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a  b s  t  r a  c t

In  this  work a methodology  to  provide an emissivity map  of  an urban area is  presented.  The methodology
is  applied  to the city  of  Madrid (Spain) using data  provided  by the Airborne  Hyperspectral  Scanner (AHS) in
2008.  From  the data a classification  map  with  twelve different urban materials  was  created.  Each  material
eywords:
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ES  algorithm
ESIREX

was  then  characterized by a different  emissivity,  whose  values  were obtained from the  application  of  the
TES  algorithm  to in situ  measurements  and values extracted  from  the ASTER spectral  library.  This new
emissivity  map  could  be  used  as  a  basis  for determining the temperature of the city and to understand
the  urban  heat  island  effect  in  terms  of  spatial  distribution  and size.
. Introduction

Remote sensing allows  us to  obtain a  complete picture of  all
arts of  a city and  check the behavior  of different materials  that
orm the  surface at a given time.  This method has  the  advantage
f generating urban maps for different applications, e.g. for urban
lanning or  to determine physical  parameters such as  surface tem-
erature. Finally,  from this information  we are able  to  quantify
rban phenomena  such  as  the urban heat island (UHI).

The UHI phenomenon  refers to  the  modification of the local
limate due  to  urbanization  of  the  area.  The natural surfaces are
eplaced with  artificial ones and,  therefore, the  thermal  properties
f materials that cover the surface change. When thermal remote
ensing is  used to  analyze the  UHI effect, the  term Surface  Urban
eat Island (SUHI) is used instead.  In  this  context, Land Surface
emperature (LST) is  the parameter being  analyzed, because it  is
he key  to understanding the process  of energy  exchange in  the
ity and  directly  influences the air temperatures of  the layers of the
tmosphere next to the surface. Another central surface param-
ter related  to  LST  is the surface emissivity (ε).  Accurate values of
ST can be  only obtained if surface  emissivity is well-characterized,
s both  parameters are connected  by the radiative transfer equa-
ion. A variation of 0.01  units  in emissivity adds an error  of  0.5 ◦C

n the  temperature. Therefore the  correct retrieval of  the  emis-
ivity of  urban  surfaces is of utmost importance  because a city
s very heterogeneous and its  materials have emissivities smaller

∗ Corresponding author.  Tel.:  +34 963 543 115; fax: +34  963  543  261.
E-mail addresses: sobrino@uv.es,  jose.sobrino@uv.es (J.A. Sobrino).
than  1. Because the  emissivity of a material  is  the relative abil-
ity  of its surface  to emit energy  by radiation, it  is also  important
related  to  the  UHI phenomenon or characterization of  urban  areas
in  general.  As  highlighted  by  Voogt  &  Oke  (2003),  very  few  obser-
vations  of  urban  surface  emissivity  are  available,  and  its  retrieval
from  airborne/satellite imagery is uncertain. Several works have
used  classification  over  urban  areas to analyze the UHI effect  (e.g.
Stefanov et al., 2001; Yang et al., 2002; Gluch et al.,  2006;  Chen  et  al.,
2006;  Xian &  Crane, 2006;  Hartz et  al., 2006;  Yuan and  Bauer, 2007;
Imhoff  et al., 2010; Myint  et al., 2011; etc.).  However, only a few
works  have properly addressed  the problem of surface emissivity
retrieval over urban areas. Hence, Pu  et al.  (2006) used  a constant
value  of  emissivity for all materials, although the authors stated
that  it  is not well-founded decision  to  use the same value of  ε  for
all  types of surfaces.  On the  contrary, Kato &  Yamaguchi (2005) and
Xu  et  al. (2008) retrieved spectral ε over urban areas in  a  pixel-
by-pixel basis, but  little discussion about  validity of  results was
provided.

This  paper presents a  classification-based approach for spectral
surface  emissivity  mapping over urban  areas  (particularly over the
Madrid  city)  by combining airborne hyperspectral data,  in situ mea-
surements and emissivity spectra  included in spectral libraries. The
paper  has the following sections: Section 2 includes a  brief descrip-
tion  of  the  DESIREX field campaign; Section 3 describes the  material
and  methods considered  in this  study, including description of the
study  area,  airborne  imagery,  in  situ  measurements  and  algorithms

used  for  emissivity retrieval and classification details; Section 4
presents the results obtained in  the  classification and emissivity
retrievals over  each urban class, and  finally  Section 5 includes the
main  conclusions drawn from this  study.
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Fig.  1. Location of Madrid  city over  the Iberian  Peninsula and  Europe (up)  and
Madrid  province extracted  from a  Landsat5/TM image with  the Airborne  Hyper-
. The  Dual-Use European Security IR  Experiment:
ESIREX-2008

The  Dual-use European  Security IR  Experiment (DESIREX) 2008
as an airborne and  ground based campaign of  the European Space
gency (ESA) conceived as  an experimental campaign  in the city
f Madrid (Spain) that  was carried  out in support  of the  proposed
ctivities for the Reorientation  of the Fuegosat  Consolidation Phase
f the  Earth Wathc Programme approved  by  the  ESA  in  November
001. The aim  of the DESIREX  2008  airborne campaign  was to
nticipate the generation of  thermal  datasets to address  upcoming
rade-off studies  supporting both Data User Element  (DUE)  projects
or products prototyping and  mission requirements  analysis. The
Urban Heat Islands  (UHI) and  Urban Thermography (UT) Project”
as a new  Earth Observation Application project  funded by DUE
ithin the 3rd Earth  Observation Envelope Programme starting

n July 2008 that included studies to  demonstrate  the  integration
f remote sensing observations in support  of UHI  mitigation and
rban Energy  Efficiency  policies.  In  the  framework  of  the  DUE  UHI
nd UT project, ESA organized the  dedicated  airborne  campaign
ESIREX 2008 in June and July  2008  in  order to generate thermal
atasets to be used  principally as input to  the TIR sensor  trade-off
tudy.

The  DESIREX  2008  campaign  combined  the  collection  of  qual-
ty and coordinated  airborne hyper-spectral, spaceborne and
n situ measurements to  generate a spectrally, geometrically and
adiometrically representative dataset  to  address observational
equirements for  UHI and UT monitoring and assessment of  an
perational system. The period  June–July 2008 was  chosen to opti-
ize good  weather  conditions in Madrid. Airborne and satellite

magery and in situ  measurements were  developed intensively
rom 23rd  June  until  6th  July 2008. An extensive information
bout the  DESIREX-2008  experiment can be  found  in  Sobrino  et  al.
2012).

. Materials  and methods

.1. Study  area:  Madrid city

Madrid  (40◦ 25′ N, 3◦ 42′ W,  655 m a.s.l.)  is the largest city
f Spain (Fig. 1). It is  located  in  a  relatively flat area about 50 km
outh of the Spanish  Central Ridge.  The main topographic feature
s River Manzanares, which crosses the  city roughly  from west
o east. The Manzanares valley causes  a small, narrow depres-
ion with shoulders rising approximately 75 m to  the north and
ess than  50  m to the south. A secondary feature is a small val-
ey from a  tributary stream  (Arroyo del  Abroñigal) that  crosses
he city from north to south, joining the  Manzanares in  the  Nudo
ur area of the city.  This  valley has a depth  of  25–30 m.  It  is
mportant to  note  that  both valleys work frequently as chan-
els for air  masses from the  cooler northern rural areas. The
ity districts not affected  by the  valley slopes are  fairly flat, with

 gently slope  to the  north and  to the  east, so  that the  maxi-
um  city height (at  the  north of the  city) tops roughly to  700

 a.s.l., while  the lower  occurs in the  river Manzanares,  around
50 m. Madrid is  a  large  606 km2 capital  city  and  with around
.2 million  inhabitants. The area has temperate Mediterranean cli-
ate, with cool winters and  hot  summers. Both these seasons  are

he dry ones because  most of Madrid’s  rainfall is  in  the spring
nd autumn.
.2. Airborne  data

High  spatial resolution imagery was acquired with  the  Air-
orne Hyperspectral Scanner (AHS), an  airborne imaging 80-band
spectral  Scanner  (AHS) overpasses indicated (bottom).

radiometer developed and  built by SensyTech Inc.  (currently  Argon
ST, and formerly  Daedalus Ent.  Inc.). It contains  four types of  detec-
tors organized in five  optical  ports.  Port  1 covers the VIS/NIR range
from 443  nm up to  1025 nm. In  the SWIR  range, port  2A has  an
isolated band centred at 1.6 mm  and  990  nm wide. Next, port 2
has a  set of continuous  narrow bands laying between  1907 nm
and 2558  nm.  Port  3 covers the MWIR  region between 3.1 and
5.5 �m, whereas  Port  4  includes 10 bands covering the  TIR  region
between 8.1  and 13.4 �m. Electronic signals coming  from the
detectors, pre-amplifiers and amplifiers are  digitized  at 12 bits,
and sampled every  2.1  mrad along  the  FOV (90◦ = 1.57  rad), that
results 750 pixels-samples per  scanline. AHS IFOV is 2.5 mrad deter-
mined by an  square  field-stop placed in  the middle of its  optical
path.

A number  of AHS  flights (daytime  and nighttime)  were carried
out in the DESIREX  campaign from 25th  of  June to 4th of  July,  2008,
in order to monitor the UHI evolution in the city of  Madrid. Two
consecutive flights  (flight 1,  east to  west; flight 2, north to south)
were acquired each  time  in order to  cover all the representative
areas of the  city. A  description of AHS  flights is  provided in Table  1.

In this  paper  we considered AHS flights P01I1  and  P02I2 (4-July) at
near 11:30 GMT, with a  pixel  size  of  4  m (Fig. 2).



Table  1
Description of the AHS flights carried  out  in  DESIREX 2008.

Date (yymmdd) Time (UTC)  Flight  ID  Altitude (m
above sea
level)

Pixel size
(m)

080625 11:11 P01I1  2497 4
080625 11:27 P02I1  2497 4
080625 22:15 P01I2  2497 4
080625 22:31 P02I2  2497 4
080626 04:12  P01ID  2497 4
080626 04:26 P02ID 2497 4
080628 11:32 P01I1 2497 4
080628 11:53 P02I1  2497 4
080628 12:13 P01AD  3409 6
080628 12:31 P02AD  3409 6
080628 20:57  P01BD  1641 2
080628 21:12 P02BD  1641 2
080628 21:29 P01I2  2497 4
080628 21:44 P02I2  2497 4
080701 11:21 P01I1  2497 4
080701 11:44 P02I1 2497 4
080701 21:01 P01BD  1641 2
080701 21:15 P02BD  1641 2
080701 21:29 P01SD  1641 2
080701 21:43 P02SD  1641 2
080701 21:59 P01I2  2497 4
080701 22:12 P02I2  2497 4
080702 04:09 P01ID 2497 4
080702 04:26  P02ID  2497 4
080704 11:16 P01I1  2497 4
080704 11:32 P02I1  2497 4
080704 21.59 P01I2  2497 4
080704 22:14 P02I2 2497 4
080704 22:40 P01AD  3409 6
080704 22:55 P02AD  3409 6

Fig.  2. AHS imagery  acquired on  4th July  2008 at around 11:30 GMT  over the Madrid
city.

Table 2
Spectra of man-made materials  included in the ASTER spectral  library.

Class  Sub-classes #  samples

Concretes  Construction concretes, paving
concretes

5

General  construction
materials

Bricks, cement cinderblock,
cinders, glass, marble,  paints,
woods

28

Reflectance  target Brass plate, gold plate  27
Road  asphalts and tar Paving asphalts, tar  5

Roofing  materials Metal, roofing paper,  rubber,

roofing shingle, tile
16

3.3.  In  situ measurements

A  complete  database  of airborne/satellite imagery and in  situ
measurements was  constructed in the  framework of  the  DESIREX-
2008  campaign. In situ measurements included atmospheric
characterization (radiosoundings, lidar, meteorological stations),
surface  temperatures using  thermal  radiometers,  air  temperature
at  fixed  points and also transects with cars along the city,  radiation
balance, thermographies, etc. In this  paper we will  focus on the
retrieval of surface  emissivity from  data measured  with multiband
thermal  radiometers. The instrument used for this  purpose was  a
CIMEL  model CE 312-2  ASTER. It  has 5  narrow bands (8.13–8.48;
8.48–8.83; 8.93–9.28;  10.25–10.95; 10.95–11.65 �m)  and 1 broad-
band  in  the  spectral  region  between  8  and 13 �m.  It  can  measure
in  the range between −80  and 60 ◦C,  with an accuracy  of 0.1 ◦C and
a  Field of View  (FOV) of 10◦. Moreover, the  sky irradiance has been
measured with a  diffuse reflectance  standard plate  (Infragold, Lab-
sphere  Inc.).  Surface emissivities were retrieved by applying the
Temperature and  Emissivity Separation (TES)  algorithm (see next
section)  to thermal radiances measured  at-ground level.

3.4.  ASTER spectral library

The  ASTER Spectral Library (ASL) is  a compilation of  more
than  2000  spectra  covering  the  region  from  visible through
the  region  from thermal infrared (0.4–15.4 �m).  ASL includes
natural  and man-made materials  and  it is available from
http://speclib.jpl.nasa.gov. It  provides  directional hemispherical
reflectance values,  so  emissivity can be obtained via Kirchoff’s law,
ε  = 1  − �. Details on  sample preparation and  sample measurements
can  be  found in Baldridge et al. (2009). In order to analyse the
emissivity spectra  of urban surfaces, we  considered 81 spectra of
man-made materials as described in  Table  2,  and  also  vegetation
(representative of green areas) and  water  spectra.

3.5.  Surface emissivity retrieval: TES  algorithm

The  Temperature and Emissivity Separation (TES) algorithm was
originally developed  for data collected  with  the ASTER  spaceborne
sensor  in order to  provide to the  remote sensing user  community
with  Standard  Products  of  LST and ε. A  complete  description  of
the  algorithm  can  be found in Gillespie  et  al. (1998). The TES  algo-
rithm  is  composed  by  three  modules: NEM  (Normalized Emissivity
Method), RATIO and MMD  (Maximum–Minimum Difference). The
NEM  module  includes an iterative procedure  which  provides a first
guess  for  LST/ε  from atmospherically corrected  thermal  radiance,
sky  irradiance and  an  initial value of  ε based on  the radiative trans-
fer  equation. The RATIO module  obtains relative emissivities (called
as  �-spectrum) by  rationing the NEM emissivities to  their average

value.  Finally, the MMD  module scales the  emissivity spectra in
order  to provide the final values  for  LST  and ε. The accuracy for  the
TES  algorithm is  ±0.015  emissivity  units  and  ±1.5  K. Despite the  fact
that  the method was  originally developed  for satellite data,  it is also

http://speclib.jpl.nasa.gov/


Table 3
Classes defined in  the  supervised  classification obtained from  AHS  imagery.

Class  Legend

1  Water (lakes)
2 Water  (pools)
3 Trees
4  Green grass
5 Bright  bare  soil
6  Dark bare  soil
7  Roads with  asphalt
8  Other roads  and  pavements
9 Roofs  with  asphalt

10  Roofs with  red  bricks/tiles
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Table  4
Confusion  matrix  and kappa coefficient obtained in  the  classification of east-west
AHS  flight.  Legend for classes is provided in  Table  3.

Classes 1 2 3 4 5  6  7 8 9  10 11 12

1 2  0  0 0 0  0  0 0 0  0 0 0
2 0 3  1 1 0  1  1 0 0  0 0 0
3 0  0  14 1 0  0  0 0 0  0 0 0
4 0  0  0 9 0  0  0 0 0  0 0 0
5 0  0  0 0 4  0  0 5 0  0 0 0
6 0  0  0 0 0  33  0 0 0  0 0 0
7 0 0 1 0 0  0  20 3 0  0 1 0
8 0 0  0 0 13  9  2 28 0  1 4 0
9 0  0  0 0 0  0  0 0 4  0 0 0

10 0  0  1 0 2  1  3 1 2  33 0 0
11 0  0  0 0 0  0  0 3 1  0 3 5
12 0  0  0 0 0  0  0 0 0  0 0 0

Kappa  coefficient: 0.73.

Table  5
Confusion  matrix and kappa coefficient  obtained in the classification  of north-south
AHS  flight.  Legend for classes is provided in  Table  3.

Classes 1  2  3  4 5 6 7  8  9  10 11 12 13

1 0  0  0  0 0 0 0  0  0  0 0 0 0
2 0 1 2 0 0 0 0  0  0  0 0 0 0
3 0  0  26  1 0 0 0  0  0  0 0 0 0
4 0 0  0  1 0 0 0  0  0  0 0 0 0
5 0  0  0  0 8 0 0  1  0  0 0 0 0
6 0  0  1  0 0 13 0  0  0  0 0 0 0
7 0 0 2 0 0 0 20  2  1  0 1 0 0
8 0  0  5  0 6 10 1  17  0  2 1 0 0
9 0 0 0  0 0 0 3  0  3  0 0 0 0

10 0  0  2  1 0 5 2  2  1  21 2 0 0
11 0  0  0  0 5 5 0  4  1  1 12 1 0
12 0  0  0  0 0 0 0  0  0  0 0 0 0

form the classification, such  as using only at-surface reflectances
obtained from  the VNIR  port data, or  using only  surface emissivi-
ties retrieved  from the TIR  port data,  or even using  both at-surface
reflectances and emissivities. Other decision rules have also been

Table  6
Percentage  of each  class included  in the  AHS flights P01I1 (east-west) and  P02I1
(north-south).

Class Legend  Percentage (%)
Flight P01I1

Percentage (%)
Flight P02I1

1 Water  (lakes) 0.03 0.04
2 Water  (pools) 0.88 4.08
3 Trees  12.84 6.77
4 Green  grass  1.24 5.48
5 Bright  bare  soil 6.09 3.05
6 Dark bare  soil 8.37 13.02
7 Roads  with  asphalt 9.58 7.11
8 Other  roads  and pavements 26.12 30.58
9 Roofs  with  asphalt 2.53 2.18
11 Roofs  with  concrete
12  Roofs with  metal
13  Shadows

pplicable to ground-based measurements  acquired with thermal
ultiband radiometers (Payan and  Royer,  2004; Jiménez-Muñoz  &

obrino, 2006).
The  MMD module is the key  part  of TES algorithm. It  relies  on

n empirical  relationship between spectral  contrast (MMD) and
inimum emissivity (εmin) determined from laboratory  and/or

eld emissivity spectra according to  the  following expression:
min = a +  b × MMDc. Hence, the  expression  proposed for ASTER data
onsiders the values a =  0.994, b =  −0.687 and c =  0.737 based on 86
aboratory spectra  of  natural  surfaces  (rocks,  soils,  vegetation,  snow
nd water), with  a regression coefficient r2 =  0.983 and  ninety-five
ercent of the samples falling  within ±0.02  emissivity units. There-
ore, it is  expected that TES  algorithm  does not provide  satisfactory
esults over surfaces with  ε spectra that  do not meet  the εmin–MMD
elationship. This is the case of surfaces with low spectral con-
rast (MMD  < 0.03),  such as water and  green  vegetation, for which
min = 0.983 is considered (Gillespie et al., 1998). In Section 4  we  will
nalyse the  applicability of the εmin–MMD  relationship over man-
ade materials in order to assess the  performance of TES algorithm

ver urban  areas.

.6. Classification technique

Urban  areas have  been classified from daytime AHS  images
sing a  supervised classification with  the  Maximum Likelihood as  a
ecision rule. The  classes have been  defined by  taking into account
he in situ measurements carried  out for the  spectral  characteriza-
ion of urban surfaces  and also by  visual inspection using  Google
arth ©. A  total amount of  12 classes (plus shadows) were  finally
elected, as is described in  Table 3. An independent  dataset of near
00 pixels  covering the different classes  for  each transect were
elected to  validate the classification results, expressed through  the
appa (�)  coefficient. The classification has  been performed using
t-sensor radiance  values  (level  1b,  in w m−2 sr−1 �m−1) measured
ith the four ports  (80 spectral  bands) of  the  AHS sensor.  The results
ill be  presented in Section 4.

. Results  and  discussion

.1. Classification results

The  results  obtained in  the classification (confusion matrix and
appa coefficient) are provided  in  Tables 4 and  5  for  AHS flights
ast-west and north-south, respectively. The kappa  coefficient is
round 70%  in  both  cases. Table 6 provides the percentage of
ach class  included in the two flights. Note that the most abun-

ant classes are  “Other roads  and pavements” and “Roofs with
ed bricks/tiles”. Minority classes include “Roofs  with metal” and
Water”. The percentage  of vegetation  (classes “Trees”  and “Green
rass”) is around  14% for  flight P01  and 12%  for flight P02, with
13 0  0  0  0 0 0 0  0  0  0 0 0 0

Kappa  coefficient: 0.67.

almost all the  vegetation belonging to  “Trees” in P01 and  equally
distributed between “Trees”  and “Green grass” in  P02.  For  both
flights, water and  vegetation classes,  which minimize the  UHI
effect, provide a  total percentage of  around 15%, whereas the  rest
of urban  areas provide  a total percentage higher than  80%. Note
that despite  this these two  flights do  not cover the  whole urban
area of  Madrid, they are  assumed to  be representative samples.
Fig. 3 shows  respectively the classification  maps for flights  P01I1
(east-west) and P02I1 (north-south).

It should be  noted  that  other approaches were considered to per-
10 Roofs  with  red bricks/tiles 20.09 18.74
11 Roofs with  concrete 12.21 7.46
12 Roofs  with  metal 0.04 1.34
13 Shadows  0 0.15
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Fig. 4. Plot of minimum  emissivity (emin) versus spectral  contrast (MMD) for  spec-
tra of  man-made  materials  included  in the ASTER spectral library.  The  line given by
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Fig.  3.  Classification over the Madrid city using  AHS  imagery.

ested, such as Linear Discriminant Analysis, Mahalanobis distance,
uadratic Discriminant Analysis and Support Vector Machines.
owever, these approaches did  not significantly improve the

esulting � coefficients. Instead,  some urban surfaces  have  been
bserved to be  better discriminated using  surface emissivities,
hich suggests that  a combination of  approaches  to produce a  final

lassification map  could  be  useful,  however, this issue needs further
esearch. Note  also  that noisy images have  been  observed for AHS
ands 22, 23,  58, 59,  60, 61,  62 and 63.  Removal of these  bands in  the
lassification procedure  did not improve the results significantly.

.2. Assessment of  TES  algorithm performance over urban  areas
As explained in Section  3.5, TES  algorithm  relies on  the
mpirical relationship between  emin  and  MMD. In the origi-
al TES as presented in Gillespie et al. (1998), this relationship
as obtained from  spectra  of  natural  surfaces according to

able  7
missivity values assigned to each class  for  the  six bands of the CIMEL CE  312-2  radiomet

Class Legend  Band6
8.13–8.48 �m

Band5
8.48–8.83  �m

1 Water  (lakes)a 0.983 0.984  

2 Water  (pools)a 0.983 0.984  

3 Treesb 0.990 0.990  

4 Green grass 0.975 0.981  

5 Bright  bare soil 0.808 0.802  

6 Dark  bare  soila 0.962 0.946  

7 Roads  with asphalt 0.970 0.977  

8 Other  roads and pavements 0.835 0.834  

9 Roofs with  asphalt 0.918 0.847  

10 Roofs  with  red bricks/tiles 0.956 0.911  

11 Roofs  with  concrete 0.835 0.834  

12 Roofs with  metala 0.053 0.053  

a Values  extracted from the ASTER spectral  library.
b Constant  value assumed taking into  account  the near-blackbody behavior of  vegetati
εmin = 0.994  − 0.687MMD0.737 (original  expression of TES  algorithm) is also repre-
sented.

εmin = 0.994  − 0.687 ×  MMD0.737. Fig. 4 shows the plot εmin versus
MMD  of man-made surfaces,  in which  the line  given by  the pre-
vious  expression is also represented. The plot clearly shows  that
some  artificial  surfaces  do  not  follow  the εmin–MMD relationship,
therefore TES algorithm will  not  provide satisfactory results in
these  cases. These  surfaces include  metallic ones (also  pointed out
by  Payan  and Royer, 2004) and  reference targets, which in  fact
are  made of highly reflectance materials. However there are  other
methodologies to obtain  land surface parameters  of these materi-
als,  e.g. Malaplate et al. (2001)  propose  a methodology to retrieve
the  reflectance of metallic surfaces by using information from 3 �m
to  5 �m  and alternate measurements under  sun and  shade. Con-
cretes  and asphalts seem to  follow  the  εmin–MMD  relationship,
therefore valid  results are expected when  applying the TES  algo-
rithm  to  these surfaces.

4.3.  Emissivity maps

Emissivity maps have been elaborated using the classification
as  a reference, in  which  emissivity values measured in situ (or
extracted from spectral  libraries when  in situ ones  are not available
or  are expected  to be erroneous) have been assigned to  each class
(Table  7).  Because in situ  measurements  were  carried out with the
CIMEL  CE 312-2 radiometer, with six  bands, the  emissivity maps
obtained from the classification image are  referred  to these six

bands.  Note that CIMEL  bands from 6 to  2  are  equivalent to the
five  ASTER thermal bands,  and CIMEL band  1  is  a broadband one
between 8 and 13 �m.

er.

Band4
8.93–9.28 �m

Band3
10.25–10.95  �m

Band2
10.95–11.65 �m

Band1
8–13  �m

0.985 0.990  0.990 0.985
0.985 0.990  0.990 0.985
0.990 0.990  0.990 0.990
0.980 0.980  0.981 0.978
0.789 0.942  0.956 0.898
0.949 0.941  0.968 0.970
0.969 0.962  0.964 0.965
0.817 0.943  0.957 0.914
0.775 0.933  0.963 0.897
0.849 0.939  0.942 0.902
0.817 0.943  0.957 0.914
0.053 0.049  0.046 0.045

on.



Fig. 5.  Emissivity map using the  classification-based approach for  the broadband
r
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rithm  applicability and sensitivity. International Journal  of  Remote Sensing 25
(1),  15–38.
anging between 8  and  13  �m.

As  commented in the previous section, the  assignation  of  emis-
ivity values  to  classes related to urban surfaces is a critical task,
ome remarks should  be pointed out. For example, emissivities
or soils  are  highly  variable depending on the soil class. We have
dopted the criteria  of assigning emissivity values  measured at

 particular  bright  soil to the class “bright bare soil”, whereas a
ean value for  soils emissivity  extracted from  the ASTER  spec-

ral library  belonging  to  the  inceptisol class (the most abundant
ne in  the Earth) has  been  assigned to the class  “dark bare soil”.
egarding the retrieval of emissivity values  over metallic sur-

aces, it  has  been pointed out the TES  algorithm fails over this
ind of surfaces, because the  sky irradiance is  almost  completely
eflected by  the  surface. Therefore, for the class “Roofs with metal”
e have  used emissivity spectra for  manmade materials included

n the ASTER spectral library (class  roofing materials  – metal).
owever emissivity for metallic surfaces is  also highly  variable
epending on the  material. We  have finally selected aluminium
s a  representative material  for  metallic roofs. For “vegetated”
nd “water” areas we  have also  considered typical emissivity val-
es extracted from the  ASTER library. Fig.  5 is an  example of  the
missivity map  obtained from the  classification for the broadband
8–13 �m).

In  considering the fraction of land  covers (Table 6)  and the
missivity values  assigned  to  each  class  for the band 1 (8–13 �m)
Table 7),  the total area sensed has  an  average emissivity of 0.93 for
he flight  P01I1  and  of  0.92 for the flight P02I2. Note that these

◦ ◦
alues of emissivity  contribute to  an error  of 3.5 C–4 C in the
rightness temperature when the  effect  of  the emissivity is not
orrected.
5. Conclusions

As pointed out by  different  authors, emissivity retrieval  over
urban areas still  remains  an  open issue. From a remote sensing
perspective, surface emissivities should be retrieved from multi-
or hyper-spectral TIR data  in order to  reflect the  real condition of
the surface.  This can  be addressed  with Temperature and Emis-
sivity Separation algorithms such as  the  one considered in  this
paper. However, these  algorithms fail over certain kind  of  sur-
faces (e.g. metallic ones). The solution proposed in this paper
relies on a  classification-based approach, in which  the TES algo-
rithm is applied to in  situ  measurements and values are  assigned
to classes where the  algorithm provides satisfactory results, and
values extracted from  spectral libraries are  assigned to the  rest
of classes. In this last  case  the selection of the ε-spectra  may  be
somewhat arbitrary, since spectral libraries include “representa-
tive” samples but  surface  over the city can  be  highly variable in
composition and conditions.  Research is still  needed  for devel-
opment of a  TES  algorithm applicable to any kind of  urban
surface.
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