

Dr. Alexander Artemenko

+49(711)811-15946

Alexander.Artemenko@de.bosch.com

SMART FACTORIES: TODAY, TOMORROW AND THE DAY AFTER TOMORROW

WIRELESS INTELLIGENT NETWORKS 2021 23.06.2021

Demography: 2030 average expectation of life 81,5 years in Germany

Society

Urbanization: 70% of the population lives in cities by 2050

BOSCH

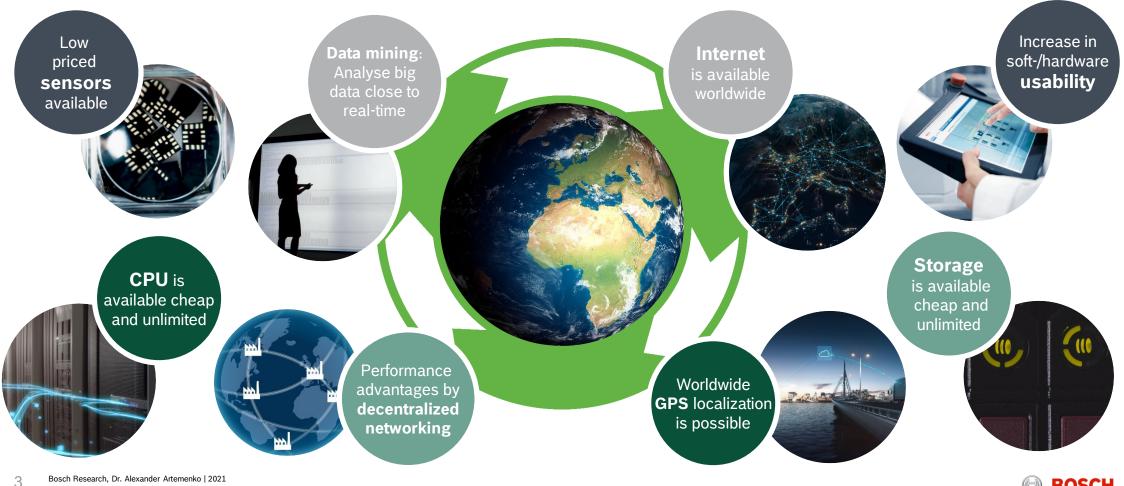
Digitization: Bandwidth for data transfer doubles roughly every 21 month

Technology

Connectivity: 125 billion connected things by 2030

Al & Automation: 15,7 trillion \$ is the expected contribution of AI to worldwide economy until 2030

BOSCH

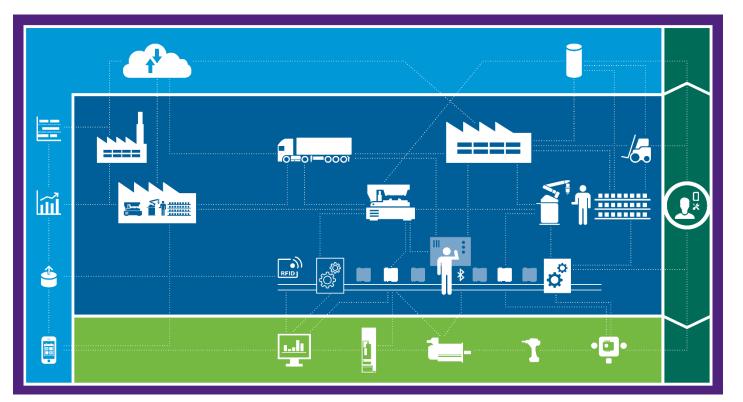

Climate: The probability that global warming will be limited to 2 degree is very low

Environment

Energy: 30% more energy consumption worldwide until 2035

Important changes in recent years

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.


BOSCH

Internet of things

Industrial IoT

Software Solutions

The element that links all modules and subsystems along the value stream with people and third-party systems.

Services and Consulting

A broad range of services and consulting including collaborative projects to test new business models.

Logistics and Manufacturing

Solutions that connect machines and whole manufacturing lines to value-creation networks.

Field Level Equipment

Components, modules and systems that enable the integration of equipment into networked i4.0 environments.

BOSCH

Key enablers for IIoT:

Bosch Research, Dr. Alexander Artemenko | 2021

Agenda

- Smart Factories: TODAY
- Smart Factories: TOMORROW
- Smart Factories: THE DAY AFTER TOMORROW

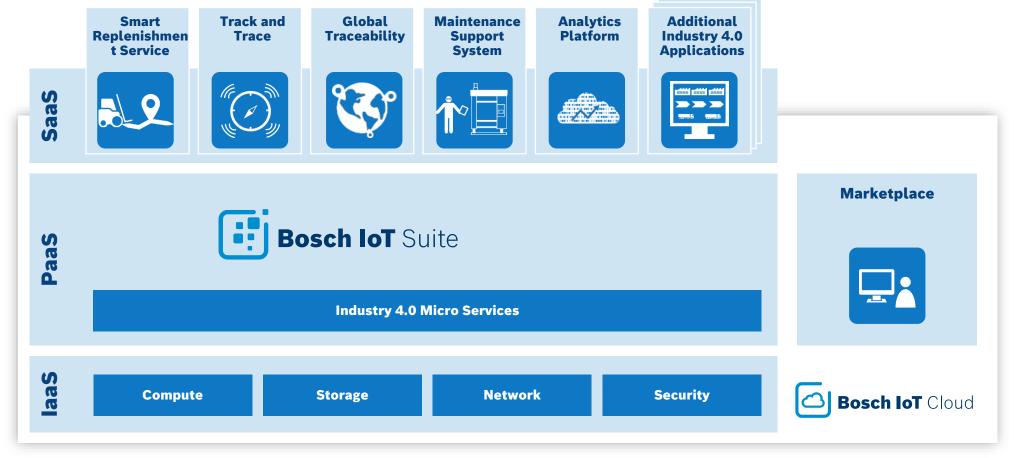
SMART FACTORIES: TODAY

Smart Factories: Today

Advances

- Virtualization (control, compute, network)
- Highly connected (mostly wired)
- Novel wireless technologies (4G/5G, WiFi5, RFID, BLE, etc.)
- Edge/Fog/Cloud computing
- Introduction of AI/ML

Challenges


- Fixed production lines, solitary products & solutions
- Poor support of safety concepts in novel technologies
- Integration in multi-tier cloud architecture / interplay with cloud
- Automated provisioning/partitioning of apps
- Interface between private & public infrastructure
- Shift from technology- to customer-centric approach

Pictures source: http://www.bosch-presse.de/pressportal/de/de/news/

Bosch Research, Dr. Alexander Artemenko | 2021 10

Smart Factories: Today IIoT Cloud Example

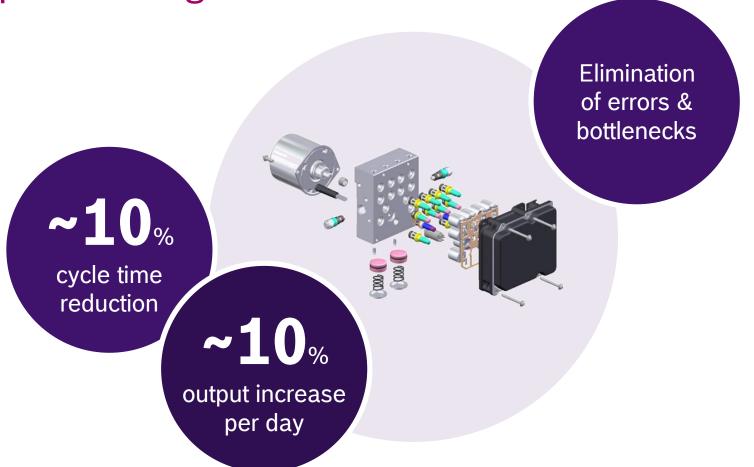
IaaS / PaaS / SaaS = Infrastructure / Platform / Software as a Service

11 Bosch Research, Dr. Alexander Artemenko | 2021

Smart Factories: Today Logistics with RFID

Smart Factories: Today Production quality: Smart tightening

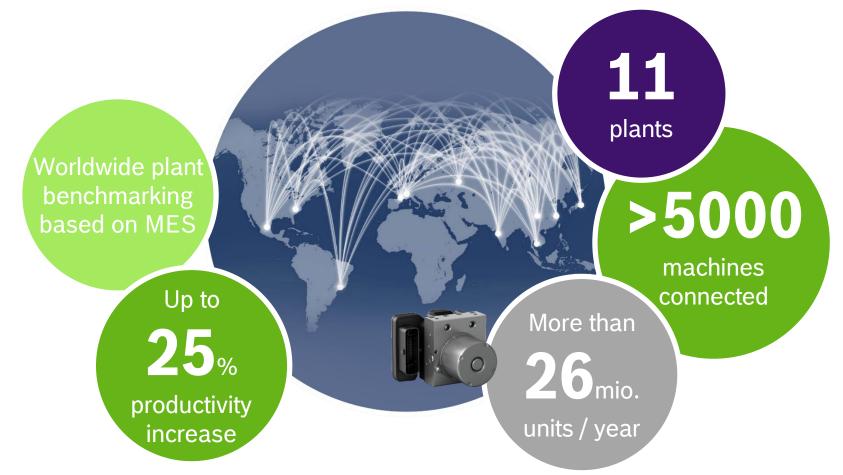
Failure reaction time drastically reduced



© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

9

Smart Factories: Today Smart Adaptive Testing



Smart Factories: Today i4.0 in an entire line – example Homburg

Smart Factories: Today i4.0 in an International Production Network – example ABS / ESP

SMART FACTORIES: TOMORROW

Smart Factories: TOMORROW

Advances

- Fully virtualized (devices, products, control, compute, network)
- Fully connected (wired and wireless)
- Compute everywhere
- Flexible customer-centric production
- Improved downtime
- Advanced AI/ML
- High mobility

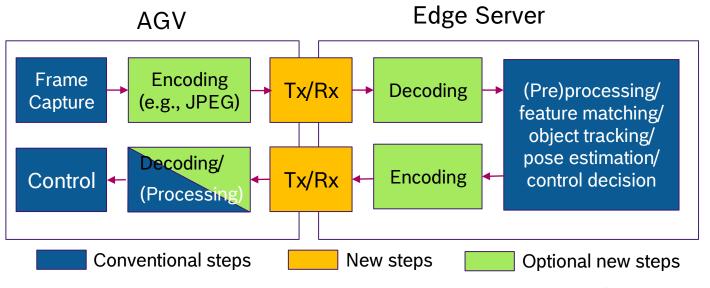
Challenges

- Multi-tier connectivity and compute platforms
- Vast cloud native landscape
- Embedded compute
- > Support in network QoS, highly deterministic traffic
- Support of brown field
- Private & public infrastructure mix
- Focus on the customer needs first

18 Bosch Research, Dr. Alexander Artemenko | 2021

Smart Factories: TOMORROW Video Offloading to Zero-Downtime Edge Cloud

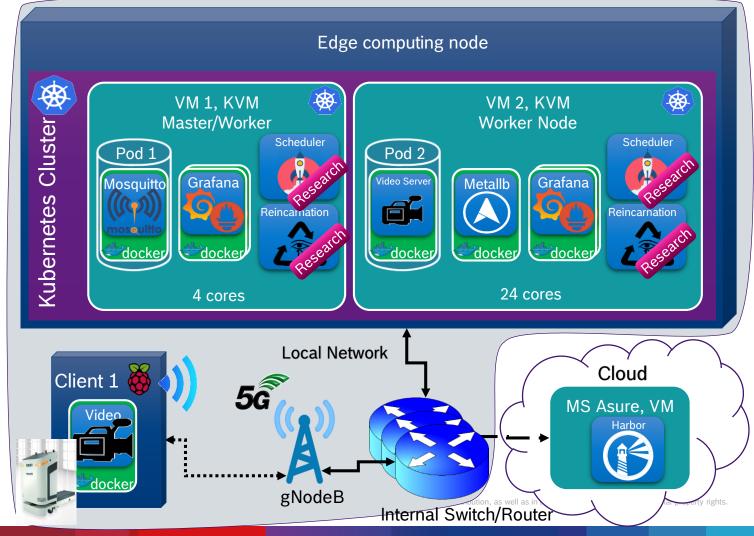
Requirements


- Motion-to-Photon latency < 100 ms</p>
 - > High throughput (>500 Mbps), short latency
- > Costs, size and weight constraints
- Use by multiple collaborating users simultaneously

Benefits of offloading:

- Offloading enabling complex video processing for resource-constrained devices
- Video processing as a service
- Server-side rendering of complex
 3D models
- Enabler for collaborative and context-sensitive video processing

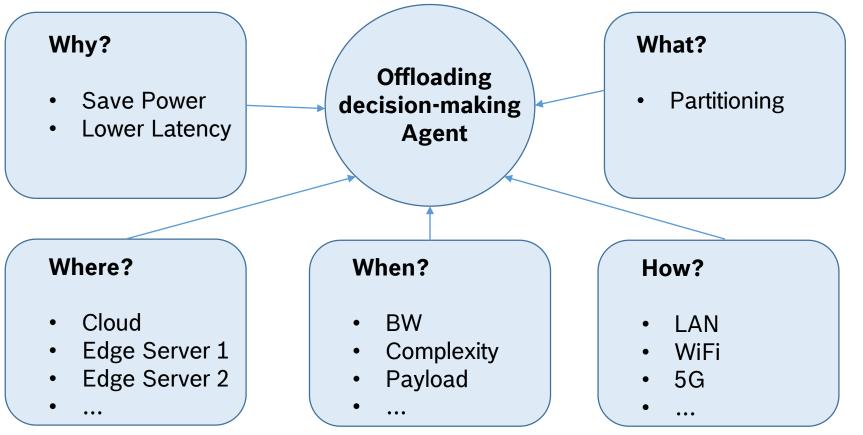
19 Bosch Research, Dr. Alexander Artemenko | 2021



BOSCH

Pictures source: http://www.bosch-presse.de/pressportal/de/de/news/

Smart Factories: TOMORROW Video Offloading to Zero-Downtime Edge Cloud

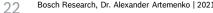


Edge Platform Redundant Services Live Service Migration Dedicated Orchestration

5G Platform Guaranteed Bandwidth Stable Latency Dedicated Service

Video Application Short Latency < 100 ms High Data Rates > 70 Mbps Complex Processing

Smart Factories: TOMORROW Al-based Offloading Decision Making


21 Bosch Research, Dr. Alexander Artemenko | 2021

Smart Factories: TOMORROW Al-based Offloading Decision Making

Standard Deviation from the mean, all complexities

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights

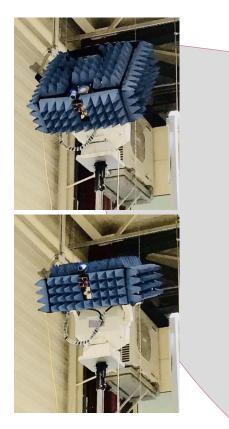
Case LAN 5G

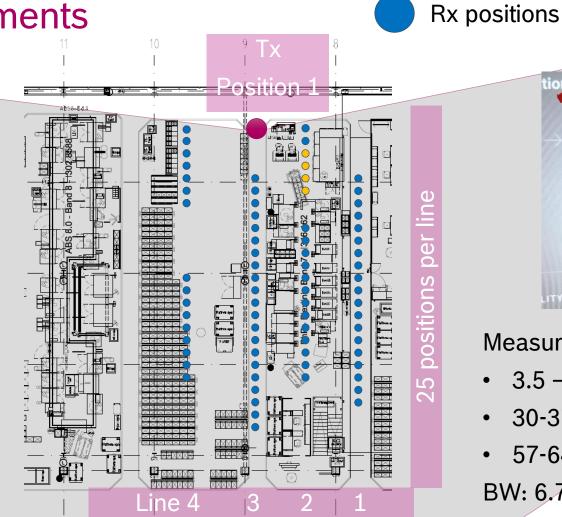
WiFi

Smart Factories: TOMORROW Mobile Communication: Use Case Requirements

Use case (high level)		Availability	Cycle time	Typical payload size	# of devices	Typical service area
Motion control	Printing machine	>99.9999%	< 2 ms	20 bytes	>100	100 m x 100 m x 30 m
	Machine tool	>99.9999%	< 0.5 ms	50 bytes	~20	15 m x 15 m x 3 m
	Packaging machine	>99.9999%	< 1 ms	40 bytes	~50	10 m x 5 m x 3 m
Mobile robots	Cooperative motion control	>99.9999%	1 ms	40-250 bytes	100	< 1 km ²
	Video-operated remote control	>99.9999%	10 – 100 ms	15 – 150 kbytes	100	< 1 km²
Mobile control panels with safety functions	Assembly robots or milling machines	>99.9999%	4-8 ms	40-250 bytes	4	10 m x 10 m
	Mobile cranes	>99.9999%	12 ms	40-250 bytes	2	40 m x 60 m
Process automation (process monitoring)		>99.99%	> 50 ms	Varies	10000 devices per km ²	

Source: 5G-ACIA www.5g-acia.org


23 Bosch Research, Dr. Alexander Artemenko | 2021



Smart Factories: TOMORROW Channel Measurements

See Acknowledgements for pictures used on this slide

tion 32 3

Measured resources:

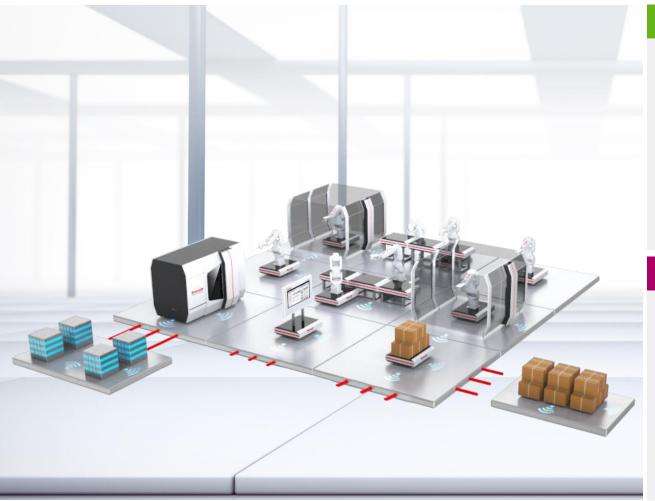
- 3.5 10 GHz •
- 30-37 GHz •
- 57-64 GHz •

BW: 6.75 GHz (x1, x5, x9)

24 Bosch Research, Dr. Alexander Artemenko | 2021

© Robert Bosch GmbH 2019. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

BOSCH

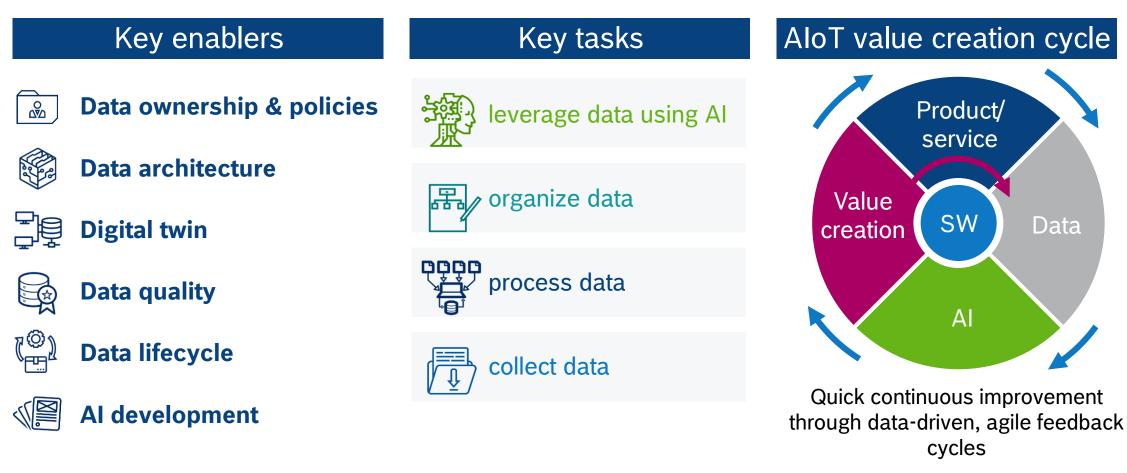

Tx position

SMART FACTORIES: THE DAY AFTER TOMORROW

Smart Factories: THE DAY AFTER TOMORROW

Advances

- Highly flexible, variable production
- Factory-as-a-service
- Lot size 1 at large-scale conditions
- Very high productivity
- Low invest and low cost
- Complete automation
- > Highest connectivity, unlimited compute
- Very high mobility


Challenges

- Integration of novel technologies into brown field:
 - Connectivity: THz, OWC
 - > Compute: Quantum computing
- Very short product life cycles
- Very low communication cycle times and expected jitter
- Highly volatile requirements on communication and compute infrastructures

Bosch Research, Dr. Alexander Artemenko | 2021

Smart Factories: THE DAY AFTER TOMORROW AloT – Al-enabled IoT

Acknowledgements and Sources

Acknowledgements:

- Parts of this work have received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No **101017226**, project 6G BRAINS.
- This presentation reflects the author's view, only, and the Commission is not responsible for any use that may be made of the information provided.
- Many thanks to Robert Müller (Fraunhofer IIS) for enabling usage of the antenna and hand scanner pictures.

Sources:

- 1. https://www.3gpp.org/about-3gpp/1824-logo_5g
- 2. https://mosquitto.org/
- 3. <u>https://metallb.universe.tf/</u>
- 4. https://kubernetes.io/
- 5. <u>https://grafana.com/</u>

- 6. <u>https://goharbor.io/</u>
- 7. https://www.docker.com/
- 8. https://www.nginx.com/
- 9. https://knative.dev
- 10. https://prometheus.io

Internal | Bosch Research

29

Bosch Research THANK YOU FOR YOUR ATTENTION. STILL CURIOUS? CHECK US OUT ONLINE.

Scan the QR-Code or visit us on: bosch.com/research

