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Abstract—Microfluidics, the study of fluids in micro-
scopic channels, has led to important advances in fields
as diverse as microelectronics, biotechnology and chem-
istry. Microfluidic research is primarily based on the use
of microfluidic chips, low-cost devices that can be used
to perform laboratory experiments using small amounts of
fluid. These systems, however, require advanced control
mechanisms in order to accurately achieve the flow rates
and pressures required in the experiments. In this paper,
we present the design of a model predictive controller
intended to regulate the fluid flows in one of these systems.
The results obtained, both through simulations and real
experiments performed on the device, show that predictive
control is an ideal technique to control these systems,
especially taking into account all the existing constraints.

Index Terms—Estimation and filtering, Model predictive
control, Microfluidics, Modeling.

I. INTRODUCTION

The study of fluids under conditions where they flow
through a network of micrometer-sized channels is known
as microfluidics. Microfluidic systems are primarily based on
the use of small chips, known as labs-on-a-chip, in which
a variety of physical, chemical, or biological processes can
be replicated. These systems have been applied in numerous
fields such as chemistry, biotechnology, or medical research
(Ohno et al., 2008; Gómez et al., 2016; Méndez Pérez et al.,
2011). Microfluidics has made it possible, for example, to
make advances in disease diagnosis or the simulation of
organ behavior in small devices (Wang et al., 2021; Li et al.,
2022). It also makes it possible to more realistically recre-
ate the environment of certain microorganisms, allowing the
study of more complex cultures. Another application where
these devices stand out is in three-dimensional cell culture,
where physiological conditions can be more reliably replicated
(Duinen et al., 2015). Ultimately, this technology enables tests
that provide more accurate results and reduce the need for
animal experimentation. In addition, the use of these devices
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lowers the cost of carrying out certain experiments because
the amount of chemicals required is very small, which also
reduces the amount of waste generated.

The dynamics of microfluidic systems typically depend on
several variables. Therefore, to fully exploit their potential,
it is essential to develop and implement advanced control
methods. Specifically, model predictive control (MPC) is a
potential control strategy for these devices, as it allows the
control of systems with multiple inputs and multiple outputs.
Its main advantage is that it allows predicting the evolution of
the process in the future, taking into account all the physical
constraints of the process in the calculation of the control
action, whether they are in the input, state, output, or all of
them simultaneously. However, the use of this type of control
involves a more complex development and implementation
than classical controllers, as it is essential to perform tasks
such as building a model or defining the cost function to
minimize. In the literature, very diverse applications of this
type of control can be found, from its use in resonant power
converters (Lucia et al., 2021), to the cement industry (Clarke,
1988), improving the energy efficiency of air conditioning
systems (Marchante et al., 2021), controlling solar plants
(Gallego Len et al., 2022), or clinical anesthesia applications
(Gómez et al., 2016; Méndez Pérez et al., 2011), just to name a
few examples. Additionally, more innovative developments are
also underway, such as the combination of predictive control
with neural networks for nonlinear systems (Calle Chojeda
et al., 2022). All these references show that model predictive
control is increasingly being used in numerous scientific and
industrial fields.

Returning to the specific field of microfluidics, various
works related to the development of controllers for these
systems can be found in the literature. For example, in Kim
et al. (2013), a control system for a mechanical component
of a microfluidic device is proposed, and in Kuczenski et al.
(2007), a procedure is described to control the interface
between two fluids in a microscopic channel. However, most
of these systems rely on the use of PID controllers, whose
limitations in managing constraints are widely known. For
example, Heo et al. (2016), presents the design of a flow
control algorithm and its comparison with a conventional PID
controller, and Miller et al. (2010) describes a PID controller
for a microfluidic droplet generation device. The alternative
proposed by some authors is in fact the development of model
predictive control systems. Examples can be found in droplet-
based microfluidic systems (Maddala and Rengaswamy, 2013)
or electroporation systems (Ghadami et al., 2013), although
none of these proposals specifically apply MPC techniques for
flow control. Special mention should also be made of certain
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works, such as that of García-Camprubí et al. (2020), focused
specifically on the design of estimation algorithms intended
for use in MPC controllers.

In this paper, we present the design of a model predictive
controller for a microfluidic system. The objective is to control
independently the flows circulating through three microscopic
channels in a microfluidic chip, which meet at the same point
to form a common outflow. This particular configuration is
used in techniques such as Flow Focusing, which consists in
the generation of droplets and is used in fields such as drug
encapsulation or particle design (Martín-Banderas et al., 2005;
Gañán Calvo, 1998). The system is subject to numerous con-
straints, both on flow rates and applied pressures. Additionally,
the coupling between different variables and the complexity
of the system itself make it difficult to control using classical
techniques, which justifies the need for MPC control. Since
only partial measurements are available, the controller relies
on a state observer whose design is also presented in the
paper. The results obtained, both through simulation and on the
real system, demonstrate the benefits of the proposed control
system.

The structure of the article is summarized as follows.
Following this introductory section, Section II describes the
microfluidic system under study. Subsequently, in Section III,
we present the dynamic model of the complete system, as well
as a simplified version used by the estimation and control
algorithms. Sections IV and V describe, respectively, the
state observer and the MPC controller designed. The results
obtained with the complete implementation, first in simulation
and then on the real system, are included in Section VI.
Finally, Section VII presents the main conclusions of the work.

II. SYSTEM DESCRIPTION

The microfluidic system used (see Fig. 1) consists of three
pressure regulators (A), three compressed air lines (B), three
liquid reservoirs (C), three fluid lines with their respective flow
meters (D), the microfluidic chip (E), an outlet line (F), and
a final liquid reservoir (G). Fig. 2 shows a real image of the
chip used.

Fig. 3 shows a conceptual block diagram for one of the
lines, which is analogous to the three existing in the system.
The system operation is as follows. The inputs are pressure
references introduced to the regulators. These regulators act
on the system to achieve, after a certain transient time, the
requested pressures at the beginning of the compressed air
lines. This pressure is transmitted to the reservoirs, which
contain a fluid consisting of a mixture of water (74% by
volume) and glycerin (26%), identical for all three lines. As
a result of the pressure applied, the liquid contained in the
reservoirs begins to flow through the fluid lines towards the
chip. Next, the liquid enters the chip, where the three channels
converge at a common point. Finally, all the fluid exits through
the chip’s outlet channel to a line that connects it to a reservoir
at atmospheric pressure. It is important to note that, in each
of the three fluid lines between the reservoirs and the chip,
the flow meters provide real-time measurements of the liquid
flow rate. These measurements are the only ones used to close
the control loop.
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Fig. 1. Schematic diagram of the microfluidic system used.

Fig. 2. Photograph of the microfluidic chip.

III. SYSTEM MODELING

In this section, the equations of the dynamic model of
the complete system presented in the previous section are
presented. This model consists of the union of different
submodels described in the following sections, each associated
to a specific part of the system. It should be noted that a
simplified version of this model is used for programming
both the observer and the controller. The simplified model is
described at the end of the section.

A. Theoretical preliminaries

The most relevant parameters in a microfluidic line are
its hydraulic resistance, R, and inertia, I . The following
expression can be used to calculate the inertia of a specific
line,

I =
ρ l

A
, (1)

where l and A are, respectively, the length and cross-sectional
area of the line, and ρ is the fluid density. The hydraulic
resistance of rectangular channels can be calculated using the
following expression (Rapp, 2017),

R =
12µ l

h3 w
· 1(

1− 192h
π5 w

) ∑∞
j=0

(
1

(2j+1)5 tanh
(

(2j+1)π w
2h

)) ,
(2)

where µ is the dynamic viscosity of the fluid, h is the height
of the channel’s cross-section, and w is its width. On the other
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Fig. 3. Conceptual block diagram for one of the lines.

hand, for circular cross-section lines, the following expression
is used (Rapp, 2017),

R = µ · 8 l

π r4
, (3)

where r is the radius of the cross-sectional area of the line.
Using Poiseuille’s law and the hydraulic-electrical analogy,

the flow variation in the channels can be formulated as a
function of the pressure difference between two points in the
channel, ∆P , the hydraulic resistance,R, the flow rate through
the channel, Q, and the fluid inertia in the channel, I . The
hydraulic-electrical analogy allows some equations related to
fluids to be reformulated by analogy with electrical equations.
In this regard, an equivalence can be established between
hydraulic resistance, R, and electrical resistance, Re; between
flow rate, Q, and electrical current, Ie; between the pressure
difference between two points, ∆P , and voltage drop, Ve; and
between the fluid inertia in the channel, I , and the inductance,
L, of an electrical circuit.

∆P = RQ+ I Q̇ ←→ Ve = Re Ie + L İe (4)

Another relevant equation in these systems is the one
describing the dynamics of pressures. The variation of pressure
in a volume is expressed as the flow balance in that volume
divided by the compressibility (Bruus, 2007),

Ṗ =
∆Q

C
, (5)

where ∆Q is the difference between the flow entering and
leaving this volume, and C is the compressibility of the fluid
in the chamber under study, given by

C =
Vtot

E
, (6)

where Vtot is the total volume of the chamber containing the
fluid and E is the bulk modulus of the fluid.

B. Modeling of the microfluidic chip
The chip (see Fig. 4) consists of three rectangular cross-

sectional input channels with their respective flow rates,
Q chip

1 , Q chip
2 , and Q chip

3 , and one output channel with flow
rate Qout. The flow rates of the input lines are controlled
by acting on the input pressures to the chip, P chip

1 , P chip
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Fig. 4. Chip diagram

and P chip
3 . A variable PM is defined for the pressure at the

midpoint where the three input channels merge. It should
be noted that this variable cannot be measured directly. The
output of the chip is at atmospheric pressure, Patm.

Applying (4) to each of the three input channels of the
chip, the expressions of the derivatives of the flow rates can
be obtained,

Q̇ chip
i =

P chip
i − PM −R chip

i Q chip
i

I chip
i

, i ∈ {1, 2, 3} (7)

where I chip
i and R chip

i are the inertia and hydraulic resistance
of the i-th channel of the chip, calculated respectively using
(1) and (2). The dynamic equation for the output channel can
be obtained similarly, in this case with atmospheric pressure
at the outlet,

Q̇out =
PM − Patm −Rout Qout

Iout
, (8)

where Iout and Rout are respectively the inertia and hydraulic
resistance of the output channel.

The compressibility of the fluid in the chip, C chip, can be
obtained using (6). In this case, the total volume is the sum of
the volumes of each of the input channels, V chip

i , i ∈ 1, 2, 3,
and the output channel, Vout.

C chip =
V chip
1 + V chip

2 + V chip
3 + Vout

E
(9)

Besides, the pressure variation at the junction point of the lines
can be obtained by applying (5) to the chip.

ṖM =
Q chip

1 +Q chip
2 +Q chip

3 −Qout

C chip
(10)



C. Modeling of the fluid lines and flow meters
For the lines connecting the reservoirs to the chip, the flow

meter is considered to be part of the line. This implies that,
for each line, the inertia, volume, and resistance are the sum
of those corresponding to the line and the flow meter.

The flow through the line depends on the pressure difference
between the two ends of the line. From (4), we obtain the
following expressions for each of the three lines,

Q̇ line
i =

P res
i − P chip

i −R line
i Q line

i

I line
i

, i ∈ {1, 2, 3}, (11)

where Q line
i is the flow rate of the i-th fluid line, I line

i and
R line

i are the inertia and hydraulic resistance of said line,
calculated in this case using (1) and (3) for having a circular
section, and P res

i denotes the pressure of the i-th reservoir.
The pressure variation at the end of each line can be obtained
as a function of the flow rates by applying (5) to this case,

Ṗ chip
i =

Q line
i −Q chip

i

C line
i

, i ∈ {1, 2, 3}, (12)

where C line
i is the compressibility of the fluid in the i-th line,

obtained from (6) as

C line
i =

V line
i + V fm

i + V chip
i

E
≈ V line

i + V fm
i

E
. (13)

In the previous expression, V line
i and V fm

i are, respectively,
the volumes of the i-th line and its corresponding flow meter.
To calculate the fluid compressibility C line

i , the influence
of the volume of each of the chip channels, V chip

i , can be
neglected as these are much smaller than those of the fluid
lines and flow meters.

D. Modeling of the reservoirs and air lines
The three reservoirs containing the liquid are supplied with

pressurized air through a series of tubes. This air causes the
liquid to exit through the previously described lines. The ideal
gas law is used to model the dynamics of this part,

Ṗ res
i V res

i = ṁi RT, (14)

where ṁi is the mass flow rate of gas flowing through the i-th
air duct and reaching each of the reservoirs, and V res

i is the
volume of the corresponding reservoir. Both the volume occu-
pied by the air in each reservoir, V res

i , and the temperature,
T , are assumed to be constant. For air, R = 287.14 J/(kg·K)
is assumed.

The mass flow rate of air through the tube is calculated
using the isentropic flow model with adiabatic index γ = 1.4
(Çengel et al., 2018; White, 2008),

ṁi =
A duct P reg

i√
RT

√√√√7

(
P res
i

P reg
i

)10/7
[
1−

(
P res
i

P reg
i

)2/7
]
,

(15)
where A duct is the cross-sectional area of the duct, P reg

i is the
pressure at the beginning of the i-th air line (regulated by the
corresponding pressure controller), and P res

i is the pressure
at the end of the line (pressure in the i-th reservoir).

E. Modeling of the pressure regulators

In the system used, there are three pressure regulators whose
internal dynamics are a priori unknown. These regulators
do not immediately provide the required pressure, but have
their own dynamics that need to be modeled. In this case,
we propose to use linear dynamic black-box models where
the input is a pressure reference, ui, and the output is the
controlled pressure, P reg

i .
In order to identify these systems, the Matlab System Iden-

tification Toolbox has been used to obtain a transfer function
for each type of regulator by analyzing different sets of exper-
imental data. The tests have been based on requesting different
setpoints in the range of 0 to 150 000 Pa and recording the step
response of the regulators. By observing the system output,
it was determined that the most appropriate model for the
regulator of line 2 is a second-order linear model. For the
other two lines, a different behavior was observed, which fits
better with a third-order dynamics. That is, their dynamics are
given by

u1 = P reg
1 + a1Ṗ

reg
1 + a2P̈

reg
1 + a3

...
P

reg
1 , (16)

u2 = P reg
2 + b1Ṗ

reg
2 + b2P̈

reg
2 , (17)

u3 = P reg
3 + c1Ṗ

reg
3 + c2P̈

reg
3 + c3

...
P

reg
3 , (18)

where the coefficients a1, a2, a3, b1, b2, c1, c2, and c3 have
also been estimated using the mentioned tool.

F. Complete system model for simulation

From all the previous equations, it is possible to build a
dynamic model of the whole system with the 22 state variables
listed in Table I. This model, whose dynamics is nonlinear due
to the use of equation (15), has as inputs the three pressure
references provided to the pressure regulators, and as outputs,
the three flow readings from the three flow meters installed in
the lines.

In order to perform realistic simulations, this model was
implemented in Matlab-Simulink, taking into account certain
effects such as possible noise in the measurements or the
internal dynamics of the flow meters. This implementation has
been used to validate through simulation both the observer and
the predictive controller proposed in this work.

TABLE I
STATE VARIABLES OF THE COMPLETE SYSTEM.

Name Description

Q chip
1 , Q chip

2 , Q chip
3 Flow rates at the chip inlet

Qout Flow rate at the chip outlet

PM Pressure at the midpoint

Q line
1 , Q line

2 , Q line
3 Flow rates in the lines

P chip
1 , P chip

2 , P chip
3 Pressures at the chip inlet

P res
1 , P res

2 , P res
3 Pressures in the reservoirs

P reg
1 , Ṗ reg

1 , P̈ reg
1 Controlled pressure 1 and its derivatives

P reg
2 , Ṗ reg

2 Controlled pressure 2 and its derivative

P reg
3 , Ṗ reg

3 , P̈ reg
3 Controlled pressure 3 and its derivatives



G. Simplification for observation and control
Based on the complete model, a simplification has been

performed by grouping the whole system into a lower-order
state-space model with linear dynamics. In this regard, it has
been verified by simulation that neglecting the effect of the
air reservoir and possible losses in it has minimal influence.
Specifically, for a set point of 10 000 Pa applied equally to all
three lines, the difference between the steady-state flow rates
is less than 0.5%, calculated as the difference between the
flow rate of the two models with respect to the flow rate of
the complete system. This allows to reduce the complexity
of the model used in the design of the observer and the
controller by simplifying the nonlinear part, while leaving the
rest with linear dynamics. Thus, the pressures P reg

i and P res
i

are assumed to be equal for each of the three lines. It is also
assumed that the flow rate through each line is equal to the
flow rate through the corresponding channel inside the chip,
i.e., Q line

i = Q chip
i . Since the flow meter is considered to be

part of the line (see section III-C), the flow rate measured by it
will directly correspond to the flow through the corresponding
line and inside the chip.

Considering the above, the lines linking the reservoirs and
the chip and the chip channels themselves are considered in the
simplified model as a set, thus simplifying the pressures at the
chip inlet, P chip

i . That is, the simplified model assumes that
the pressure at the inlet of the system composed of one of the
lines and the corresponding internal channel of the chip is the
controlled pressure P reg

i . In making this union, the resistance
and inertia properties of the assembly are given by{

Ri = (R chip
i +R line

i )

Ii = (I chip
i + I line

i )
i ∈ {1, 2, 3}. (19)

With the simplification, the variables for intermediate pres-
sures and flow rates in the lines are no longer used, reducing
the number of state variables from 22 to 13 (see Table II). Fur-
thermore, in subsequent analyses, to simplify the operations,
all pressures are considered relative to atmospheric pressure,
so Patm = 0 Pa is assumed in the model. The resulting model
can be represented compactly as

ẋm(t) = Am xm(t) +Bm u(t), (20)
y(t) = Hm xm(t), (21)

where xm ∈ Rn, with n = 13, is the state vector, formed by
the state variables from Table II (in that order), and u ∈ Rm,
with m = 3, and y ∈ Rp, with p = 3, are, respectively, the
input and output vectors of the system, defined as:

u = [u1 u2 u3]
T
, y = [y1 y2 y3]

T
= [Q1 Q2 Q3]

T
.

The state (Am), input (Bm), and output (Hm) matrices of
the model are not explicitly shown in this article due to space
limitations. However, they can be directly obtained from the
equations (7)–(19).

Regarding the accuracy of the simplification made, it has
been verified by simulation that, given a constant set point
of 150 000 Pa (the maximum supported by the system), the
maximum difference in steady state between the flow rates
of the complete and simplified models is less than 6.5%

TABLE II
STATE VARIABLES OF THE SIMPLIFIED SYSTEM.

Name Description

Q1, Q2, Q3 Flow rates in the line + channel assembly

Qout Flow rate at the chip outlet

PM Pressure at the midpoint

P reg
1 , Ṗ reg

1 , P̈ reg
1 Controlled pressure 1 and its derivatives

P reg
2 , Ṗ reg

2 Controlled pressure 2 and its derivatives

P reg
3 , Ṗ reg

3 , P̈ reg
3 Controlled pressure 3 and its derivatives

with respect to the system without simplification. During the
transient response, there are slightly larger differences, but we
have considered that the behavior is acceptable enough to use
the simplified model.

This simplified model is used in the design of the con-
troller and observer. Specifically, the implementation uses the
discrete-time version of the model,

xm(k + 1) = Fm xm(k) +Gm u(k), (22)
y(k) = Hm xm(k), (23)

where Fm and Gm are, respectively, the state transition matrix
and the input matrix in discrete time.

IV. STATE OBSERVER

A. Observer design

The simplified model described previously has thirteen state
variables, whose values need to be known in real time in order
to control the system. In practice, however, it is not possible to
measure all of them since the three available flow meters only
allow for the measurement of three of these state variables.
It is thus necessary to design and implement an observer that
estimates the unmeasured variables in order to reconstruct the
full state at each instant. In this work, the state observation
is carried out using a Kalman filter. The filter is based on the
classical formulation in Kalman (1960) and Welch and Bishop
(2006), and it is described by the following equations:

x′
m(k) = Fm x̂m(k − 1) +Gm u(k − 1), (24)

P′(k) = Fm P̂(k − 1)Fm
T +QKF, (25)

K(k) = P′(k)Hm
T
[
Hm P′(k)Hm

T +RKF

]−1

, (26)

x̂m(k) = x′
m(k) +K(k) [y(k)−Hm x′

m(k)] , (27)

P̂(k) = P′(k)−K(k)Hm P′(k), (28)

where x′
m and x̂m are the a priori and a posteriori estimates

of the state xm, P′ and P̂ are the corresponding covariance
matrices of these estimates, and K is the Kalman gain. Addi-
tionally, there are parameters that are crucial for the filter’s
performance: the covariance matrices of the measurement
noise, denoted as RKF ∈ Rp×p, and the process noise, denoted
as QKF ∈ Rn×n.
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Fig. 5. Simulation results of the Kalman filter performance in the presence of noise.

B. Simulation and tuning of the observer

In order to verify the correct design of the filter, several
simulations have been carried out in the software Matlab-
Simulink, with the complete model playing the role of the
real system, modeled as previously indicated. However, the
observer is based on the simplified model. Thus, in the
simulation, the model of the system available to the observer
is not exactly the same as that of the plant.

Based on preliminary tests on the system, it was deter-
mined that the measurement noise of the flow meters is in
the range of ± 0.3 µl/s. Assuming Gaussianity and that
this value corresponds to three standard deviations, it was
concluded that the variance of the measurement noise should
be about 10−20 (m3/s)2. Consequently, considering that the
three sensors are independent and thus the measurements must
be uncorrelated, we decided to set RKF = Ip · 10−20, where
Ip is the identity matrix of size p = 3.

For the definition of the matrix QKF it is assumed that the
noise affecting each state variable in (22) is independent of the
others. In other words, QKF is set to be diagonal. Furthermore,
to determine its value, it has been assumed that such noise
signals are Gaussian with zero mean and standard deviation
proportional to a characteristic value of the corresponding
variable. Therefore, the covariance of the process noise has
the form

QKF =

[
QKFQ 04×9

09×4 QKFP

]
, (29)

where

QKFQ = β ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 9

 · 10−18

is the submatrix of QKF associated with the flow rate variables,
QKFP = β · I9 · 108 is the submatrix corresponding to the
pressures and their derivatives, β is a dimensionless factor that
allows adjusting the filter’s behavior, and 0p×n is a matrix of
zeros with p rows and n columns. Note that the different orders
of magnitude arise from working with different magnitudes
(pressures and flow rates) in very different numerical ranges.

When setting the value of β, a decision must be made
whether to minimize the effect of noise, relying solely on the

model of the plant available to the filter and sacrificing some
measurement information, or to allow a minimal level of noise
effect and improve the response to discrepancies in the plant.
Fig. 5 shows the evolution of the flow rate Q1 for different
values of β. In all these simulations, measurement noise
with the mentioned variance, i.e., 10−20 (m3/s)2, has been
artificially introduced. Successive simulations have allowed us
to determine that the value of β = 10−4 preserves the real
behavior with a reduced noise effect. For higher values, too
much confidence is placed in the simplified model, leading
to errors (areas highlighted in yellow in the figure), while for
lower values, too much noise is observed.

The simulations performed lead to the conclusion that the
designed observer is valid for observing the system state vari-
ables even with some measurement noise. Based on the results,
it is determined that in order to obtain the best performance,
it would be advisable to adjust the matrices during the system
calibration to best match the specific operating conditions. In
cases where the system undergoes significant changes during
operation, it would be appropriate to use an adaptive algorithm
that modifies the model matrices according to the observations.

V. MPC CONTROLLER

A. Controller design
The following is a description of the model predictive

controller (MPC) design used for this system. One of the main
strengths of this type of control is that the formulation allows
for controlling multi-input, multi-output systems, including
constraints on the input, state, or output in the formulation.
Additionally, MPC allows for real-time optimization, explicitly
using a plant model to predict the process evolution in future
time steps by minimizing an objective function.

The formulation used in the implementation of the MPC
controller in this system is based on that described in Wang
(2009) and Camacho and Bordons (2010). This formulation
utilizes the following extended model of the system,

x(k + 1) = Fx(k) +G∆u(k), (30)
y(k) = Hx(k), (31)

where x is the extended state, defined as

x(k) =

[
∆xm(k)
y(k)

]
=

[
xm(k)− xm(k − 1)

y(k)

]
. (32)



It is important to note that the input to this model consists of
control action increments, that is, ∆u(k) = u(k)− u(k− 1),
rather than the control actions themselves. This implies that
the MPC formulation implicitly includes an integrator for each
output, allowing the desired setpoint to be reached in steady-
state even in the presence of disturbances or modeling errors.
The matrices F, G, and H, which can be obtained by operating
on (22)–(23), have the following form:

F =

[
Fm 0T

p×n

HmFm Ip

]
, G =

[
Gm

HmGm

]
, H =

[
0p×n Ip

]
.

In this work, we consider the control horizon and the predic-
tion horizon to be equal, which we will simply refer to as the
horizon and denote as N . Based on this horizon, it is possible
to define the following vectors:

∆U(k) =

 ∆u(k)
...

∆u(k +N − 1)

 (33)

Y(k) =

 y(k + 1 | k)
...

y(k +N | k)

 Yd(k) =

 yd(k + 1)
...

yd(k +N)

 , (34)

where y(j | k) ∈ Rp is the prediction of the system output
at the j-th instant based on the information available at the
k-th instant, and yd(j) ∈ Rp is the desired value for that
output at that instant. In other words, the vectors ∆U ∈ RNm,
Y ∈ RNp and Yd ∈ RNp contain, respectively, the control
action increments, the predicted outputs, and the desired values
for the whole horizon. Operating with these vectors and the
model (30)–(31), it is possible to express the vector Y(k) as

Y(k) = Ψx(k) +Φ∆U(k), (35)

where Ψ and Φ are constant matrices defined as

Ψ=


HF
HF2

...
HFN

, Φ=


HG 0p×m · · · 0p×m

HAG HG · · · 0p×m
...

. . . . . .
HFN−1G HFN−2G · · · HG

.
Based on the above definitions, the cost function to be

minimized, J , is formulated as the sum of a tracking error
term, which takes into account how far the flow rates are
from the desired values, and another term associated with the
increase in the control variable,

J(k) = Ỹ(k)T ·Wy · Ỹ(k) +∆U(k)T ·Wu ·∆U(k), (36)

where Ỹ = Y−Yd is the vector with the tracking errors. The
diagonal matrix Wy ∈ RNp×Np determines the importance
of the error Ỹ in J . Additionally, it also establishes the
relative weights between the errors of the three outputs. In
this case, the three outputs are flow rates that are within the
same value ranges. Since the importance of the error is the
same for all three, we decided to set all these values to unity.
That is, Wy = INp. On the other hand, the diagonal matrix
Wu ∈ RNm×Nm allows to define the relative weights of the
control actions, both among themselves and with respect to the
term associated with the error Ỹ. Since in the system under

studye the three actions are pressures within the same value
ranges, and the relative importance is the same for all three,
we decided that all the elements of the diagonal take the same
value. That is, Wu = α INm, where α is a parameter that
allows to adjust the behavior of the controller.

The controller formulation also includes constraints on the
control actions (the pressures to be applied) both in their
magnitude and in their rate of change, as well as on the
three flow rates to control. The implementation requires that
all constraints be expressed in terms of increments of the
controlled variable, according to the following formulation,

M ·∆U(k) ≤ γ(k), (37)

where

M =


−C2

C2

−ImN

ImN

−Φ
Φ

 , γ(k) =


−Umin +C1 u(k − 1)
+Umax −C1 u(k − 1)

−∆Umin

+∆Umax

−Ymin +Ψx(k)
+Ymax −Ψx(k)

 .

The matrix M establishes the relationship between the con-
straints and the increment of the control variable, and the
vector γ formulates each of the constraints in terms of
the control variation. The vectors Umin, Umax, ∆Umin,
∆Umax, Ymin and Ymax set the maximum and minimum
bounds for the actions, the rate of change of the actions, and
the outputs, respectively. On the other hand, C1 and C2 are
auxiliary matrices formed by zeros and ones in the appropriate
arrangement to relate the constraints to the increment of the
control variable.

Once the cost function to be minimized and the constraints
to be satisfied are defined, the problem becomes an optimiza-
tion of a quadratic function with constraints.

min.
∆U(k)

J(k) st: (37) (38)

B. Controller simulation and tuning
The goal of the simulations presented here is to verify the

correct design of the controller. Thus, these have been carried
out without using the observer, assuming that the full state is
measurable. The operation of the complete system including
the observer will be analyzed in the following section.

The simulations have been carried out using Matlab-
Simulink. Specifically, the optimization problem (38) has
been solved using the Matlab optimization toolbox, with the
quadprog function designed for this purpose. When applying
this function, the vector of control action increments, ∆U, to
be applied for all subsequent time steps of the control horizon
is obtained. However, according to the paradigm of model
predictive control, only the calculated input for the next time
step will be applied, redoing this calculation at each step.

The choice of the sampling frequency and the discretization
of the controller has taken into account the direct connection
between the sampling period, T , the number of steps in the
horizon, N , and the duration of the horizon, T · N . This
implies a trade-off between computational cost and controller
performance. For their selection, an iterative process was



carried out, resulting in a horizon of N = 10 steps and a
sampling period of T = 0.1 seconds.

In order to demonstrate the validity of these values, several
simulations were carried out without restrictions on any of
the variables, setting a reference of 1 µl/s for flow Q1, 2 µl/s
for flow Q2, and 3 µl/s for flow Q3. The result for different
horizons can be observed in Fig. 6. Only the result for line 1
is shown, as it is similar for all three. It is verified that the
best value is N = 10, since a further increase increase only
provides a higher computational cost without any benefit in the
behavior. This will be the horizon used in the remaining cases.
With the horizon fixed, Fig. 7 shows the system behavior for
different values of the controller tuning parameter α. It can be
observed that α = 10−7 results in the best trade-off between
response time and overshoot.

Additional simulations implementing different constraints
have also been conducted. The performance of the control
system has been verified for three different cases. In the
first case (see Fig. 8), a limit of 9 500 Pa has been set on
the pressure to apply. The goal is to prevent a peak that
appears in the control action when a step response is asked.
By not allowing this peak, the response becomes slightly
slower, but the flow rate still reaches the desired value. In
the second case (see Fig. 9), the response to a limitation of
the action variation to 2 000 Pa/s has been analyzed. When
a step input is applied, the response becomes slower but
reaches the reference. With a ramp input, since the slope is
not steep enough, the behavior is identical to the case without
limitations. Finally, the performance has been examined under
different constraints for each of the input flow rates to the
chip, causing the controller to adjust the pressures to meet the
constraints. This last case is shown in Fig. 10. Based on these
results, it is concluded that the controller design is correct.

VI. RESULTS OF THE COMPLETE IMPLEMENTATION

After presenting the model, the observer, and the controller
separately, this section reports the results obtained from tests
conducted using the complete control system, both through
simulation and in experiments carried out on the actual mi-
crofluidic system.

A. Validation by simulation
Matlab-Simulink has been used to simulate the most realis-

tic conditions. As described earlier, the plant has been modeled
in continuous time and, accordingly, it is simulated using a
precise numerical integration method that provides realistic
results of the physical system response. Working in a simu-
lation environment allows for measuring all state variables. It
should be noted, however, that only the readings from the flow
meters are used to provide feedback to the controller. These
readings, to which simulated measurement noise can be added,
serve as inputs to the observer, which estimates the rest of the
state variables needed by the MPC algorithm. The controller
is also provided with the desired values for the flow rates of
the three lines. The controller performs the operations, and
once the control action is calculated, it is applied to the plant,
closing the loop. The simulations have been performed with
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Fig. 6. Simulated response of the flow rate Q1 for T = 0.1 s and
different values of the horizon N . The setpoint is 1 µl/s and α = 10−7.
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Fig. 11. Simulation of the complete MPC system. Pressures (left) and flow rates (right) in response to stepped setpoints, different for each line.

a horizon N = 10, a sampling period T = 0.1 s, and values
of α = 10−7 and β = 10−4 for the controller and observer
tuning parameters, respectively.

For the constraints to be imposed on the controller, the
following considerations have been taken into account:

1) The maximum pressure of the controllers is limited
by the pressure that the glass containers used in the
experiments can withstand (150 000 Pa relative to at-
mospheric pressure). The minimum pressure is limited
to atmospheric pressure.

2) The maximum rate of change has been determined based
on the data provided from previous experiments. It is set
at 100 000 Pa/s.

3) The only constraint on the flow rate in the lines entering
the chip is that it must be positive, to prevent fluid from
one line from entering another.

Fig. 11 shows the flow rates and pressures of the lines for a
simulation in which stepped setpoints have been established,
different for each of the flow rates. As in the observer
validation, noise with variance 10−20 (m3/s)2 has also been
added to the three flow meters measurements. It can be seen
that the system has a response time of approximately 1.8
seconds for lines 1 and 3, and 1.5 seconds for line 2. The
results also show that the system correctly reaches the desired
values with a small overshoot, which confirms that it works
properly.

B. Validation on the real system
To conduct tests on the real system, the observer and

controller code has been ported from Matlab to Python. The
manufacturer of the devices used (Fluigent) provides a set
of tools to easily communicate and control these devices
from Python code, which is why this language has been
chosen. In the following, some of the results obtained in the
experiments are presented. The general constraints imposed
are the same as in the simulations shown earlier, although for
safety reasons the pressures on the real system have been kept
below 100 000 Pa.

The parameters of the MPC controller are the same as those
of the previous simulations. That is, N = 10, T = 0.1 s,

and α = 10−7. However, after some preliminary tests, it
was observed that the real system exhibited more differences
than expected from the model, especially in line 1, where an
unexpected oscillatory dynamics was detected. Thus, to deal
with this uncertainty, it was considered that the matrix QKF

of the filter required some manual adjustment. The values of
each of the submatrices finally used are as follows:

QKFQ = diag ([50 1 10 100]) · 10−20,

QKFP = diag ([10 10 10 10 1 1 1 1 1]) · 105,

where diag(·) is an operator that constructs a diagonal matrix
with the elements of the argument vector on the main diagonal
and zeros in the remaining elements. The covariance of the
measurement noise has been kept at the same value (RKF =
Ip · 10−20).

Fig. 12 shows the flow rates and pressures for the case
already studied by simulation, with different stepped setpoints
for each line. The results clearly show that the behavior of the
middle line (line 2) is, as expected, different from the other
two. In the flow rate plot of this case, as well as in those
that will be presented later, it can be observed the previously
mentioned oscillations in line 1 (in blue), which become more
pronounced with higher flow rates. After several tests in the
laboratory, it was concluded that this is due to unmodeled
dynamics of this specific pressure regulator. There are other
significant differences compared to the simulation, especially
in the pressure plot, but it can still be seen that the proposed
controller is able to achieve the desired flow rates in steady
state. It can also be seen that disturbances appear in the lines
when one of the others changes its value, but these are quickly
corrected.

In addition to this test, several other experiments have
been conducted. For example, Fig. 13 shows the response of
the system when the references are equal step functions for
all three lines. Similar to the first case, it can be observed
that the middle line takes longer to reach the reference than
the other two. It is also noticeable that all three lines reach
the steady state appropriately after the step functions. Some
experiments have been done simply to illustrate compliance
with the constraints imposed by the code. Fig. 14 shows,
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for example, one of the experiments conducted, in which a
constraint of 60 000 Pa have been imposed on the maximum
pressure in the pressure regulators. This pressure limit is
established for verification purposes, as the normal operating
limit is 150 000 Pa. It can be seen that the flow rates follow the
reference value up to the moment when the pressure limitation
prevents reaching higher flow rates.

After the various experiments carried out on the real system,
we can conclude that the designed controller allows to obtain
flow rates at the chip inlet that adequately follow the desired
reference values, while respecting the indicated constraints.
The experiments also show that, although a simplification with

a linear model has been used, the controller is capable of
operating within the necessary working range, even in the
presence of unexpected behaviors such as that of line 1. It has
also been observed that modeling the dynamics of the pressure
regulators is very important and that even two regulators of
the same model and apparently identical can exhibit different
behaviors.

C. Comparison with a classical controller
Finally, a comparison of the developed MPC controller with

a classical controller has been performed by repeating the
previous experiments but using an independent proportional-
integral (PI) controller in parallel for each line. The possibility
of including derivative action has been discarded due to
the excessive presence of noise in the system. To make an
objective comparison, the controllers have been optimized
using the PID Tuner tool in Matlab, adjusting the proportional
and integral gains, kp and ki, to achieve the fastest response
possible without overshoot. For lines 1 and 3, the gains are
kp = 5 · 1011 Pa/(m3/s) and ki = 2.5 · 1012 Pa/m3; for line 2,
kp = 8.5 · 1010 Pa/(m3/s) and ki = 1.5 · 1012 Pa/m3. The
controllers include an anti-windup algorithm based on limiting
the integral term.

In Figs. 15 and 16, the results obtained for the two stepped
setpoint references are presented. It can be observed that the
response of the system with the PI controllers is slower than
that obtained in equivalent tests with the MPC, both in tracking
the reference and in correcting one line when changes occur
in the others. Specifically, the response time with the classical
controller is between three and five times longer than with the
MPC. Fig. 17 shows the response to the triangular reference
signal, including the aforementioned limitation of 60 000 Pa
on the maximum control action. It can be seen that the flow
rates do not exactly follow the reference even before reaching
saturation, contrary to what happened with the MPC (see
Fig. 14). In this test, the MPC controller is also faster when the
pressure saturation ends and returns to tracking the descending
desired value. Finally, Table III shows the tracking errors for
each of the flow rates for the three analyzed reference signals
using each of the controllers. It can be seen that the MPC
controller achieves lower errors in all cases.
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TABLE III
COMPARISON OF RESULTS OF MPC AND CLASSICAL CONTROLLER.

ROOT MEAN SQUARE ERRORS (RMSE) IN µL/S.

Reference RMSE Q1 RMSE Q2 RMSE Q3

Different MPC 0,325 0,384 0,262
steps PI 0,490 0,705 0,425

Equal MPC 0,566 0,475 0,411
steps PI 0,723 0,980 0,681

Triangle
MPC 2,743 1,862 2,065

PI 2,857 2,218 2,200

VII. CONCLUSIONS

In this article, the design of a predictive controller for a mi-
crofluidic system has been described. Initially, it was necessary
to develop a model to describe the fluid dynamics through the
different channels and lines, as well as the behavior of the
low-level sensors and regulators present in the system. Based
on this, a state observer and the controller itself were designed,
which were subsequently validated both by simulation and in
the real system. The presented results show that the controller
is effective in independently controlling the three flow rates
circulating inside the microfluidic chip, even in the presence
of noise and certain simplifications and uncertainties inherent
in the model, and that the results improve upon what could
be achieved with three independent classical controllers. It
has also been observed that small variations in the operating
conditions, e.g., the deformation of one of the conduits in the
lines, can have a significant impact on the dynamics of the
system. Thus, future research will focus on the development
of online parameter estimation algorithms so that the control
system can adapt to these changes.
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