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ABSTRACT
Research on visual attention in 360◦ content is crucial to under-
stand how people perceive and interact with this immersive type of
content and to develop efficient techniques for processing, encod-
ing, delivering and rendering. And also to offer a high quality of
experience to end users. The availability of public datasets is essen-
tial to support and facilitate research activities of the community.
Recently, some studies have been presented analyzing exploration
behaviors of people watching 360◦ videos, and a few datasets have
been published. However, the majority of these works only consider
head movements as proxy for gaze data, despite the importance of
eye movements in the exploration of omnidirectional content. Thus,
this paper presents a novel dataset of 360◦ videos with associated
eye and head movement data, which is a follow-up to our previ-
ous dataset for still images [14]. Head and eye tracking data was
obtained from 57 participants during a free-viewing experiment
with 19 videos. In addition, guidelines on how to obtain saliency
maps and scanpaths from raw data are provided. Also, some sta-
tistics related to exploration behaviors are presented, such as the
impact of the longitudinal starting position when watching omni-
directional videos was investigated in this test. This dataset and its
associated code are made publicly available to support research on
visual attention for 360◦ content.
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1 INTRODUCTION
Virtual Reality and 360◦ content (among other emerging immer-
sive media technologies, such as augmented reality or light field
imaging) is providing users with new interactive experiences and
more freedom to explore the represented scenes. These new pos-
sibilities entail a great change on how users interact with media
technologies, since they can look wherever they want and are no
longer limited, as in traditional media, to passively look at what
they are shown.

In this sense, these novelties should be taken into account to
design and develop appropriate immersive media systems, such as
efficient encoding, transmission and rendering techniques to pro-
vide the best quality to the end users. With this aim, understanding
how people observe and explore 360◦ is crucial.

In fact, some works have already been presented dealing with
the study of visual attention in VR and 360◦ content. For example, a
preliminary study was carried out by Marmitt and Duchowski [11]
analyzing head and eye movements to investigate visual scanpaths
in VR environments. This work has been recently picked up tak-
ing advantage of new and improved VR devices to analyze ex-
ploring behaviors of users when watching 360◦ images, recording
head and eye movements with eye-trackers embedded in VR head-
sets [14][20]. While eye movements analysis has proved to provide
an important added value to visual attention modeling in VR [16],
gaze data is not always easily accessible. Thus, head movements
could be considered as a valuable proxy [24][22]. Studies have been
presented analyzing head movements during 360◦ images explo-
ration [2][5][20].

The way people watch 360◦ images may substantially differ from
how they explore omnidirectional videos, where their attention can
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be more guided by the dynamic content. Therefore, some studies
have already focused on analyzing visual attention in 360◦ dynamic
content. For instance, Serrano et al. used head and eye tracking
data for movie editing and segmentation [19]. Nevertheless, the
aforementioned difficulty to gather eye tracking data has caused the
majority of studies in this topic to only consider head movements.
For example, Su et al. [21] used head movements for automatic
cinematography in 360◦ videos. Also, Corbillon et al. studied the ap-
plication of head movements for efficient delivery of 360◦ video [3].
Similarly, Wu et al. analyzed exploring behaviors based on head
tracking data for video streaming of omnidirectional video [23],
also releasing a dataset.

The importance of public datasets containing stimuli and eye-
tracking information is crucial for the research community to evolve
in the development of efficient techniques for coding, transmitting,
and rendering 360◦ content. A good example was the publication
of the dataset of head and eye movements for omnidirectional
images by Rai et al. [14], for the “Salient360!" Grand Challenge
at ICME’17 promoting the research on models for saliency and
scanpath prediction for 360◦ images, and resulting in the publication
of several valuable models [17]. In addition, other datasets have
been published recently with 360◦ videos and solely headmovement
data, such as the 360◦ video head movement dataset from Corbillon
et al. [2] (five videos from Youtube, duration of 70 seconds, watched
by 59 users), the 360◦ video viewing dataset in head-mounted VR,
by Lo et al. [10] (ten videos from Youtube, duration of one minute,
watched by 50 users), and the dataset for emotion induction research
by Li et al. [9] containing head movement data and corresponding
ratings of arousal and valence (73 videos from Youtube, durations
from 29 to 668 seconds, watched by 95 users).

Taking this into account, and complementing previous works on
datasets of head movements in video and head and eye movements
in still images, this paper presents a dataset of videos containing
head and eye tracking data for research on exploring behaviors with
360◦ dynamic content. The dataset contains 19 videos in equirect-
angular format with associated data of head and eye movements
collected from a free-viewing experiment with 57 observers wear-
ing a VR headset with an integrated eye-tracker. In addition, we
analyze users’ exploring behavior such as the impact of starting
longitudinal positions on 360◦ content exploration, and the relation
between head and eye movement data.

The rest of the paper is organized as follows. Section 2 presents
the subjective experiment carried out to create the datasets, as
well as the details about gathered data. Then, Section 3, describes
how raw gaze data obtained from the subjective experiment were
processed to generate visual attention data. Section 4 presents sta-
tistical results related to the exploration of 360◦ content. Finally,
some conclusions are provided in Section 5.

2 DATASET & SUBJECTIVE EXPERIMENT
2.1 Video stimuli
This dataset is composed of 19 videos gathered from Youtube (see
supplementary material for frame examples of each video). All
videos are 4K in resolution (3840x1920 pixels), equirectangular for-
mat, their main properties are shown in Table 1. In particular, the
category indicates some high-level attributes (e.g, indoor/outdoor,

rural/natural, containing people faces, etc.). In addition, the Spatial
perceptual Information (SI) and the Temporal perceptual Informa-
tion (TI) [6] were computed for all videos in equirectangular format
(using an SI filter of 13x13 pixels [13]). In addition to the objective
of covering a wide range of these features, these videos were also se-
lected taking into account their license of use (Creative Commons),
and their duration with uninterrupted content (no camera cuts).
Specifically, a duration, albeit short, of 20 seconds was considered
to abide by these last two constraints.

2.2 Equipment
360◦ videos were displayed in a VR headset (HTC VIVE, HTC, Valve
corporation) equippedwith an SMI eye-tracker (SensoMotoric Instru-
ment). The HTC VIVE headset allows sampling of scenes by approx-
imately 110◦ horizontal by 110◦ vertical field of view (1080x1200
pixels) at 90 frames per second. The eye-tracker samples gaze data
at 250Hz with a precision of 0.2◦. A custom Unity3D (Unity Engine,
CA, USA) scene was created to display videos. Equirectangular
content was projected onto a virtual sphere via a shader program
computing an equirectangular-to-sphere projection on the GPU. A
process independent from the Unity Engine process was used to
write HMD and eye-tracker data to disk at the speed of the eye-
tracker sampling rate. The experiment was running on a computer
with an NVIDIA GTX1080 GPU.

2.3 Observers
57 participants were recruited (25 women; age 19 to 44, mean: 25.7
years), normal or corrected-to-normal vision was verified with the
Monoyer test, acceptable color perception was tested with the Ishi-
hara test. Dominant eye of all observers was checked. Participants
received monetary compensation for their time. All 19 videos were
observed by all observers for their entire duration (20 seconds).

2.4 Viewing procedure
Observers were told to freely explore 360◦ videos as naturally as
possible while wearing a VR headset. Videos were played without
audio.

In order to let participants safely explore the full 360◦ field of
view, we chose to have them seat in a rolling chair. The fact that
participants are not aware of their surroundings while wearing
a HMD is hazardous (e.g. colliding with furnitures, falling over).
Additionally, the HMD’s cable is an inconvenience when standing
and exploring a 360◦ scene.

To study the impact of starting longitudinal positions on con-
tent exploration, we added a between-subjects condition where
participants could start exploring omnidirectional contents either
from an implicit longitudinal center (0◦ and center of the equirect-
angular projection) or from the opposite longitude (180◦). Videos
were observed in both rotation modalities by at least 28 partici-
pants each. We controlled observers starting longitudinal position
in the scene by offsetting the content longitudinal position at stim-
uli onset, making sure participants start exploring 360◦ scenes at
exactly 0◦, or 180◦ of longitude according to the modality. Video
order and starting position modalities were cross-randomized for
all participants.
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Table 1: Main properties of the omnidirectional video dataset.

Title Frame-rate Category
Camera
traveling SI TI

Abbottsford 30 Indoor, Urban, People No 84.336 1.422
Bar 25 Indoor, Urban, People Yes 119.810 27.578

Cockpit 25 Indoor, Urban, People Yes 53.487 26.371
Cows 24 Outdoor, Rural No 48.125 2.059
Diner 30 Indoor, Urban, People No 60.663 2.425

DroneFlight 25 Outdoor, Urban No 48.350 13.254
GazaFishermen 25 Outdoor, Urban, People No 92.732 1.246

Fountain 30 Outdoor, Urban No 67.346 14.665
MattSwift 30 Indoor, Urban, People No 84.675 3.361

Ocean 30 Outdoor, Water, People No 25.885 11.103
PlanEnergyBioLab 25 Indoor, Urban, People No 65.181 4.012

PortoRiverside 25 Outdoor, Urban, People No 52.655 3.201
Sofa 24 Indoor, Urban, People No 83.546 1.069

Touvet 30 Outdoor, Urban Yes 59.520 4.897
Turtle 30 Outdoor, Rural, People No 32.351 9.531

TeatroRegioTorino 30 Indoor, Urban, People No 63.064 5.983
UnderwaterPark 30 Outdoor, Natural Yes 42.082 9.793

Warship 25 Indoor, Urban, People No 49.939 5.359
Waterpark 30 Outdoor, Urban, People Yes 57.625 27.022

Observers started the experimentation by an eye-tracker cali-
bration, repeated every 5 videos to make sure that eye-tracker’s
accuracy does not degrade. the total duration of the test was less
than 20 minutes.

2.5 Dataset structure
Organization of the dataset into folder is illustrated in Fig. 1. The
video dataset is found in the "Stimuli" folder, arranged in no partic-
ular order.

Visual attention data is organized in folders according to their
data type: whether if they come from Head-only (H) or head and
eye movements (H+E). For both cases, saliency maps are stored in a
folder named "SalMaps". It contains one saliency map per stimulus
as a compressed binary file; filenames provides information under
the following convention: title_WxHxFc_Enc.tar.gz where title is
the stimuli name, H and W saliency map’s height and width in
pixels, Fc is the frame count, Enc is float precision. A python script
named readBinarySalmap.py is provided as an example on how to
read uncompressed saliency map binary files.

The Scanpaths directory contains a CSV text file for each stimulus.
For H+E data, scanpaths from left and right gaze are provided
independently. CSV files contain all identified fixations for one
video, ordered temporally for each observer one after the other
in the file. The first data column reports fixation indexes for each
participants, this value is incremented with each new fixation until
reaching the end of an observer’s trial, after which indexing starts
over at 0 for the next observer. Next two columns are gaze positions
in longitudes and latitudes, normalized between 0 and 1; longitudes
should be multiplied by 2π and latitudes by π to obtain positions on
the sphere. To display fixation positions in an equirectangular map,
multiply the same normalized longitudes and latitudes respectively
by the desired width and height of the equirectangular map. Next

two columns encode starting timestamp and duration of fixations
(in msec.). Finally, the last two columns report fixations start and
end frames (integers).

Last directory, Tools, contains python scripts. saliencyMeasures.py
(adapted from the MIT Saliency Benchmark matlab toolbox [1]s)
and scanpathMeasure.py contains saliency and scanpaths similarity
measure implementations as well as examples of their use. readBi-
narySalmap.py explains with an example how frames from binary
saliency map are to be extracted.

3 GAZE PROCESSING
In order to obtain fixations necessary for the creation of saliency
maps and scanpath files we process raw gaze data from the eye-
tracker system.

Data acquired from the system is sampled every 4 msec. (eye-
tracker’s sampling rate). Each sample contains the following in-
formation: camera rotation (camera Euler angles as proxy for the
HMD/Head rotation); information about left, right and mean gaze
direction as a unit vector (3D vector in world space) relative to the
camera rotation; left and right cameras baseline (vector distance
from central camera to "eye" cameras in world space); left and right
eyes 2D gaze positions mapped onto a virtual viewport (2160x1200
pixels, 111.9x105.6 degrees). To project raw viewport data onto a
unit sphere, we use camera rotation data to create rotation matrices
R (equation 1) which are multiplied with 2D gaze data transformed
into a 3D vectors д (equation 2), the resulting 3D vectors are subse-
quently normalized.

R =
©­«
cosϕ cosθ cosϕ sinθ sinψ − sinϕ cosψ cosϕ sinθ cosψ + sinϕ sinψ
sinϕ cosθ sinϕ sinθ sinψ + cosϕ cosψ sinϕ sinθ cosψ − cosϕ sinψ
− sinθ cosθ sinψ cosθ cosψ

ª®¬
(1)
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ROOT
Stimuli

1_PortoRiverside.mp4
...

HE (Head+Eye)

SalMaps

1_PortoRiverside_2048x1024x600_32b.tar.gz
...

Scanpaths

L
1_PortoRiverside_fixations.csv
...

R
1_PortoRiverside_fixations.csv
...

H (Head-only)

SalMaps

1_PortoRiverside_2048x1024x600_32b.tar.gz
...

Scanpaths

1_PortoRiverside_fixations.csv
...

Tools
saliencyMeasures.py

scanpathMeasure.py

readBinarySalmap.py

Figure 1: Folder tree composition of the new dataset of 360◦

videos and head and eye movement data

Where θ is the pitch axis (elevation),ψ the yaw axis (azimuth or
heading), ϕ the roll axis (bank).

д =
©­«

F
pxSizeHoriz(Px −W /2)
pxSizeVert(Py − H/2)

ª®¬ (2)

Where F is the virtual focal distance (1.5 in our case),pxSizeHoriz
the pixel size of one degree horizontally, pxSizeVert the pixel size
of one degree vertically, Px and Py gaze positions in viewport space,
W and H viewport’s width and height (pixels).

Four different types of visual attention data are considered. The
first to types concern the use of head and eye movements, here gaze
and HMD data are processed together to produce gaze positions
on the spherical scene. Data is parsed into fixations and saccades,
in particular to extract fixations which are periods of reduced eye
movements during which scene perception is implied and output
saliency maps and scanpath files..

Next two types are based on head-only movements. Here we
are purposefully processing head rotation without gaze data and

output saliency maps and scanpath files as well. We chose not
to define "head saccades" as period of low head rotation veloc-
ity [12][20][4][5] since this results in a far reduced number of
saccades which do not appear to be an accurate representation
of the latent scene perception. Moreover, head movements don’t
necessarily mean a loss of perception as it is mostly the case during
actual saccades [8]; it is the addition of head and eye movements
data which will inform us of the actual perception which can be
mediated by compensations behaviors between head and eyes. For
these reasons, such concepts as head "fixation" and "saccade" are
questionable and we resort to head trajectories (subsection 3.2).

3.1 Parsing gaze data to fixations
We rely on a velocity-based algorithm [18] to identify fixations and
saccades from eye movements. Because our data is located on a unit
sphere we cannot rely on the euclidean distance, as it would mean
measuring a line between two points through the sphere; though
as sampling rate increases gaze points get closer together spatially
and the euclidean distance becomes a good approximation. In spite
of this last remark, we define velocity as the orthodromic distance
(i.e. great-circle distance, equation 3 shows the Haversine variant
used) between two gaze samples divided by their time difference.
The 1D velocity signal was smoothed with a gaussian filter (σ = 1
sample). Gaze samples with velocities below 80◦/sec. threshold
were categorized as fixations. In a second step, we elected to remove
fixations lasting less than 80ms.

∆σ = 2 arcsin

√
sin2

(
∆ϕ

2

)
+ cosϕ1 · cosϕ2 · sin2

(
∆λ

2

)
(3)

Where ∆σ is the distance in angle between two points on the
sphere, ∆ϕ the difference in latitudes, ∆λ the difference in longi-
tudes, ϕ1 and ϕ2 latitudes of the two points compared.

3.2 Head trajectory
Because perception is possible during head movements we chose to
model head data as trajectories on the unit sphere. To achieve this
we down-sampled the 20 seconds raw gaze data into 100 samples by
selecting sequential windows of 200 msec. and computing gaze po-
sition centroids on samples within said time windows. One benefit
of this method is to obtain data samples aligned between observers
for each stimuli, thus settling the issue of scanpath comparison
measures usually requiring a method of aligning one scanpath with
another. In the case of dynamic contents, familiar methods of align-
ment (e.g. [7]) imply comparing as peers samples from two different
timestamps, thus comparing together samples which occurred dur-
ing frames displaying different contents.

3.3 Scanpaths
For each video and for both types of data, were extracted sequences
of gaze positions on the spherical scene reported as scanpath in
the form of text files (described in subsection 2.5). The Head-and-
Eye data "Scanpaths" folder contains one folder for each eyes as
lateralized scanpaths are provided for analysis.
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3.4 Saliency maps
Saliency maps are computed by convolving each fixation or trajec-
tory points (for all observers of one video) with a Gaussian. A sigma
of 2◦ is chosen for head and eye data and 3.34◦ for head-only data.
The former accounts for eye-tracker’s precision and foveal percep-
tion, the latter is selected in order to stay consistent with the image
dataset [14]. This convolution operation is done in 2D sphere space
(latitude and longitude coordinates), because an isotropic Gaussian
on an equirectangular map would be anisotropic back-projected
onto a sphere (see examples of videos saliency in supplementaryma-
terial). A kernel modeled by a Kent distribution can be used as well
but we considered a Gaussian to be an acceptable approximation.

4 RESULTS
We describe below three sets of analyses possible with the data
and tools provided. First, fixation count per latitudes and per lon-
gitudes. Second analysis shows the similarity between saliency
maps obtained from Head-and-Eye data and Head-only data. Fi-
nally, we show the similarity between starting rotation conditions
as a function of time.

When comparing saliency maps that are equirectangular pro-
jections, it is necessary to correct for the latitudinal distortions
overrepresenting (in number of pixels) areas closer to the poles.
We decided to correct for these distortions by weighting down ar-
eas near the poles with a sine function according to the latitude
(siny for y ∈ [0,π ]); we found it to be a simpler and more accurate
method than a quasi-uniform sampling on a sphere as in [14].

Our data also allows analysis of bottom-up and top-down time-
ranges (as described in [15]), it is possible to extract from scanpath
CSV files all fixations that occurred in the first 500 msec. of obser-
vation, for instance.

4.1 360◦ content exploration
We report the distribution of fixations as a function of longitudes
and latitudes in Fig. 2. Participants observe longitudinally (hori-
zontally on the equirectangular projection) with two peaks arising
at 0◦ and 180◦, the two starting rotation modalities. The 0◦ peak
is greater and can be explained by visual stimuli often displaying
a center bias even in 360◦ conditions. Latitudinally, observers are
much more inclined to explore areas at and around the equator as
we can see by fixation numbers decreasing as a function of distance
to the equator (90◦).

4.2 Head-Eye and Head-only saliency maps
comparison

Head-only and Head-and-eye saliency maps are compared together.
To make such comparisons we pooled saliency frames by intervals
of 200ms (between 4 and 6 frames according to video frame-rate)
which we added together then normalized (divided by the total
sum) to obtain new saliency maps for each time increment. For
each stimulus we computed a similarity values by computing KLD
(Kullback-Leibler Divergence) and CC (Cross-Correlation) for each
such saliency maps paired according to the temporal (frame) align-
ment. The resulting sequence of similarity measures are then aver-
aged over group of frames to obtain a single comparison value as
reported in Fig. 3 for each stimulus.

Figure 2: Number of fixations (blue) by longitudes (left, -180◦

to 180◦) and latitudes (right, 0◦ to 180◦). PDF curves (red) are
fitted with a vonMises kernel for longitudes and a Gaussian
kernel for latitudes.

Figure 3: Head-only and Head-and-Eye saliency maps simi-
larity measures: CC (red) and KLD (blue). Error bars report
confidence intervals (95%).

The differences observed account for the information lost in
Head-only saliency maps relative to Head-and-Eye maps, which
is simplistically modeled by a larger Gaussian sigma during the
creation of saliency maps in this dataset.

4.3 Starting rotation effect
We compare saliency maps pooled by batches of frames as described
in subsection 4.2. Instead of averaging over groups of frames, each
saliency map is considered aligned temporally and compared with
a Head-and-Eye saliency map according to starting rotation modal-
ities. Averaging over stimuli, we obtain similarity measures (KLD
and CC) per frame groups (Fig. 4). Results show that saliency maps
are quite dissimilar in the first seconds of exploration. Though, this
difference decreases with time and shows no improvements after
approximately 5 seconds of exploration.
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Figure 4: Saliency maps similarities between starting rota-
tion condition groups as a function of time. Similarity mea-
sures reported: CC (red) and KLD (blue). Error bars report
confidence intervals (95%).

5 CONCLUSION
In this paper a new dataset of 19 omnidirectional videos in equirect-
angular format is presented, with the associated gaze fixation and
head trajectory data in the form of saliency maps and scanpaths.
This data was obtained after processing the raw eye and head move-
ments gathered from a free-viewing experiment with 57 observers
wearing a VR headset equipped with an eye-tracker. A between-
subject condition was added to study the impact of starting longi-
tudinal positions on 360◦ content exploration. In order to aid the
community in analyzing this data, some useful tools to compare
saliency maps and scanpaths are also provided.

This dataset extends our previous work with still images [14],
providing a public dataset of 360◦ videos with the added value of eye
gaze data, in addition to head movement information, which may
help in the research on visual attention in VR and its applications
to coding, transmission, rendering and quality assessment of 360◦
content.

People interested in the dataset can visit salient360.ls2n.fr/datasets/
in order to access the repository.
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