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Aperia A, Akkuratov EE, Fontana JM, Brismar H. Na�-K�-ATPase, a new
class of plasma membrane receptors. Am J Physiol Cell Physiol 310: C491–C495,
2016. doi:10.1152/ajpcell.00359.2015.—The Na�-K�-ATPase (NKA) differs from
most other ion transporters, not only in its capacity to maintain a steep electro-
chemical gradient across the plasma membrane, but also as a receptor for a family
of cardiotonic steroids, to which ouabain belongs. Studies from many groups,
performed during the last 15 years, have demonstrated that ouabain, a member of
the cardiotonic steroid family, can activate a network of signaling molecules, and
that NKA will also serve as a signal transducer that can provide a feedback loop
between NKA and the mitochondria. This brief review summarizes the current
knowledge and controversies with regard to the understanding of NKA signaling.
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THE NA�-K�-ATPASE (NKA) IS well known for its role as an ion
pump, transporting three Na� ions out of the cell and two K�

ions into the cell at the cost of one ATP. This active energy-
dependent transport provides the diffusion gradient for multi-
ple other transporters that control electrolyte and fluid homeo-
stasis and uptake of nutrients and prevents the waste of neu-
rotransmitters in a highly energy-efficient manner (7, 29). The
eukaryotic cell does not survive without NKA. There is now
mounting evidence that NKA also plays a vital role as a signal
transducer, controlling a number of vital cell functions (4, 20,
42, 57, 61). Here we will summarize the evidence for NKA
signaling, discuss whether NKA represents a novel class of
signal transducers, describe some of the physiological and
medical effects and consequences of NKA signaling, and
propose that this signal allows for a bidirectional communica-
tion between NKA and its energy supplier, the mitochondria.

Activation of NKA Signaling

Most studies of NKA signaling have used the cardiotonic
steroid ouabain to activate the signaling pathway. The minimal
NKA functional unit is a heterodimer consisting of a catalytic
�-subunit and a �-subunit required for the proper insertion of
NKA into the membrane. There are four mammalian isoforms
of the �-subunit. The cardiotonic steroids are specific NKA
ligands, which bind to the extracellular domain of all NKA
�-subunit isoforms. The binding site for cardiotonic steroids is
highly conserved between species (42). Saturating concentra-
tions of ouabain completely inhibit the NKA pumping capac-
ity, but subsaturating concentrations, which have little or no

effect on intracellular sodium concentration, can activate a
variety of signaling molecules. Circulating levels of the endog-
enous cardiotonic steroids ouabain, marinobufagenin, and
digoxin have been detected with mass spectrometry, immuno-
assays, and nuclear magnetic resonance (6, 26, 36, 63). The
concentrations are in the picomolar-nanomolar range (18), and
there is a current debate whether mass spectrometry may be a
sufficiently sensitive tool for determination of circulating
ouabain (9, 38).

The binding and release of Na� and K� and the ATP
hydrolysis during the reaction cycle of NKA is accompanied
by a series of conformational changes of the �-subunit, clas-
sified either as an E1 Na� binding state or an E2 K� binding
state. Ouabain changes the conformational equilibrium of
NKA by binding to the E2 state (53). Ouabain is not the only
cardiotonic steroid that can activate NKA signaling (10). Both
digoxin and marinobufagenin have been shown to trigger
calcium signals that are almost identical to those triggered by
ouabain (20).

NKA Signaling Pathways

The first evidence that ouabain-bound NKA might act as a
signal transducer came from studies by Askari and Xie, who
reported that exposure of myocytes to ouabain resulted in a
calcium-dependent activation of early response genes and mi-
togen-activated protein kinases (35, 56). Two years later, the
same group reported that nonsaturating concentrations of
ouabain stimulated Src kinase phosphorylation (25). Xie and
colleagues have since then in a series of studies reported that
NKA maintains Src in an inactivated state, and that ouabain-
bound NKA will release and phosphorylate Src kinase (41, 57,
66). Other groups have confirmed that nonsaturating concen-
trations of ouabain phosphorylate Src kinase (24, 74), but the
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question whether Src kinase binds directly with high affinity to
the NKA �-subunit has recently become an area of controversy
(21, 70). This controversy may, however, be resolved by the
recent finding that NKA and Src kinase can exist in multipro-
tein complexes.

At the time when the first NKA signaling studies were
published from the Askari/Xie laboratory, we made the seren-
dipitous observation that ouabain can trigger a calcium oscil-
latory signal (2). In a study of the dose-dependent effect of
ouabain on cytosolic calcium in rat epithelial cells, we found
that subsaturating concentrations of ouabain triggered calcium
oscillations with a consistent periodicity that ranged between 4
and 5 min. The ouabain-triggered calcium oscillations are
activated via direct interaction between the NH2-terminus tail
of the NKA �-subunit and the NH2-terminus of the inositol
1,4,5-trisphosphate receptor (IP3R) (73). Ankyrin-B binds the
NH2-terminus tail of the �-subunit and the NH2-terminus of
the IP3R, and deletion of ankyrin-B modifies the calcium signal
(44). Activation of the IP3R is independent of activation of
phospholipase C and release of inositol 1,4,5-trisphosphate
(48). Recurrent calcium release via the IP3R generally requires
the activation of plasma membrane calcium transporters, and
both voltage-gated calcium channels and the Na�/Ca2� ex-
changer play a role for the sustainability of the ouabain-
triggered calcium oscillations (19, 20). An oscillatory calcium
signal has a high level of specificity, as cells can decode
differences in intracellular calcium oscillation frequency (14).
In renal epithelial cells grown to confluence, ouabain-triggered
calcium oscillations will spread to surrounding cells. A recent
study by the Cereijido group demonstrated that ouabain sig-
naling can facilitate the spread of calcium signals to surround-
ing cells by increasing gap junction communication (59).
Cytosolic oscillatory calcium signals can be transferred to the
mitochondria via specific calcium transporters.

Exposure of cells to subsaturating concentrations of ouabain
has also been reported to activate the protein kinases phos-
phatidylinositide 3-kinase and Akt (known to play a role for
proliferation and protection against apoptosis) (43). This sig-
naling cascade is not Src kinase dependent (71). The ouabain-
triggered calcium oscillatory signal is abolished in the presence
of Src kinase inhibitors (20). These observations suggest that
the ouabain activated signaling pathways are interconnected,
and they also illustrate that our present understanding of the
NKA signaling networks is still only fragmentary.

NKA, a Novel Class of Cell Surface Receptors

NKA may represent a novel class of cell-surface receptors
that interacts with its first generation of signaling molecules via
allosterism. NKA is not a G protein-coupled receptor or a
ligand-gated ion channel. NKA activates IP3R via protein-
protein interaction (48). Saturating concentrations of ouabain
inhibit ion transport, but signaling occurs with nonsaturating
ouabain concentrations, and the read-outs do not depend on
changes in intracellular ion concentration. Is NKA a catalytic
receptor? Ligand-bound NKA phosphorylates Src kinase, but
definite proof that the NKA �-subunit binds Src kinase with
high affinity is lacking. An alternative explanation may be that
NKA and Src kinase are members of a signaling complex, and
that ouabain-bound NKA will via allosterism activate Src
kinase. The NKA �-subunit is well suited to serve as an

allosteric modifier, since it undergoes large conformational
changes during its reaction cycle (52, 61). Both ATP and
sodium have been classified as allosteric modifiers of NKA
(22, 30), and a recent study by Weigand et al. (70) suggested
that the ATP/ADP ratio can lead to Src kinase activation. NKA
is often described as a member of multiprotein complex, and a
large number of interacting partners for the NKA �-subunit
have been identified (61).

Physiological and Medical Implications of NKA Signaling

Numerous studies have shown that NKA signaling pro-
tects cells from irreversible damage and death. Cell protec-
tion has been observed in brain, heart, and kidney (15, 40,
50, 65, 72). In mice that have undergone closed head injury,
chronic treatment with low dose of ouabain significantly
improves recovery and functional outcome (16). Ouabain/
NKA signaling protects cardiac cells against ischemia-rep-
erfusion injury (55). The effect is more pronounced if the
cells have first been preconditioned with nonsaturating con-
centrations of ouabain (49, 58). The cardioprotective effect
in cardiac cells is mediated via protection of mitochondrial
function (23, 60, 67).

Developing organs must be precisely patterned, and, to
ensure a robust pattern formation, apoptosis is used to
remove cells in aberrant positions. Fetal malnutrition is
associated with excessive apoptosis and adverse develop-
mental programming. The embryonic kidney is particularly
sensitive to malnutrition. Studies from our group have
demonstrated that ouabain can protect from apoptosis. When
we exposed explanted rat embryonic kidneys to serum
starvation to mimic malnutrition, apoptosis was increased,
and nephron formation retarded. Exposure of the malnour-
ished kidneys to 10 nM ouabain was found to completely
protect from excessive apoptosis and retarded nephron de-
velopment. Proof of principle that ouabain rescues develop-
ment of malnourished embryonic kidneys was obtained from
studies on pregnant rats given a low-protein diet and treated
with ouabain or vehicle throughout pregnancy (39). Circu-
lating levels of ouabain are reported to be increased during
pregnancy (27), and it was recently reported from the
Lichtstein group that offspring of pregnant mice, which
have been treated with anti-ouabain antibodies, have a lower
birth weight and retardation of kidney and liver develop-
ment (17). The mechanism by which ouabain protects from
apoptosis is as yet not fully understood, but studies of
shigatoxin-triggered apoptosis in primary rat proximal tu-
bule cells have indicated that ouabain exerts its protective
effect by interfering with the onset of the mitochondrial
apoptotic pathway (11). Shigatoxin-triggered apoptotic
pathway is initiated by a downregulation of the antiapop-
totic factor Bcl-xL and an upregulation of the apoptotic
factor Bax, which is recruited to the mitochondria, where it
forms oligo- and heterodimers, which permeabilize the outer
mitochondrial membrane. Ouabain protects from shiga-
toxin-triggered apoptosis by preventing the upregulation
and mitochondrial recruitment of Bax and the downregula-
tion of Bcl-xL. Interestingly, it has been reported that the
NKA �-subunit can bind to Bcl-xL (37).

Ouabain in low concentrations has also been reported to
stimulate proliferation of nonmalignant cells (3, 33, 68). Stud-
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ies on vascular smooth muscle cells, Sertoli cells, and mam-
malian retinal cells indicate that this downstream effect of
ouabain is of great physiological importance (1, 5, 46, 62).

The antiapoptotic and proliferative effects are observed in
cells exposed to 5–10 nM ouabain. These concentrations are
much lower than the ouabain concentrations required to inhibit
the enzyme, indicating that the NKA-triggered signal will be
amplified to a similar extent as signals triggered from G
protein-coupled receptors. Ouabain 5–10 nM has no effect on
intracellular sodium concentration (39). A question that some-
times comes up is whether inhibition of isolated ouabain-bound
NKA molecules may mediate its downstream effects via
local increases in sodium concentration. We find this un-
likely, taking into account that diffusion of ions in the
cytoplasm is a transport process that is orders of magnitude
faster than can be achieved by the slow turnover of isolated
NKA. The NKA has a turnover on the millisecond scale,
where the diffusion equilibration radius for cytoplasmic ions
is on the micrometer scale (13).

Ouabain has an opposite effect on the apoptotic process in
nonmalignant and malignant cells and has been used in clinical
trials as an antitumor drug (12, 47). The reason for this
discrepancy is not understood, but should be a high priority
question to address.

Adverse Effects of NKA Signaling

In certain disease conditions, the cell might misinterpret a
plasma membrane signal. For example, signals from the
angiotensin receptors can contribute to the pathology of
cardiovascular and kidney disorder (64). The same may be
true for the signals from NKA. Cardiomyopathy is a com-
mon complication in end-stage renal failure, and, in studies
on rats with �25% remaining renal tissue, it was found that
high circulating levels of the cardiotonic steroid marinob-
ufagenin significantly contributed to the cardiac pathology
(31, 34). Hypercalcemia might have been the cause of the
digoxin toxicity (69). An elegant study from the Lingrel
laboratory on mice expressing the ouabain-resistant
NKA-�2 isoform showed that ouabain contributes to ACTH-
dependent hypertension (45). However, it was also reported
that the blood pressure elevating effect of ouabain was
beneficial during pregnancy (54). Studies from Blanco’s
laboratory have demonstrated that ouabain signaling can
contribute to the pathology of cystic kidney disease (51).
Ouabain in nanomolar concentrations was found to enhance
cAMP-dependent fluid secretion and cyst growth of human
cyst epithelial cells that express the cystic fibrosis trans-
membrane conductance regulator (CFTR), but not in cells
lacking CFTR (8, 28).

Perspectives

The NKA pumping and NKA signaling functions are
strongly related. As a salt pump, NKA provides the cell with
a maximally efficient use of energy and is a prerequisite for
life. As a signal transducer, NKA provides a feedback loop
between NKA and its energy supplier, which serves to
protect life. This important feedback loop is just beginning
to be understood.

NKA should be considered as a novel class of plasma
membrane receptors that act via allosteric modification of

the target molecule or of other signaling molecules, such as
Src kinase and the IP3R. The series of conformational
changes that NKA undergoes during its reaction cycle
makes it extraordinarily well suited for the role as an
allosteric signal transducer. NKA may act as an allosteric
activator in a multiprotein complex. The identification and
cell-specific effects of NKA signaling in such complexes
should be explored.

The role of NKA as a signal transducer is just beginning
to be understood, and the contributions to this field have so
far come from a rather limited number of research groups.
Much more work needs to be done in this field to expand our
knowledge about energy control and the protective role of
the NKA signal in health and disease. More work in this
field is also needed to define the border between the bene-
ficial and adverse effects of NKA signaling. The role and
possibly aberrant signaling pathways of NKA in cancer cells
is another important and urgent topic for future studies.
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