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Chapter 1

Introduction

Many scientific applications require far more computation or data storage than
can be handled on a regular PC or laptop. For such applications, access to
remote storage and compute facilities is essential. Unfortunately, there is not
a single standardized way to access such facilities. There are many competing
protocols and tools in use by the various scientific data centers and commercial
online providers.

As a result, application developers are forced to either select a few protocols
they wish to support, thereby limiting which remote resources their application
can use, or implement support for all of them, leading to excessive development
time.

Xenon is a library designed to solve this problem. It offers a simple, unified
programming interface to many remote computation and data storage facil-
ities, and hides the complicated protocol and tool specific details from the
application.

Xenon consists of three pillars: credentials , files , and jobs (Figure 1.1). The
credentials pillar contains functionality pertaining to gaining access to (remote)
systems, for example by using passwords, public/private keys, certificates, etc.
The files pillar contains all functionality relating to the filesystem: creation,
deletion, and copying of files and directories, checking if a file or directory
exists, listing directory contents, etc. Lastly, the jobs pillar contains function-
ality relating to jobs, such as submitting and cancelling a job, checking a job’s
status (polling ), etc.

– 1 –



engines

adaptors

interfaces
credentials

cred.

engine

x509ssh

jobs

jobs

engine

ssh

slurm

globus

pbs

sge

local

xenon

files

files

engine

http

sftp

local

cif ftps

ftp

Figure 1.1: Xenon is built on 3 pillars: credentials , files
and jobs . Each pillar consists of an interface, an engine,
and multiple adaptors.

1.1 Use cases

Xenon is used by several projects at the Netherlands eScience Center. We
use it either directly, or via the Python (pyXenona) or JavaScript (Osmiumb)
interfaces. Most of these projects use Xenon to remotely run computations that
are too large to run locally, or to distribute a collection of such computations
over multiple remote machines. Xenon is also used to copy the input files
required by these computations to the remote machines, and to collect the
results afterwards. Below are some real-life examples of what Xenon is used
for:

1. MAGMac is a web application for the automatic annotation of mass
spectrometry data. MAGMa uses Osmium to start calculations from the
web interface.

ahttps://github.com/NLeSC/pyxenon
bhttps://github.com/NLeSC/osmium
chttp://www.emetabolomics.org/magma
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2. AMUSEa is a software framework for astrophysical simulations. Using
AMUSE, existing astrophysical models can be easily coupled into larger
simulations. The AMUSE framework uses Xenon to transparently pro-
vide distributed computing.

3. ABC-MUSEb uses the AMUSE software framework described above to
couple various types of ocean simulations. Like AMUSE, ABC-MUSE
uses Xenon to transparently provide distributed computing.

4. eSalsa-Deploy is an application that can be used to run an ensemble of
large ocean simulations on a set of supercomputers. For each simulation
in the ensemble, a target supercomputer must be selected, and the input
and configuration files prepared on that target. Each simulation requires
a large amount of time to complete, and cannot be run in one go as this
would exceed the maximum allowed walltime. Instead they are started,
stopped and restarted several times. All file transfers, job submission
and monitoring in eSalsa-Deploy is handled by Xenon.

5. JSync is a tool used in the Via Appia projectc to synchronize archeolog-
ical data between archeologists’ laptops and a centralized server located
in Germany. This allows the archeologists to view data offline (e.g. dur-
ing fieldwork) on their laptops. The necessary remote file inspection and
file transfer is handled by Xenon.

6. Noodlesd is a Python based workflow engine that uses pyXenon to run
workflow elements in a distributed fashion.

7. In the SIM-CITY projecte, pyXenon is used as part of a webservice
allowing traffic simulations to be started on demand.

ahttp://amusecode.org/
bhttps://www.esciencecenter.nl/project/abc-muse
chttps://www.esciencecenter.nl/project/mapping-the-via-appia-in-3d
dhttps://github.com/NLeSC/noodles
ehttps://www.esciencecenter.nl/project/sim-city
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1.2 Purpose of this document

This document aims to help users without much prior knowledge about Java
programming and without much experience in using remote systems to under-
stand the basics of how to use the Xenon library. At the end of the tutorial
you should have enough information to be able to start exploring on your own.

1.3 Version information

It is assumed that you are using one of the Ubuntu-based operating systems
(I’m using Linux Lubuntu 14.04.3 LTS). Nonetheless, most of the material
covered in this manual should be usable on other Linux distributions with
minor changes. The manual is written to be consistent with Xenon release
1.1.0a.

aFor releases, see https://github.com/NLeSC/Xenon/releases
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Chapter 2

Basic usage

To use a minimal feature set of the Xenon library, you’ll need the following
software packages:

1. Git , a version management system;

2. Java, a general purpose programming language;

The following sections describe the necessary steps in more detail.

2.1 Installing Git

Open a terminal (default keybinding Ctrl + Alt + t). The shell should be
Bash . You can check this with:

echo $0

which should return /bin/bash.

Now install git if you don’t have it already:

sudo apt -get install git

After the install completes, we need to get a copy of the examples. We will use
git to do so. Change into the directory that you want to end up containing
the top-level repository directory. I want to put the Xenon examples in my
home directory, so for me that means:

cd ${HOME}
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Then clone the Xenon-examples repository into the current directory:

git clone https :// github.com/NLeSC/Xenon -examples.git

This will create a directory ∼/Xenon-examples that contains the source code
of the Xenon examples.

2.2 Installing Java

Xenon is a Java library, therefore it needs Java in order to run. Java comes in
different versions identified by a name and a number. The labeling is somewhat
confusinga. This is partly because Java was first developed by Sun Microsys-
tems (which was later bought by Oracle Corporation), while an open-source
implementation is also available (it comes standard with many Linuxes). Fur-
thermore, there are different flavors for each version, each flavor having dif-
ferent capabilities. For example, if you just want to run Java applications,
you need the JRE (Java Runtime Environment); if you also want to develop
Java software, you’ll need either an SDK (Software Development Kit) from
Sun/Oracle, or a JDK (Java Development Kit) if you are using the open-source
variant.

Check if you have Java and if so, what version you have:

java -version

That should produce something like:

java version "1.7.0 _79"

OpenJDK Runtime Environment (IcedTea 2.5.6) (7u79 -2.5.6 -0 ubuntu1 .14.04.1)

OpenJDK 64-Bit Server VM (build 24.79-b02 , mixed mode)

Note that ‘Java version 1.7’ is often referred to as ‘Java 7’.

If you don’t have Java yet, install it with:

sudo apt -get install default -jdk

this will install the open-source variant of Java (‘OpenJDK’).

aSee for example http://stackoverflow.com/questions/2411288/java-versioning-

and-terminology-1-6-vs-6-0-openjdk-vs-sun
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2.3 Building with gradlew

To check if everything works, we first need to build the example from source
and then run the example from the command line.

At this point, ∼/Xenon-examples only contains files directly related to the
source code of the example files. However, in order to build and run the
examples successfully, we’ll need a few more things. Naturally, we’ll need a
copy of the Xenon library, but the Xenon library in turn also has dependencies
that need to be resolved. Because the process of fitting together the right
libraries is quite a lot of work, we have automated it. For this, we use the build
automation tool Gradlea. Interestingly, you do not need to install Gradle for
it to work (although you do need Java). This is because the Xenon-examples
repository already includes a script called gradlew, which will download a
predefined version of the Gradle program upon execution. The advantage of
using gradlew for this is that the resulting build setup will be exactly the
same as what the developers use, thus avoiding any bugs that stem solely from
build configuration differences.

The gradlew script can be run with arguments. For example, running

cd ${HOME}/Xenon -examples

./ gradlew dependencies

prints a list of the dependencies (of which there are quite many), and

./ gradlew clean

cleans up the files pertaining to any previous builds.

dependencies and clean are referred to as ‘Gradle tasks’, ‘build tasks’ or just
‘tasks’. Tasks are defined in a so-called build file called build.gradle. To get
an overview of all available tasks you could read through build.gradle, or
you could simply run:

./ gradlew tasks

or

./ gradlew tasks --all

If you run ./gradlew tasks, you’ll see a line at the top that says that the

ahttp://gradle.org/
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default task is called shadowJara. shadowJar bundles any and all dependencies
into one large jar, sometimes referred to as a ‘fat jar’. Once you figure out what
to put in it, using a fat jar makes deployment more robust against forgotten-
dependency errors. Lucky for you, someone has already figured out how to
make the fat jar, and has even written it down in a file that Gradle can
understand.

Run ./gradlew (without any arguments) to start the default task. The fol-
lowing things will happen:

1. the correct version of Gradle will be downloaded;

2. the Xenon library will be downloaded;

3. any dependencies that the Xenon library has will be downloaded;

4. all of that will then be compiled;

5. a fat jar will be created.

2.4 Running an example

So at this point we have compiled the necessary Java classes; now we need to
figure out how to run them.

The general syntax for running compiled Java programs from the command
line is as follows:

java <fully qualified classname>

We will use the DirectoryListing example from the nl.esciencecenter.

xenon.examples.files package. As the name implies, it lists the directory
contents of a given directory. The fully qualified classname for our example is
nl.esciencecenter.xenon.examples.files.DirectoryListing, but if you
try to run

cd ${HOME}/Xenon -examples

java nl.esciencecenter.xenon.examples.files.DirectoryListing

you will get the error below:

ahttps://github.com/johnrengelman/shadow
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Error: Could not find or load main class \

nl.esciencecenter.xenon.examples.files.DirectoryListing

This is because the java executable tries to locate our class nl.esciencecenter.
xenon.examples.files.DirectoryListing, but we haven’t told java where
to look for it. We can resolve that by specifying a list of one or more directories
using java’s classpath option -cp.

Directory names can be passed to java as a colon-separated list, in which
directory names can be relative to the current directory. Furthermore, the
syntax is slightly different depending on what type of file you want java to
find in a given directory: if you want java to find compiled Java classes, use
the directory name; if you want java to find jar files, use the directory name
followed by the name of the jar (or use the wildcard * if you want java to
find any jar from a given directory). Finally, the order within the classpath is
significant.

We want Java to find the fat jar Xenon-examples-all.jar from build/libs.
Using paths relative to ∼/Xenon-examples, our classpath thus becomes build/
libs/Xenon-examples-all.jar. However, if we now try to run

cd ${HOME}/Xenon -examples

java -cp 'build/libs/Xenon -examples -all.jar ' \

nl.esciencecenter.xenon.examples.files.DirectoryListing

it still does not work yet, because DirectoryListing takes exactly one input
argument that defines the location (URI) of the directory whose contents we
want to list. URIs generally consist of a scheme followed by the colon charac-
ter :, followed by a patha. For a local file, the scheme name is local. The path
is the name of the directory we want to list the contents of, such as ${PWD}
(the present working directory).

Putting all that together, we get:

cd ${HOME}/Xenon -examples

java -cp 'build/libs/Xenon -examples -all.jar ' \

nl.esciencecenter.xenon.examples.files.DirectoryListing local:${PWD}

If all goes well, you should now see the contents of the current directory as an
INFO message.

aThe full specification of a URI is (optional parts in brackets):
scheme:[//[user:password@]domain[:port]][/]path[?query][fragment]
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2.5 Setting the log level

Xenon uses the logbacka library for much of its verbose output. For this, de-
velopers have sprinkled the code with so-called logger statements that produce
messages. Each message has been annotated as an error, a warning, debug-
ging information, or as a plain informational message. The logback library lets
the user configure where each type of message should be routed. For example,
warnings and informational messages may be routed to standard output, while
error messages may be routed to standard error. Furthermore, it gives the user
control of how each message should be formatted, for example with regard to
what class produced the message, and at what line exactly. The behavior
of the logger can be configured by means of a file called logback.xml. It is
located at src/main/resources/. There should not be any need for you to
change logback.xml too much, but if you do, make sure to re-run ./gradlew

for your changes to take effect.

By default, logback.xml uses a logging level of INFO, which means that warn-
ings, errors, and informational messages are routed to standard output, but
debug messages are not visible. At some point, you may find yourself in a sit-
uation where you want to change the logging level. There’s two ways you can
do that: first you can change the default behavior by editing the loglevel line
in src/main/resources/logback.xml, saving it, and re-running ./gradlew.

ahttp://logback.qos.ch/
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Secondly, you can keep the defaults as they are, but only run a specific call
with altered loglevel settings, by using command line parameters to the java
program. For example, you could lower the logging level from INFO to DEBUG

as follows:

cd ${HOME}/Xenon -examples

java -Dloglevel=DEBUG -cp 'build/libs/Xenon -examples -all.jar ' \

nl.esciencecenter.xenon.examples.files.DirectoryListing local:${PWD}

Standard output will now include messages of the WARN, ERROR, INFO, and
DEBUG level, e.g.:

time : 11:49:58.473 (+315 ms)

thread : main

level : DEBUG

class : nl.esciencecenter.xenon.examples.files.DirectoryListing :74

message: Creating a new Path ...

time : 11:49:58.473 (+315 ms)

thread : main

level : DEBUG

class : nl.esciencecenter.xenon.examples.files.DirectoryListing :78

message: Getting the directory attributes ...

time : 11:49:58.481 (+323 ms)

thread : main

level : INFO

class : nl.esciencecenter.xenon.examples.files.DirectoryListing :95

message: Directory local :/home/daisycutter/Xenon -examples exists

and contains the following:

.travis -ssh.sh

run -examples.sh

.gitignore

doc

build

bin

<some content omitted>

2.6 Xenon’s SSH adaptor

Up till now, you’ve used Xenon to perform tasks on your own system (by
means of Xenon’s local adaptor). Usually though, you’ll want to use Xenon to
perform tasks on remote systems, such as the Amazon cloud, the Lisa cluster
computer, the Cartesius supercomputer, or perhaps just a single machine (but
not your own). To do so, you first need to connect to them. You can use
Xenon’s SSH adaptor to do so. The SSH adaptor works in a similar way as
the so-called secure shell program ssh on the Linux command line. Through
SSH, you can connect to a remote system and do all the things a user is
allowed to do on that system (which in turn is defined by the remote system’s
administrator).
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To keep things simple, we’ll first set up an SSH connection to localhost, thus
effectively connecting ourselves with ourselves. Later on in this document we’ll
also look at using SSH to connect to a remote system (see Section 2.15: Live
systems). Additionally, we’ll set up Docker to run virtual remote systems on
your local machine. That way, you can emulate the behavior of one or more
remote machines (see Sections 2.16: Installing Docker and 2.17: Using Docker
containers) without the need for any additional hardware besides your own
machine. Anyway, that’s all for later—let’s get started on setting up SSH to
localhost first.

2.6.1 ssh to localhost

SSH uses the server-client model. Normally, your system is the client, while
the remote system is the server. Since we will connect to localhost however,
your system will play the part of both client and server.

The client needs to have a so-called public-private key pair . The key pair can
be generated according to different algorithms: dsa, ecdsa, ed25519, or rsa.
The Linux program ssh-keygen implements these algorithms. We will use it
to generate a public-private key pair using the rsa algorithm, as follows:

# generate key pair using rsa algorithm

ssh -keygen -t rsa

# (press enter to accept the default file location ~/.ssh/id_rsa; if it

# tells you the file already exists , you can skip creation of a new key)

# (press enter to set the passphrase to an empty string)

# (press enter to confirm setting the passphrase to an empty string)

You should now have a directory ∼/.ssh with two files in it: id_rsa, the
private part of the key pair and id_rsa.pub, the public part of the key pair.
Note that the contents of id_rsa should remain a secret.

That’s it for the client side, but you still need to do some stuff on the server
side. First, install the package openssh-server from the Ubuntu repositories:

# install a server

sudo apt -get install openssh -server

The server side keeps a list ∼/.ssh/authorized_keys of trusted identities.
You have to add the identity information from ∼/.ssh/id_rsa.pub to it.
Linux provides an easy way of doing this, as follows:

# copy identity , type 'yes ' when prompted

ssh -copy -id ${USER}@localhost

On the server side, file ∼/.ssh/authorized_keys should now contain the in-
formation from ∼/.ssh/id_rsa.pub.
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When you did ssh-copy-id, SSH tried to connect the current user (whose cre-
dentials are found in ∼/.ssh/id_rsa.pub) to the ‘remote’ system localhost.
If that was successful, there should now be a new file ∼/.ssh/known_hosts
on the client, that contains a list of machines that we have connected to pre-
viously; i.e. these are systems we trust.

Each line in known_hosts is formatted according to:
|<flag>|<salt>=|<hostname>= <key> <value>=, where

� <flag> is a flag. Mine says 1 to signify that the third element <hostname>
is hashed using the SHA1 algorithm;

� <salt> is the (public) salt used to encrypt the host name;

� <hostname> is the (hashed) host name;

� <key><value> pairs, e.g. the key ecdsa-sha2-nistp256 and its value
AAAAE2V...<characters omitted>... RpXi/rE, representing the pub-
lic key of the ‘remote’ system which was generated when we installed
openssh-server and which is stored at /etc/ssh/ssh_host_ecdsa_

key.puba on hostname.

Xenon uses known hosts to automatically connect to a (known) remote sys-
tem, without having to ask for credentials every time.

For passwordless SSH to work correctly, permissions are important. You can
check the octal representation of a file’s permissions by:

stat -c "%a" <filename>

and you can change them with:

# change <filename>'s permissions to rwx ------ or octal 700

chmod 700 <filename>

On the server-side, verify that permissions are set correctly on the following
files and directories:

aYou can show the fingerprint of the server’s public key file using:
ssh-keygen -l -f /etc/ssh/ssh host ecdsa key.pub

The number that ssh-keygen returns should be the same number that was displayed in
your terminal when you did ssh-copy-id $ USER@localhost.
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1. ${HOME}/ and ${HOME}/.ssh/ should be writable only by owner, not by
group or all. On my system, I have octal permission 700.

2. ${HOME}/.ssh/authorized_keys should be writable only by owner, not
by group or all. On my system, I have octal permission 600.

On the client-side, verify that permissions are set correctly on the following
files and directories:

1. ${HOME}/ and ${HOME}/.ssh/ should be writable only by owner, not by
group or all. On my system, I have octal permission 700.

2. ${HOME}/.ssh/id_rsa should be octal permission 600. ssh-copy-id

should have set the permissions correctly.

3. ${HOME}/.ssh/id_rsa.pub should be octal permission 644. ssh-copy-id
should have set the permissions correctly.

# now try to log in without entering key:

ssh ${USER}@localhost

If all goes well, you should be logged in automatically without having to enter
a password. You can log out of the SSH session with:

logout

2.7 DirectoryListing through SSH

So now that we have configured passwordless SSH to localhost, listing the
contents of a directory on localhost is actually pretty simple. In the URI
that you pass as a command line argument to DirectoryListing (see page 9),
replace local by ssh, and supply localhost as the domain name. Also note
that the inclusion of a domain makes it necessary to include // between ssh

and localhost (see footnote on formatting URIs on page 9). So the complete
call becomes:

cd ${HOME}/Xenon -examples

java -cp 'build/libs/Xenon -examples -all.jar ' \

nl.esciencecenter.xenon.examples.files.DirectoryListing \

ssh :// localhost${PWD}

If all goes well, you should see the same directory contents as before, but now
viewed through SSH.
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2.8 Example usage of local and SSH adaptors

We have compiled a list of examples demonstrating various uses of the local
adaptor and the SSH adaptor. Your system is now configured correctly to run
all of them. This is most easily accomplished by starting the run-examples.sh
script we have prepared:

cd ${HOME}/Xenon -examples

./run -examples.sh

Note that you can edit the loglevel by changing the parameter LOGLEVEL in
run-examples.sh.

2.9 A minimal Eclipse installation

So now that we’ve verified that everything works, we can start thinking about
doing some development work. Let’s first look at the Java editor Eclipse.

Eclipse is a very powerful, free, open-source, integrated development environ-
ment for Java (and many other languages). It is available in most Linuxes from
their respective repositories. By default, Eclipse comes with many features,
such as Git (version control), Mylyn (task management), Maven (building),
Ant (building) , an XML editor, as well as some other stuff. While these
features are nice, they can get in the way if you’re new to code development
with Java using Eclipse. We will therefore set up a minimal Eclipse installa-
tion which includes only the Eclipse platform and the Java related tools (most
importantly, the debugger). Feel free to skip this next part if you’re already
familiar with Eclipse.

Go to http://download.eclipse.org/eclipse/downloads/. Under ‘Latest
release’, click on the link with the highest version number. It will take you to
a website that has a menu in the upper left corner. From that menu, select
the item ‘Platform Runtime binary’, then download the file corresponding to
your platform (for me, that is eclipse-platform-4.5-linux-gtk-x86_64.

tar.gz). Go back to the menu by scrolling up, then select the item ‘JDT
Runtime binary’, and download the file (there should be only one; for me that
is org.eclipse.jdt-4.5.zip).

Now go to where you downloaded those two files to. Uncompress eclipse-

platform-4.5-linux-gtk-x86_64.tar.gz and move the uncompressed files
to a new directory ∼/opt/minimal-eclipse/ (they can be anywhere, really,
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but ∼/opt is the conventional place to install user-space programs on Linux).
Start Eclipse by running eclipse from ∼/opt/minimal-eclipse/eclipse.

In Eclipse’s menu go to Help, then select Install New Software... . Near the
bottom of the dialog, uncheck Group items by category. Then click the top-
right button labeled Add... and click Archive... . Then navigate to the second
file you downloaded, org.eclipse.jdt-4.5.zip and select it. In the dialog,
a new item Eclipse Java Development Tools should appear. Make sure it’s
checked, then click Next and Finish. When Eclipse restarts, you should have
everything you need for Java development, without any of the clutter!

Adding a Bash alias to ∼/.bash_aliases will make it easier to start the
program. I’ve used

echo "alias miniclipse='${HOME}/opt/minimal -eclipse/eclipse/eclipse '" >> \

${HOME }/. bash_aliases

to do so (restart your terminal to use the miniclipse alias).

2.10 Automatic project setup with gradlew

Normally, when you start a new project in Eclipse, it takes you through a
series of dialogs to set up the Eclipse project in terms of the directory struc-
ture, the classpath, etc. The configuration is saved to (hidden) files .project,
.classpath, and .settings/org.eclipse.jdt.core.prefs. The dialogs of-
fer some freedom in setting up the project. This flexibility is great when you’re
working on some project by yourself, but when there are multiple people work-
ing together, one developer may have a different project setup than the next,
and so bugs are introduced. That’s why we will use gradlew to generate a
standard project setup for us:

cd ${HOME}/Xenon -examples

./ gradlew eclipse

2.11 Opening the Xenon examples in Eclipse

After the Eclipse files have been generated, start Eclipse by typing the Bash
alias miniclipse at the command line. From Eclipse’s menu, select File→Import.
In the Select dialog, select Existing projects into Workspace, then click the button
labeled Next.

In the next dialog (Import projects), use the Browse... button to select the
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project’s root directory, e.g. /home/daisycutter/Xenon-examples, then click
Finish. An item Xenon-examples should now be visible in the Package explorer
pane. Expand it, and navigate to src/main/java/, then double-click Directo-
ryListing.java from the nl.esciencecenter.xenon.examples.files package to view its
code in the editor pane.

2.12 Running a Java program in Eclipse

So now that we have the source code open in the editor, let’s see if we can
run it. You can start the program in a couple different ways. For example,
you can select Run→Run; you can use the key binding Ctrl+F11, or you can
press the ‘Play’ icon in Eclipse’s GUI. If you try to run the program, however,
you will get the error we saw earlier at the command line (Eclipse prints the
program’s output to the pane labeled Console):

time : 18:42:04.689 (+219 ms)

thread : main

level : ERROR

class : nl.esciencecenter.xenon.examples.files.DirectoryListing :51

message: Example requires a URI as parameter!

So somehow we have to tell Eclipse about the URI (including both its scheme
and its path) that we want to use to get to the contents of a directory of
our chosing. You can do this through so-called Run configurations . You can
make a new run configuration by selecting Run from the Eclipse menu, then
Run configurations.... In the left pane of the dialog that pops up, select Java
Application, then press the New launch configuration button in the top left of the
dialog. A new run configuration item should now become visible under Java
Application. By default, the name of the run configuration will be the name of
the class, but you can change the name to whatever you like. When you select
the DirectoryListing run configuration in the left pane, the right pane changes to
show the details of the run configuration. The information is divided over a few
tabs. Select the tab labeled Arguments. You should see a field named Program
arguments where you can provide the arguments that you would normally pass
through the command line. Earlier, we passed the string local:${PWD}, but
that won’t work here, since ${PWD} is a Bash environment variable, and thus
not directly available from within Eclipse. Eclipse does provide a workaround
for this by way of the env var variable. env var takes exactly one argument,
namely the name of an environment variable, such as PWD. The correct text
to enter into Program arguments thus becomes local:${env var:PWD}. Note
that ${env var:PWD} refers to the directory that Eclipse was started from.
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2.13 Debugging a Java program in Eclipse

In my opinion, one of the most helpful features of the Eclipse interface is the
debugging/inspecting variables capability. This lets you run your program
line-by-line. To start debugging, you have to set a breakpoint first. Program
execution will halt at this point, such that you can inspect what value each
variable has at that point in your program. Setting a breakpoint is most easily
accomplished by double-clicking the left margin of the editor; a blue dot will
appear. Alternatively, you can press Ctrl+Shift+b to set a breakpoint at the
current line.

Set a breakpoint at the line

URI uri = new URI(args [0]);

Now we need to set the debug configuration in a similar manner as we did for
the run configuration. Select Run from the menu, select Debug configurations...
(not Run configurations...), then select the configuration we used previously.

Run the program up to the position of the breakpoint. There are various ways
to start a debug run: e.g. by selecting Run→Debug; or by pressing F11.

You can add all kinds of helpful tools to the Eclipse window; for an overview
of your options, click the Window menu item, then select Show view, then
select Other.... Select whatever tools you like, but make sure to select the
Variables tool from Debug. This tool allows you to view information about your
variables while you’re debugging. Use drag and drop to lay out the Eclipse
window to suit your needs. Eclipse refers to its window layout as a perspective
; perspectives can be saved by subsequently selecting Window, Perspective,
and Save perspective as.... This allows you to have custom perspectives for
development in different languages (Java, Python, C, etc.), or for different
screen setups (laptop screen v. side-by-side 1920x1080 for example), or for
different tasks (Java development v. Java debugging for example).

Getting back to DirectoryListing, execution has been halted just before the line
URI uri = new URI(args[0]); was executed. If you now look in the Variables
tool pane, there should be only one variable visible: args, which contains the
string we supplied through the Program arguments of the debug configuration.

Press F6 to evaluate the line. You’ll see a new variable uri of type URI appear
in the Variables pane. Expand the object to inspect it in more detail.

When you’re done inspecting, press F8 to make Eclipse evaluate your program,
either up to the next breakpoint, or if there are no breakpoints, up to the end
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of your program.

Finally, you can terminate a debug run by pressing Ctrl+F2. Table 2.1 sum-
marizes some of the most common Eclipse key bindings used in running and
debugging Java programs.

Table 2.1: Default key bindings used for running and de-
bugging Java programs in Eclipse.

Default key binding Description

F5 Step in
F6 Step over
F7 Step return
F8 Continue to the next breakpoint
F11 Start a debug run
Ctrl+F2 Terminate a debug run
Ctrl+Shift+b Set a breakpoint at the current line
Ctrl+F11 Start a (non-debug) run

2.14 Setting the log level

Earlier, we looked at how to pass custom loglevel values to java using com-
mand line parameters such as -Dloglevel=DEBUG (see section 2.5). Passing
command line parameters is also possible in Eclipse, by altering the debug
configuration (or run configuration) as follows. In Eclipse’s menu, go to Run
and select either Run configurations... or Debug configurations... as appropri-
ate. Then, in the left pane, select the Java application whose configuration
you want to adapt. In the right-hand pane, subsequently select the tab labeled
Arguments. The second text field from the top should be labeled VM arguments.
Here you can add command line parameters to the java program, such as
-Dloglevel=DEBUG.

2.15 Live systems

Earlier, we set up passwordless SSH to connect to localhost. Obviously,
using SSH to connect to your own system is a bit silly. Normally, you’ll want
to connect to a physically remote system. In the next two sections, I’ll explain
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how to connect to SURFsara’s cluster computer, Lisa, and VU University’s
DAS-4 cluster, respectively. If you want to follow along, you need to make sure
you have an account on at least one of these systems. Check their respective
websitesa,b to see how you can apply for an account.

If for some reason you can not or do not want to connect to these systems,
make sure to check Sections 2.16: Installing Docker and 2.17: Using Docker
containers to learn about using virtual remote systems.

2.15.1 ssh to SURFsara’s Lisa cluster computer

Cluster computers typically have a dedicated machine (the so-called ‘headnode’)
that serves as the main entry point when connecting from outside the cluster.
For Lisa, the headnode is located at lisa.surfsara.nl.

First, I verify that I can connect to Lisa’s head node, using the ssh command
below:

# (my account on Lisa is called jspaaks)

ssh jspaaks@lisa.surfsara.nl

If this is the first time you connect to the remote machine, it will generally
ask if you want to add the remote machine to the list of known hosts. For
example, here’s what the Lisa system tells me when I try to ssh to it:

The authenticity of host 'lisa.surfsara.nl (145.100.29.210) ' can 't be

established.

RSA key fingerprint is b0 :69:85: a5:21:d6 :43:40: bc:6c:da:e3:a2:cc:b5:8b.

Are you sure you want to continue connecting (yes/no)?

If I then type yes, it saysc:

Warning: Permanently added 'lisa.surfsara.nl ,145.100.29.210 ' (RSA) to

the list of known hosts.

<some content omitted>

and asks for my password.

The result of this connection is that ∼/.ssh/known_hosts now includes a line

ahttps://userinfo.surfsara.nl/systems/lisa
bhttp://www.cs.vu.nl/das4/
cSURFsara publish RSA public key fingerprints for their systems at https://userinfo.

surfsara.nl/systems/shared/ssh. The number posted there should be the same as what
you have in your terminal.
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for the Lisa system.

In Eclipse, go to DirectoryListing’s Debug configurations like you did before
and bring up the Arguments tab. Instead of connecting to localhost, we now
want to connect to the Lisa cluster’s head node at lisa.surfsara.nl. The full
URIa should now be ssh://jspaaks@lisa.surfsara.nl:22/home/jspaaks,
although you can get away with leaving the port value (22) and the path

value (/home/jspaaks) unspecified, because they are the same as the default
settings for the Lisa system.

However, if you now run DirectoryListing, it still won’t work, because we
still have to set up passwordless login using a public/private key pair.

Add your public key information to ~/.ssh/authorized_keys on the Lisa
system with:

# (from your own system)

ssh -copy -id jspaaks@lisa.surfsara.nl

Verify that you can now log in without being asked for a password by:

ssh jspaaks@lisa.surfsara.nl

You should now be able to list the directory contents of your home directory
on the Lisa using DirectoryListing.

2.15.2 ssh to DAS-4 cluster computer

Connecting to DAS-4 works in a similar way as connecting to Lisa, except that
DAS’s headnode is located at fs0.das4.cs.vu.nl, so the full URI becomes:
ssh://jspaaks@fs0.das4.cs.vu.nl:22/home/jspaaks. Due to the default
settings on DAS-4, only the port number is superfluous here; omitting the path
will result in listing the directory contents of /.

2.16 Installing Docker

So far, we’ve been using SSH to connect to localhost as well as to some
live systems. Each option comes with its own drawbacks: live systems require

asee page 9 for URI’s format specification
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additional hardware, and they may be temporarily unavailable (for instance
when you are on a flaky wireless network, or when other users have higher-
priority jobs). On the other hand, development on localhost can be tricky
as well, for example when one job requires software that conflicts with that of
another job. With Docker, you can combine the pros of running on localhost

with the pros of running on live systems, with few of the drawbacks. We will set
up an environment in which a virtual remote system is used. Multiple virtual
remote systems may in actual fact run on one physical machine, because each
is running in its own container .

For now, let’s just install the Docker software that we’ll use to set up virtual
remote systems. Note that much of this section is based on: https://docs.

docker.com/engine/installation/ubuntulinux/, so that’s where you need
to go if you want to learn more.

Docker requires that your operating system (the host system) is 64-bit. Also,
it needs a minimum Linux kernel version of 3.10 (on the host).

Check your kernel version with:

uname -r

Mine is 3.13.0-67-generic.

The Ubuntu repositories contain an older version of Docker, which you should
not use. Instead, use the newer version from Docker’s own PPA.

First check if you have the older version by:

docker -v

Mine says:

Docker version 1.9.0, build 76d6bc9

If your version is lower, go ahead and uninstall as follows. First find out where
your Docker program lives with:

which docker

and then find out which package your Docker is a part of with:

dpkg -S `which docker `

If you already had Docker installed, then the package name is likely either
docker.io or lxc-docker. Either way uninstall the entire package, including
its settings with:
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sudo apt -get remove --purge docker.io

or

sudo apt -get remove --purge lxc -docker*

We will use software from a third-party repository, https://apt.dockerproject.
org. For this, we’ll need to add the new repository’s PGP key to our installa-
tion as follows:

sudo apt -key adv --keyserver hkp ://pgp.mit.edu :80 \

--recv -keys 58118 E89F3A912897C070ADBF76221572C52609D

The details of the next step vary depending on the operating system you are
using, so let’s first check which version you are running:

lsb_release -dc

Make a note of your distribution’s codename for the next step (mine is trusty).

Open or create the file /etc/apt/sources.list.d/docker.list in an editor
such as nano, gedit, leafpad, etc. I’m using nano:

sudo nano /etc/apt/sources.list.d/docker.list

Delete any existing entries in /etc/apt/sources.list.d/docker.list, then
add one of the following options:

1. deb https://apt.dockerproject.org/repo ubuntu-precise main

2. deb https://apt.dockerproject.org/repo ubuntu-trusty main

3. deb https://apt.dockerproject.org/repo ubuntu-vivid main

4. deb https://apt.dockerproject.org/repo ubuntu-wily main

(I chose the second because I’m on trusty).

Next, save and close /etc/apt/sources.list.d/docker.list.

Now that we have added Docker’s PPA to the list of software sources, we need
to update the list with the package information as follows:

sudo apt -get update

Check if your are now using the right docker:

apt -cache policy docker -engine

Mine says:
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docker -engine:

Installed: 1.9.0 -0~ trusty

Candidate: 1.9.0 -0~ trusty

Version table:

***1.9.0 -0~ trusty 0

500 https ://apt.dockerproject.org/repo/ ubuntu -trusty/main amd64 Packages

100 /var/lib/dpkg/status

1.8.3 -0~ trusty 0

500 https ://apt.dockerproject.org/repo/ ubuntu -trusty/main amd64 Packages

1.8.2 -0~ trusty 0

500 https ://apt.dockerproject.org/repo/ ubuntu -trusty/main amd64 Packages

1.8.1 -0~ trusty 0

500 https ://apt.dockerproject.org/repo/ ubuntu -trusty/main amd64 Packages

1.8.0 -0~ trusty 0

500 https ://apt.dockerproject.org/repo/ ubuntu -trusty/main amd64 Packages

1.7.1 -0~ trusty 0

500 https ://apt.dockerproject.org/repo/ ubuntu -trusty/main amd64 Packages

1.7.0 -0~ trusty 0

500 https ://apt.dockerproject.org/repo/ ubuntu -trusty/main amd64 Packages

1.6.2 -0~ trusty 0

500 https ://apt.dockerproject.org/repo/ ubuntu -trusty/main amd64 Packages

1.6.1 -0~ trusty 0

500 https ://apt.dockerproject.org/repo/ ubuntu -trusty/main amd64 Packages

1.6.0 -0~ trusty 0

500 https ://apt.dockerproject.org/repo/ ubuntu -trusty/main amd64 Packages

1.5.0 -0~ trusty 0

500 https ://apt.dockerproject.org/repo/ ubuntu -trusty/main amd64 Packages

Now for the actual install. If your Ubuntu version is Ubuntu Wily 15.10,
Ubuntu Vivid 15.04, or Ubuntu Trusty 14.04 (LTS), you’re in luck, as these
OS’es have everything you’ll need already. If you’re not on one of these Ubuntu
versions, refer to https://docs.docker.com/engine/installation/ubuntulinux/
for instructions on installing some additional packages before proceeding with
the next step.

Install Docker with:

sudo apt -get install docker -engine

The Docker service should have started; if for some reason it hasn’t, you can
start it manually by:

sudo service docker start

Now let’s try a small example to see if Docker works:

sudo docker run hello -world

This command downloads a test image hello-world from DockerHub, an
external repository for storing Docker images. Just to be clear, an ‘image’ in
this context refers to an image of an operating system—it has nothing to do
with a picture.

When the container runs, it prints an informational message. Then, it exits.

You can check where docker images are stored by:
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docker info

Mine are stored under /var/lib/docker; whatever the location, make sure you
have enough disk space there, as Docker will download any new containers to
that location. Docker images are typically less than 1 GB each.

The Docker daemon binds to a Unix socket instead of a TCP port. By default,
that Unix socket is owned by the user root and other users can access it with
sudo. For this reason, the Docker daemon always runs as the root user.

To avoid having to use sudo when you use the docker command, we will create
a Unix group called docker and add users to it. When the Docker daemon
starts, it makes the ownership of the Unix socket read/writable by the docker

group.

Add yourself to the docker group with:

sudo usermod -G docker -a <name-of-user>

Log out and back in. You should now be able to re-run the hello-world

example without the need for sudo:

docker run hello -world

2.17 Using Docker containers

In this section, I’ll show you how you can ssh into a Docker container instead
of localhost. The advantage of this approach is that the configuration of
the server is nicely separated from that of the client, making it easier to deal
with conflicting configurations (as long as each is contained in its own Docker
container).

While you could configure your own Docker container, there’s no need—you
can simply re-use one of the Docker containers we use for integration testing
of the Xenon library. There’s a whole bunch of them on DockerHub a. In this
section and the next, I’ll be using the container named nlesc/xenon-torque.

ahttps://hub.docker.com/search/?q=xenon
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Download and start nlesc/xenon-torque with:

docker run -d --cap -add=SYS_RESOURCE -p 2222:22 \

--name tremendous -torque nlesc/xenon -torque

The docker command breaks down as follows: basically we want docker to
run the container nlesc/xenon-torque for us, using some options:

� -d to signify that we want the Docker container to run in the background;

� --cap-add=SYS RESOURCE to tell docker that the container can use all
the resources that are physically available given the hardware it’s running
on;

� -p 2222:22 to tell docker that the host system’s port 2222 should map
to port number 22 inside the container;

� and finally, --name tremendous-torque to set the container’s name.

You can get an overview of all Docker containers that your system knows about
with:

docker ps --all

The Docker container named tremendous-torque should be running in the
background (because we started it with the -d flag). Verify that its STATUS

is up and that the port numbers have been mapped correctly.

Let’s try if we can ssh into the container. For this we need to identify ourselves
with a username/password combination. The tremendous-torque container
has a user whose username is xenon and whose password is javagat. Run:

ssh xenon@localhost -p 2222

and fill in the password when prompted.

An ls -l should yield something like this:

Last login: Wed Dec 16 13:07:17 2015 from 172.17.0.1

[xenon@localhost ~]$ ls -l

total 12

-rw-r--r-- 1 root root 1165 Dec 16 13:08 supervisord.log

-rw-r--r-- 1 root root 2 Dec 16 13:05 supervisord.pid

drwxr -xr-x 4 xenon xenon 4096 Sep 30 09:24 xenon_test

Now that you’ve verified that the Docker container works, logout of it.
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In Eclipse, make a copy of DirectoryListing and call it something like
DirectoryListingWithPwd. We’ll use DirectoryListingWithPwd to demon-
strate a second way of logging in to a remote machine, namely using a name
and password combination. For this, we need to create a credential, as
follows. In DirectoryListingWithPwd, find the lines that say:

String scheme = uri.getScheme ();

String auth = uri.getAuthority ();

FileSystem fs = files.newFileSystem(scheme , auth , null , null);

and add the following code just above it to specify a credential:

// Retrieve the Credentials API

LOGGER.debug("Getting the credentials interface ...");

Credentials credentials = xenon.credentials ();

// Create a password credential

LOGGER.debug("Creating a password credential ...");

String theScheme = "ssh";

String theUsername = "xenon";

char[] thePassword = "javagat".toCharArray ();

Credential credential = credentials.newPasswordCredential(theScheme ,

theUsername , thePassword , null);

Make a new run/debug configuration. For Program arguments, use ssh://

xenon@localhost:2222/home/xenon.

Now try to run the new file DirectoryListingWithPwd (don’t forget to re-run
./gradlew if you’re testing at the command line). If all goes well, you should
see the directory contents of xenon’s home directory in the Docker container
named tremendous-torque.

Containers can be stopped by:

docker stop <identifier>

Where <identifier> can be a container’s NAME, such as tremendous-torque,
or its CONTAINER ID, such as 902ab7ee1143, for example:

docker stop tremendous -torque

Removing Docker containers from your system works in a similar manner:

# remove Docker container by NAME

docker rm tremendous -torque

# remove Docker container by CONTAINER_ID

docker rm 902 ab7ee1143
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2.18 Xenon’s Torque adaptor

Torquea is a so-called resource manager . There are quite a few resource man-
agers, but the most important ones are Torque and SLURMb . Strictly speak-
ing, Torque is just one member a closely related group of resource managers,
including for example PBS, OpenPBSc,d, Sun Grid Engine (SGE), Oracle Grid
Enginee f, Open Grid Engineg, and Torque itself.

A resource manager is a program that typically runs on remote systems such
as clusters, clouds, or supercomputers. As the name implies, the resource
manager’s job is to manage how the remote system’s resources are allocated to
the users. In doing so, it takes into account what type of resources are available,
and what type of resources are needed in terms of processing power, number
of cores, network speeds, etc. The resource manager works together with a
scheduler to determine when the required resources will be made available to
the user. Note that schedulers can prioritize certain users’ jobs, for example if
these users have paid more than others to make use of the system.

To make a job’s requirements known to Torque, a user typically writes a plain
text file (a jobscript) laying out the required walltime, number of cores, number
of nodes, and so on. Perhaps most importantly, the jobscript also defines the
name of an executable, i.e. the work that the user wants done. The jobscript is
then submitted to the resource manager, who together with the scheduler finds
a time slot during which the required resources are available simultaneously.

ahttp://www.adaptivecomputing.com/products/open-source/torque/
bhttp://slurm.schedmd.com/
chttp://www.pbsgridworks.com/Default.aspx
dhttp://www.mcs.anl.gov/research/projects/openpbs/
ehttp://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html
fhttp://www.univa.com/oracle.php
ghttp://gridscheduler.sourceforge.net/
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2.18.1 Submitting jobs to Torque

Here is an example of a very simple jobscript:

1 #PBS -l nodes =1: ppn=1

2 #PBS -l walltime =00:10:00

3 #PBS -o stdout.txt

4 #PBS -e stderr.txt

5
6 # print the start time

7 echo `date `: starting the job

8
9 # the actual work I want done:

10 /bin/sleep 30

11
12 # print the end time

13 echo `date `: job completed

At the top of the script, there are a few lines that start with # PBS. Those
lines define options to the resource manager. Note that these are options to
Torque—the #PBS part is just part of Torque’s inheritance from its parent PBS.

With the options used here, I ask the resource manager for one machine
(-l nodes=1), on which I will run 1 process (ppn=1), which I estimate will
take less than 10 minutes (-l walltime=00:10:00). I further ask Torque to
print any standard output message to a file stdout.txt (-o stdout.txt),
and any standard error messages to a file stderr.txt (-o stderr.txt). Note
that there are many more PBS options, the ones I’m using here are just a few
of the more common ones. In line 10 of the jobscript, I’m simulating doing
some useful work by sleeping for 30 seconds.

The normal workflow for executing a job is as follows:

1. ssh to the remote system;

2. copy the required program to the remote machine or copy its source code
and compile on the remote machine;

3. open a command line editor like nano or vi and write a jobscript;

4. submit the jobscript to the resource manager;

5. wait for the job to start;

6. wait for the walltime to pass while repeatedly asking the resource man-
ager about the status of the job (polling) in hopes of it finishing sooner;

7. copy the results back to your own system for further analysis.
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Let’s see if we can follow these steps and submit the job to the Torque resource
manager inside tremendous-torque.

Check that tremendous-torque is still up and running and ssh into it. The
container has just 1 command line editor program, called vi. Start it with
vi. Write the jobscript (you may need to refer to the vi cheatsheeta). Save
the jobscript as jobscript by first getting into ‘command mode’ by pressing
Esc, then typing :w and pressing Enter. Pressing i while in command mode
will get you back to normal mode (‘insert mode’). When you’re done, get into
command mode again and type :q to quit the program.

After verifying that you now have a new file jobscript in xenon’s home di-
rectory, submit the jobscript to Torque as follows:

qsub jobscript

If all goes well, qsub should reply with the name of the job that was just
submitted to the queue (most likely something like 0.localhost).

Since you’re the only user on this virtual remote system, the job will start
almost immediately. You can ask the resource manager about the status of
your jobs by:

# qstat -u <username>

qstat -u xenon

which will give you an overview of user xenon’s jobs.

At some point, the job’s status will be listed as C for ‘completed’. You should
then also have two new files, stderr.txt and stdout.txt. The latter should
contain the start and end times of your job, as written by the jobscript’s echo
statements.

2.18.2 Submitting jobs to Torque with Xenon

The example SubmitSimpleBatchJob from package nl.esciencecenter.xenon.
examples.jobs does more or less the same as what you just did manually (al-
though it still requires a few small changes to make it work).

Open SubmitSimpleBatchJob in Eclipse. As you can see, the beginning and

ahttp://www.lagmonster.org/docs/vi.html
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the end are much the same as we had for DirectoryListing, but the middle is
a bit different. In particular, we now retrieve the Jobs interface instead of the
Files interface, and we do some stuff with it. The middle part also includes a
JobDescription, that defines what useful work we want done (although here,
we are using the not-so-useful sleep again to simulate doing useful work).

We then submit the JobDescription to the scheduler using jobs.submitJob(),
and then wait until it’s either done, or until the job times out. Here, jobs.
waitUntilDone() takes care of the polling for us. After waitUntilDone re-
turns, we check its status to see if the job was successful or timed out.

For the SSH adaptor, we used ssh://xenon@localhost:2222/home/xenon

to list the directory contents of xenon’s home (see p. 27). For submitting
jobs, we simply replace the scheme value ssh by torque, and remove the now
obsolete path value (/home/xenon), so the Program arguments in our run/debug
configuration should now become torque://xenon@lisa.surfsara.nl:2222.

However, if you try to run the program as is, you’ll get the error below:

time : 16:54:56.932 (+837 ms)

thread : main

level : ERROR

class : nl.esciencecenter.xenon.examples.jobs.SubmitSimpleBatchJob :97

message: SubmitSimpleBatchJob example failed: ssh adaptor: Auth cancel

This is because you still need to gain access to the Docker container named
tremendous-torque. While you could set up passwordless login again, let’s
try something different for a change: Xenon Credentials.

Make a copy of SubmitSimpleBatchJob and call it SubmitSimpleBatchJobWithPwd
or something. Adapt the script to let it use Credentials like you did before
(see page 27). You should now be able to run SubmitSimpleBatchJobWithPwd

and have it return something like:

time : 17:00:16.571 (+310 ms)

thread : main

level : INFO

class : nl.esciencecenter.xenon.examples.jobs.SubmitSimpleBatchJobWithPwd :53

message: Starting the SubmitSimpleBatchJobWithPwd example.

time : 17:00:48.479 (+32218 ms)

thread : main

level : INFO

class : nl.esciencecenter.xenon.examples.jobs.SubmitSimpleBatchJobWithPwd :103

message: Job ran succesfully!

time : 17:00:48.485 (+32224 ms)

thread : main

level : INFO

class : nl.esciencecenter.xenon.examples.jobs.SubmitSimpleBatchJobWithPwd :112

message: SubmitSimpleBatchJobWithPwd completed.
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This concludes the tutorial. For further exploration, the JavaDoc is an ex-
cellent starting point. You can find it online at http://nlesc.github.io/

Xenon/versions/1.1.0/javadoc/. You can also generate a local copy by
running:

# (in Xenon -examples)

./ gradlew javadoc

After this, open your browser and navigate to the local file build/doc/javadoc/
index.html to inspect the JavaDoc.
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