
CONCEPTUAL DESIGN AND IMPLEMENTATION OF A PROTOTYPE
SEARCH APPLICATION USING THE OPEN WEB SEARCH INDEX

A. Nussbaumer1 , R. Kaushik1,2 , G. Hendriksen3 , S. Gürtl1 , C. Gütl1
1Graz University of Technology, Graz, Austria

2University of Waterloo, Ontario, Canada
3Radboud University, Nijmegen, Netherlands

Abstract

The development of special-purpose search engines re-
quires a crawling and indexing infrastructure, which needs
technological knowledge and resources. This paper presents
a concept and implementation of a prototype search applica-
tion that enables creating own search applications using the
OpenWebSearch.eu index. The concept consists of the inte-
gration of an index partition exported from the Open Web
Index and a search service that builds on Apache Lucene
and offers a REST API, which makes the index searchable.
A prototype implementation has been created that applies
the conceptual design and provides two demonstration ap-
plications. Concept and implementation should enable and
encourage developers to create their own special-purpose
search application.

INTRODUCTION

In contrast to general-purpose search engines like Google,
vertical search engines enable focused search in specific do-
mains and allow domain-specific search operations. Current
popular vertical search solutions are mostly commercially
focused or integrated into enterprises’ business models, such
as Amazon’s product search, LinkedIn’s people search, or
Booking.com’s hotel search.

Search engines are composed of basic components and
processes, such as gathering web documents, indexing, meta-
data extraction, searching and ranking, and a user interface
[1]. Also vertical search engines need a search index, which
requires a lot of technological resources if newly created
even for a fraction of the global web content. The OpenWeb-
Search.eu (OWS) project aims to provide unbiased, demo-
cratic, and free search across the internet through its open
access to its Open Web Index (OWI). In particular, it allows
downloading a portion or partition of the index, which can
be used to create a search application [2].

This paper presents a conceptual design of a vertical
search engine in the context of the OWS project and its
integration with the OWI. Furthermore, it describes the im-
plementation of a prototype search application based on this
concept, as well as two demonstration applications. Thus
this paper seeks to demonstrate and provide a technological
basis how a search application can be developed based on
the OWS infrastructure and the OWI.

CONCEPTUAL DESIGN
The overall concept of an OWS vertical search engine

consists of two parts, the OWI and the search application
(see Figure 1). The term search application is used for the
stand-alone search component with imported index partition.

The OWI contains a vast corpus of websites collected
from the World Wide Web, which is maintained in data cen-
tres distributed throughout Europe. It allows downloading
partitions of the index that can be incorporated by search
applications. An index partition is structured as Common In-
dex File Format (CIFF) [3] and the corresponding metadata
is shipped as Apache Parquet1 file format.

CIFF aims to enable sharing and utilization of inverted
indices across different search systems. It provides a stan-
dardized format for representing index data, allowing multi-
ple search engines to access and utilize the same index files.
This format is quite useful in academia for searching indices
from various information retrieval systems and comparing
their performance. However in an industrial setting, it can-
not directly be used by most search libraries due to their
own internal index formats. Therefore, in order to utilize
the CIFF index, third party developers must convert it to the
internal index format of the search library that they use. To
resolve this issue, the CIFF-Lucene converter2 developed by
Radboud University can be used to generate an index that
can be used by Apache Lucene3. Lucene has been chosen,
since it is used as a search engine library by commonly used
search engine systems, such as Elasticsearch and Apache
Solr.

In addition to index data, the Open Web Index also pro-
vides metadata of web pages in Parquet format. When cre-
ating the OpenWebSearch.eu index, the original content of
the websites goes through common pre-processing steps.
However, snippets of original website data in conjunction
with their links make for richer results in search applications.
In order to preserve this original page, full text is stored in
the metadata. Furthermore, the original metadata of the web
pages and data stemming from the page analysis data are
stored. In the future, further information, such as the lan-
guage, the topics of the content, and geographic information
(coordinates) are extracted from the pages and added to the
metadata. These metadata are exported along with the in-
dex data in the Parquet format, which is a columnar storage
file format widely used in big data processing and analytics
1 https://parquet.apache.org/
2 https://github.com/informagi/lucene-ciff
3 https://lucene.apache.org/

https://doi.org/10.5281/zenodo.10636166 

https://orcid.org/0000-0002-4692-5741
https://orcid.org/0009-0009-2333-9617
https://orcid.org/0000-0003-0945-3148
https://orcid.org/0009-0006-9008-7147
https://orcid.org/0000-0001-9589-1966


Search ApplicationOpen Web Search
Infrastructure

Web
Application

Search
Service

access

accessLucene
Index

Metadata
convert

PARQUET

convert
CIFF

export
index

partitionOpen
Web
Index

Lucene

REST API

search
query

Figure 1: Conceptual design of a vertical search engine.

frameworks such as Apache Hadoop and Apache Spark. It
is designed to optimize I/O performance for large-scale data
processing. The columnar data storage has several benefits
including columnar compression, schema evolution without
dataset rewrites and efficient queries by reading columns.

The core of the search service is the search application
that coordinates the search and retrieval process. It provides
a REST API that accepts search queries and returns search
results. In order to perform the actual search, it makes use
of Lucene that accesses the partitioned index converted to
the native Lucene format. Using the metadata information,
the preliminary search result can be limited and ranked, as
well as enriched with full-text snippets. The web application
provides the user interface (front-end) where search queries
are created and results are displayed. This can be done in
classic style with a text field and link list, but also other
forms are possible.

PROTOTYPE SEARCH APPLICATION
Based on the conceptual design of the OpenWebSearch.eu

project, we created a prototype search application4 that can
be used as a reference as well as the prototype can be ex-
tended by future search applications. This application in-
cludes a REST API that is intended for direct use by devel-
opers who wish to create search applications using the Open
Web Index. A key aspect of the REST API resides in its
capacity to operate across multiple indices rather than being
limited to a single index. The application requires developers
to place one or multiple CIFF files into the ciff folder and
their corresponding Parquet files into the parquet folder.

To be able to use an index defined by a CIFF file in the
prototype search application, it has to be converted by the
CIFF-Lucene converter to a Lucene index beforehand. The
application provides a script (convert_index.sh) that con-
verts the CIFF file into an Apache Lucene index and stores

4 https://opencode.it4i.eu/openwebsearcheu-public/prototype-search-
application

it in a folder named the same as the CIFF index. This also
allows developers to use the converted Lucene index among
other search libraries of their choice, such as Elasticsearch,
Solr and Cassandra.

The compressed Parquet file corresponding to the index
is accessed at runtime and read programmatically using the
Java library parquet-mr5. The Parquet file is queried by
the application through column pruning, enabling efficient
large scale data retrieval. This allows rich metadata to be
returned by the REST API along with the index search re-
sults. Additionally, metadata is used for ranking and filtering
algorithms.

The search application is written in Java, and built using
Apache Maven. The developer simply needs to run the build
(build.sh) script and then the start script (start.sh).
By default the service listens to localhost:8000 and
Cross Origin Resource Sharing (CORS) is allowed from
localhost:80. By this action, any front-end application
hosted on the latter can access and send requests to the ser-
vice. The CORS and hosting ports can be changed from
these defaults as required.

At the application start, all indices in the lucene folder
and their corresponding Parquet files in the parquet folder
are loaded for later search request handling. The prototype
search application provides a REST API with a single
endpoint named search and multiple query parameters
(see Table 1). Developers can use this endpoint to send
an HTTP GET request with at least the parameter q that
specifies the search query. While q is a required parameter,
the remaining ones are optional. For each search request,
a particular Lucene index can be defined by setting the
parameter index to the desired value (i.e., the name of the
desired Lucene index). Further, a filtering mechanism is
realized by the parameter lang that restricts search results
to a specified language. An additional parameter ranking
is employed to determine whether the results should be

5 https://github.com/apache/parquet-mr

https://doi.org/10.5281/zenodo.10636166 



Table 1: URL query parameters

Parameter Necessity Description
q Required Search term(s) to be

searched for in the Lucene
index.

index Optional Specifies the Lucene index
to be searched in. The
passed value must match the
folder name of the Lucene in-
dex. If no index is specified,
the default index passed as
argument at the application
start is used.

lang Optional Restricts the search result to
only consider pages in the
specified language (e.g., en).
If no language is specified,
the search results are lan-
guage in dependent.

ranking Optional Specifies the order of the
search result based on the
number of words a page has.
Can be either asc or desc.
If no ranking is specified,
the order of the search result
yielded by Lucene’s similar-
ity search is used.

limit Optional Sets the maximum number
of results to be returned. If
no limit is specified, a max-
imum of 20 results are re-
turned by default.

organized in ascending or descending order based on the
word count within an individual web page. The filtering and
ranking of results made possible by these query parameters
demonstrates the handling of index partitions and the
associated metadata. A representative URL format for a
GET request may resemble the following:

http://localhost:8000/search?q=tower&index=
websites-graz&lang=en&ranking=asc&limit=10

With this request to the REST API, the term tower
is searched in the index websites-graz and only web
pages with English language in ascending order in terms of
word count of the page limited to a maximum of 10 results
are returned.

The search service sends the results back in the form of
JSON data as an array of objects. Each object comprises the
url, the title, a textSnippet consisting of the longest
sequence within the text without a line break, the language,

Table 2: Fields of the search result

Key Description
id the id of the result item or web page
url the URL of the result item or web

page
title the title of the result item or web page
textSnippet a piece of text in context of the search

term
language the languge of the result item or web

page
warcDate the date of the WARC file where the

page is found, which is crawling date
wordCount the number of words of the result item

or web page

the warcDate and the wordCount of the respective web
page. An overview of the object fields is given in Table 2.

DEMONSTRATION
The Prototype Search Application can be used to make any

search application on the internet. To demonstrate this, we
created two web applications (front-ends) that demonstrate
the search applications and its REST API. These front-ends
are part of the Prototype applications.

Basic search
The basic search application demonstrates the features and

API of the prototype search service. A specific index (CIFF
and Parquet file) has been used that contains sightseeing
information of Graz, Austria. Furthermore, a demonstration
index has been included. This application demonstrates that
prototype service can handle multiple indices, as well as the
features of the REST API.

The web interface (see Figure 2) consists of a field for
entering a search term, as well as radio boxes for selecting the
index, the language, and the ranking method. The selected
information is translated to a REST call using the API of
the service. The result as specified in Table 2 is displayed
below in commonly used form.

Sightseeing Search
This application uses the Graz sightseeing index that con-

sists of popular attractions in Graz. It consists of a CIFF
and Parquet file that were converted and imported to the
search service. The application demonstrates that search
applications with a different kind of user interface can be
created easily using the concept described in this paper.

The front-end (Figure 3) consists of a graphical map on
which predefined attractions are placed. By clicking on an
attraction a popup displays the name and a description of the
respective item. In addition, a search request is performed
using the title as the search term. The search result is dis-
played below the graphical map. Hence, each time a user

https://doi.org/10.5281/zenodo.10636166 



Figure 2: Demonstration Search Application

clicks on an item on the map, a search is automatically per-
formed and the result is displayed. This allows the user to
get more information on demand.

CONCLUSION
This paper presents a concept and implementation of a

search application in the context of the OpenWebSearch.eu
project. The design is deliberately kept simple, as it serves as
a blueprint for other search applications and vertical search
engines. A key aim of this paper is to provide a link between
index partitions created by OpenWebSearch.eu and search
applications for one’s own purposes. In the near future it
will be possible to download an index partition restricted
to certain characteristics, such as the topic, region, or time
frame.

The prototype search application should encourage the
development of various search applications using the Open-
WebSearch.eu technology and index data. The source code
is available in a public GitLab repository under an open
software licence and includes enough documentation so that
the technology can be taken up and used for new search ap-
plications. The prototype can be used in two ways. First, the
service can be used out of the box and a new front-end can
be added. Second, the service can be altered and updated to
add specific search features.

Future work will include the handling of multiple and
large index files. While the search is currently only possible
in a single index that has to be specified, in the future a
combined search over multiple indices should be enabled.

Figure 3: Graz Sightseeing Search Application

Current demonstration indices are rather small, which re-
quires tests and efficiency checks over large indices. More
requirements will be collected when it is taken up by others
for new types of search applications.

ACKNOWLEDGEMENTS
This work has received funding from the European

Union’s Horizon Europe research and innovation programme
under grant agreement No 101070014 (OpenWebSearch.EU,
https://doi.org/10.3030/101070014).

REFERENCES
[1] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information

Retreival. Addison Wesley, 1999.
[2] M. Granitzer et al., “Impact and development of an open web

index for open web search,” Journal of the Association for
Information Science and Technology, in press. 10.1002/asi.
24818

[3] J. Lin et al., “Supporting interoperability between open-source
search engines with the common index file format,” in Pro-
ceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2020,
pp. 2149–2152. 10.1145/3397271.3401404

https://doi.org/10.5281/zenodo.10636166 

https://doi.org/10.1002/asi.24818
https://doi.org/10.1002/asi.24818
https://doi.org/10.1145/3397271.3401404

	Introduction
	Conceptual Design
	Prototype Search Application
	Demonstration
	Basic search
	Sightseeing Search

	CONCLUSION
	ACKNOWLEDGEMENTS



