered better and safer than recursive ones, we
have chosen to default to using the tdamapper.utils.vptree_flat.VPTree implementation
in the BallCover and KNNCover classes. However, we still offer the option for users to use
tdamapper.utils.vptree if desired.

5.1.4. Clustering Algorithms. Clustering algorithms are often susceptible to failure in practical
scenarios, leading to potential failures in the overall Mapper functionality. To address this issue,
we have developed a wrapper class called FailSafeClustering that acts as a safeguard when
using clustering algorithms. This wrapper class accepts a clustering algorithm, compatible with
sklearn.cluster estimators, and in case of a failure indicated by a ValueError exception, it
falls back to a trivial clustering approach. In this approach, all data points are assigned to a
single cluster.

In addition to the fail-safe mechanism, we have also implemented a novel clustering algorithm
named MapperClustering. This algorithm clusters data based on the connected components of
the Mapper graph. By leveraging the structural properties of the Mapper graph, this approach
provides a unique way to group data points and extract meaningful information from complex
datasets.

5.2. Dependencies and testing. The implementation of tda-mapper relies on several soft-
ware dependencies, including networkx [8], numpy [9], matplotlib [10], and plotly [3]. These
dependencies are essential for various functions and features of the Mapper algorithm.

• networkx is used to generate and manipulate the Mapper graph, which is the primary
result of the algorithm.
• numpy is necessary for numeric computations, particularly for the CubicalCover function.
• matplotlib and plotly are used to create plots for the Mapper graph, providing visu-
alization options.

Additionally, there is a weaker dependency on sklearn for test purposes. The sklearn library
is used to ensure that the custom-defined estimators in tda-mapper are compatible with sklearn.
This compatibility is not complete because tda-mapper includes classes like BallCover that can
work with datasets defined as iterables of custom classes rather than just numpy.ndarray. This
choice allows for greater flexibility in input data. The compatibility is primarily tested using
sklearn’s utilities for testing estimators, and the test coverage for compatibility is currently
around 96%.

Overall, the software dependencies in tda-mapper are crucial for its functionality and enable
users to generate Mapper graphs and visualize them effectively. The optional compatibility with
sklearn ensures that the implementation aligns with widely-used machine learning standards.
import numpy as np
from sklearn.datasets import load_digits

X, y = load_digits(return_X_y=True)

from sklearn.cluster import AgglomerativeClustering
from sklearn.decomposition import PCA

13

from tdamapper.core import *
from tdamapper.cover import *
from tdamapper.clustering import *
from tdamapper.plot import *

lens = PCA(2).fit_transform(X)
mapper_algo = MapperAlgorithm(

cover=CubicalCover(
n_intervals =10,
overlap_frac =0.25) ,

clustering=AgglomerativeClustering ())
mapper_graph = mapper_algo.fit_transform(X, lens)
mapper_plot = MapperPlot(X, mapper_graph , iterations =50)

fig = mapper_plot.with_colors(
colors=y,
cmap=’jet’,
agg=np.nanmedian)
.plot(title=’digit ’, width =512, height =512)

fig.show(config ={’scrollZoom ’: True})

5.3. Benchmarks. To evaluate the performance and scalability of our approach, we conducted a
series of measurements to compute the Mapper graph’s running time. During these benchmarks,
we consistently maintained a specific type of open cover while systematically varying the lens
dimension. We compared the running time of three different libraries, namely Giotto-TDA
[14], Kepler Mapper [15], and tda-mapper [12]. This comparative analysis provides valuable
insights into the behavior of these implementations when dealing with high-dimensional data.
To simplify the process, we used Principal Component Analysis (PCA) as the lens, with the
number of components ranging from 1 to 5. To ensure the reliability of our benchmarks, we
utilized well-known datasets publicly available at the UCI Machine Learning Repository [6]. Our
experiments were conducted on Python 3.10, leveraging giotto-tda 0.6.0, Kepler Mapper 2.0.1,
and tda-mapper 0.3.0. All running time measurements are presented in seconds to provide a
clear understanding of the performance.

Running time for digits (1797× 64)
lens features Giotto-TDA Kepler Mapper tda-mapper

1 0.1 0.1 0.3
2 1.6 0.3 0.2
3 116.7 2.0 0.3
4 6951.7 15.1 0.5
5 ??? 109.4 0.8
Running time for MNIST_784 (70000× 784)

lens features Giotto-TDA Kepler Mapper tda-mapper
1 7.0 32.8 6.0
2 27.8 73.6 11.5
3 429.0 204.7 16.3
4 20012.0 678.6 24.7
5 ??? 2260.8 40.1

References

[1] Karol Borsuk. “On the imbedding of systems of compacta in simplicial complexes”. eng.
In: Fundamenta Mathematicae 35.1 (1948), pp. 217–234. url: http://eudml.org/doc/
213158.

[2] Sergey Brin. “Near Neighbor Search in Large Metric Spaces”. In: Proceedings of the 21th
International Conference on Very Large Data Bases. VLDB ’95. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1995, pp. 574–584. isbn: 1558603794.

14

http://eudml.org/doc/213158
http://eudml.org/doc/213158

[3] Collaborative data science. Montreal, QC: Plotly Technologies Inc. url: https://plot.ly.
[4] Paweł Dłotko. Ball mapper: a shape summary for topological data analysis. 2019. arXiv:

1901.07410 [math.AT].
[5] Paweł Dłotko, Davide Gurnari, and Radmila Sazdanovic. Mapper-type algorithms for com-

plex data and relations. 2023. arXiv: 2109.00831 [math.AT].
[6] D. Dua and C. Graff. UCI machine learning repository. University of California, Irvine,

School of Information; Computer Sciences. url: http://archive.ics.uci.edu/.
[7] Caleb Geniesse, Samir Chowdhury, and Manish Saggar. “NeuMapper: A scalable compu-

tational framework for multiscale exploration of the brain’s dynamical organization”. In:
Network Neuroscience 6.2 (June 2022), pp. 467–498. issn: 2472-1751. doi: 10.1162/netn_
a_00229.

[8] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring Network Structure,
Dynamics, and Function using NetworkX”. In: Proceedings of the 7th Python in Science
Conference. Ed. by Gaël Varoquaux, Travis Vaught, and Jarrod Millman. Pasadena, CA
USA, 2008, pp. 11–15.

[9] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept.
2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.org/10.
1038/s41586-020-2649-2.

[10] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science & En-
gineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[11] D. Müllner and A. Babu. “Python Mapper: An open-source toolchain for data exploration,
analysis, and visualization”. In: (2013). url: http://danifold.net/mapper.

[12] Luca Simi. lucasimi/tda-mapper-python: v0.3.0. Version v0.3.0. Feb. 2024. doi: 10.5281/
zenodo.10642382. url: https://doi.org/10.5281/zenodo.10642382.

[13] Gurjeet Singh, Facundo Memoli, and Gunnar Carlsson. “Topological Methods for the Anal-
ysis of High Dimensional Data Sets and 3D Object Recognition”. In: Eurographics Sym-
posium on Point-Based Graphics. Ed. by M. Botsch et al. The Eurographics Association,
2007. isbn: 978-3-905673-51-7. doi: 10.2312/SPBG/SPBG07/091-100.

[14] Giotto-TDA Tauzin. “A Topological Data Analysis Toolkit for Machine Learning and Data
Exploration”. In: (2020). arXiv: 2004.02551 [cs.LG].

[15] et al. Van Veen. “Kepler Mapper: A flexible Python implementation of the Mapper algo-
rithm”. In: Journal of Open Source Software 4.42 (2019), p. 1315. doi: 10.21105/joss.
01315.

[16] André Weil. “Sur les théorèmes de de Rham.” In: Commentarii mathematici Helvetici 26
(1952), pp. 119–145. url: http://eudml.org/doc/139040.

[17] Peter N. Yianilos. “Data Structures and Algorithms for Nearest Neighbor Search in General
Metric Spaces”. In: Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on
Discrete Algorithms, 25-27 January 1993, Austin, Texas, USA. Ed. by Vijaya Ramachan-
dran. ACM/SIAM, 1993, pp. 311–321. url: http://dl.acm.org/citation.cfm?id=
313559.313789.

15

https://plot.ly
https://arxiv.org/abs/1901.07410
https://arxiv.org/abs/2109.00831
http://archive.ics.uci.edu/
https://doi.org/10.1162/netn_a_00229
https://doi.org/10.1162/netn_a_00229
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
http://danifold.net/mapper
https://doi.org/10.5281/zenodo.10642382
https://doi.org/10.5281/zenodo.10642382
https://doi.org/10.5281/zenodo.10642382
https://doi.org/10.2312/SPBG/SPBG07/091-100
https://arxiv.org/abs/2004.02551
https://doi.org/10.21105/joss.01315
https://doi.org/10.21105/joss.01315
http://eudml.org/doc/139040
http://dl.acm.org/citation.cfm?id=313559.313789
http://dl.acm.org/citation.cfm?id=313559.313789

	1. Introduction
	2. The Mapper Algorithm
	2.1. Cubical Cover
	2.2. Ball Cover
	2.3. Proximity Net

	3. Vantage Point Trees
	4. Cubical Cover
	5. Development of tda-mapper
	5.1. Code Architecture
	5.2. Dependencies and testing
	5.3. Benchmarks

	References

