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1 Introduction

The convergence of Information and Communications Technology (ICT) and the energy
grid, known as the smart grid, requires expertise from both grid operators and ICT
specialists due to the integration of ICT-based control systems. This integration, while
enhancing efficiency, also increases the risk of errors and cyber attacks, leading to
potential system failures [1]–[3].

Traditionally, the energy system’s risk of failure was mitigated by physical system
redundancy. However, with extensive ICT integration, this approach is no longer suf-
ficient, necessitating the use of e.g. secure communication protocols and encryption
alongside redundancy for effective risk mitigation [2], [3].

The evolving power grid, driven by machine learning, prosumer roles, localized en-
ergy markets, and distributed renewable energy sources, increases the complexity of
the system, and therefore requirements for simulations also become higher for miti-
gation development [4], [5]. However, this demands significant time and financial in-
vestment, prompting the use of agent-based systems for effective mitigation strategy
generation in unforeseen scenarios [6].

Agents based on Deep Reinforcement Learning (DRL) can equally find attack vectors
and mitigations, but require training in a simulated environment to derive their policy.
A DRL agent learns from its reward signal, which is a way to describe an ideal state
in terms of a single scalar. Training can be expensive, requiring up to several billion
samples to train a sensible policy in complex environments. It would be desirable to
train from existing data, known as Offline Learning in the DRL domain. This existing
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data is export knowledge. However, expert knowledge is usually expressed in an non-
machine-readable, more informal way, such as use cases. We propose an algorithm to
query modelled data, represented in semi-structured form, e. g., as UML diagrams. We
propose an approach to use this semi-structured formats as source for offline learning,
leveraging extensive research data management facilities as backbone.

2 Background

In the following subsections, we briefly introduce some background work that forms the
basis of our contribution.

2.1 Misuse Cases

Building on the well-established IEC 62559 standard in energy informatics, Misuse
Cases (MUCs) serve as a valuable tool for threat modeling by detailing undesirable be-
haviors. These scenarios encompass explicit instances of recognized undesirable be-
havior, including cyber-physical attacks and inappropriate system behaviors. Derived
from the IEC 62559-2 template, MUCs include misactors and provide specific details,
such as worst-case threats and likelihood of occurrence. To enhance the robustness
of MUCs, consistency checks with domain experts and compatibility with modeling for-
mats are recommended. A well-structured MUC template is crucial for maintaining data
quality and validity in subsequent steps [7], [8].

2.2 Systems Theoretic Process Analysis (STPA)

STPA is a top-down systems-oriented hazard analysis approach that has been pro-
posed by Leveson and Thomas for hazard analysis [9]. It focuses on identifying losses
and their causes due to system flaws, leading to the formulation of hazard scenarios. In
previous work [10], we have sought to extend STPA to determine how the compromise
of security properties that are associated with a system implementation can result in
hazard scenarios and accidents that can be determined using STPA.

2.3 Holistic Test Description (HTD)

HTD is a structured approach to the specification of laboratory-based experiments for
power systems, which was developed in the EU-funded ERIGrid project1. In a similar
fashion to STPA, a top-down approach is taken to defining the objectives of experi-
ments (tests) through to detailed specifications of laboratory environments and experi-
ment specifications. In previous work, we have proposed combining STPA and HTD to
support the specification of experiments that can be used to evaluate the robustness
of smart grids to failures that are induced by cyber-attacks [11].

3 Proposed Concept: Embed MUCs in STPA Analysis and
Describe Testcases through HTD

The proposed concept is a combination of MUC, STPA, and HTD in a hierarchical order.
At the first level, STPA is applied to the topic of interest. The results of this analysis will
contain specific hazard scenarios.

1The ERIGrid project: https://erigrid.eu/
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Using this STPA output, MUCs are defined for all of these scenarios. They will be
extended through expert knowledge, extend the hazardous situations to scenarios, and
therefore describe the situation in more detail. From this, MUC experiments can be
defined. This can be done either directly from the MUC data that can be extended if
needed (see subsection 4.1) or from a combination of data formats.

In our concept, we propose that one way to do so is by extending the MUC-STPA
toolchain by HTD for test definition. This is especially useful with lab testing. This
is also a beneficial addition to the STPA-MUC-RL toolchain, as scenarios marked as
critical by the reinforcement learning experiments can then be evaluated in the lab with
real-time operating components.

As an addition to this concept, STIX and TAXII can be included to achieve an easy-
to-share knowledge database, that can be extended after analysis results are given.

4 Needed Additions

4.1 MUC Extension

To apply MUCs for experiment generation, modifications are needed as outlined in [8]
from collaborative work with the University of Oldenburg. This extends MUCs for gen-
erating palaestrAI experiment files in the RESili8 project.

Creating a comprehensive palaestrAI-compatible experiment file from misuse case
data requires template adjustments. The misuse case provides data, but the experi-
ment data must be generated. Actor groupings represent a single AI agent, with corre-
lations between various data elements.

The misuse case lacks experiment-specific identifiers, environmental declarations,
and simulation details. Notably, phase configurations, agent brain and muscle def-
initions, and information for designing different experiment run files are absent. To
address these gaps, an extension for experiment generation is necessary.

4.2 Document-Read out

To automate MUC-based experiment file generation, a document read-out [12] is em-
ployed. Completed MUC templates, diagrams, and tables are exported. A script ex-
tracts a limited MUC information set for presentation. Additional details, like environ-
ment specifics and mapped sensors, come from an existing experiment file. Agent data
is obtained by scanning the exported files for entities with specific stereotypes, resulting
in a YAML output file. This process combines setup information with additional details
for a comprehensive experiment file.

4.3 Trajectory Generation

When a data readout from MUCs is accomplished, the next step will be trajectory gen-
eration for offline learning. Offline learning enables machine learning agents to make
use of predefined strategies and therefore expert knowledge. As the machine learning
agents we aim to use are not able to understand natural language, it is imperative to
generate data to learn from.
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