
The Alliance of HE and TEE to Enhance their
Performance and Security

Salvatore D’Antonio
Trust Up srl
Naples, IT

Email: salvatore.dantonio@trustup.it

Giannis Lazarou
EXUS Software LTD,

London, UK
Email: g.lazarou@exus.co.uk

Giovanni Mazzeo
Trust Up srl
Naples, IT

Email: giovanni.mazzeo@trustup.it

Oana Stan
Universite Paris-Saclay, CEA, List,

Palaiseau, FR
Email: oana.stan@cea.fr

Martin Zuber
Universite Paris-Saclay, CEA, List,

Palaiseau, FR
Email: martin.zuber@cea.fr

Ioannis Tsavdaridis
Cooperative Bank of Epirus L.L.C.,

Ioannina, GR
Email: itsavdaridis@epirusbank.gr

Abstract—While protection of data at-rest and data in-transit
can be achieved using standard algorithms and technologies, the
protection of data in-use is still, to a large extent, an open
issue. Homomorphic Encryption (HE) and Trusted Execution
Environment (TEE) are among the most popular approaches to
shield computations. The former ensures high security guarantees
but it suffers from a significant overhead. The latter, instead,
provides lower execution time but it is affected by security
drawbacks. In this paper, we propose SOTERIA, a privacy-
preserving computation solution that combines HE and TEE to
mitigate their limitations. The approach foresees the execution of
sensitive processing with homomorphic encryption and the usage
of a TEE to perform switches between different homomorphic
cryptosystems. In fact, there are different kinds of computation
algorithms where the co-existence of linear and non-linear
functions makes the HE-based processing even more onerous.
SOTERIA is developed in the context of the ENCRYPT project
and will be validated in a use case of financial data processing.

I. INTRODUCTION

In the last decade, the field of privacy-preserving computing
techniques has gained momentum among the research and
industrial communities. In fact, the protection of data-in-use
is of paramount importance to ensure information security
in the most vulnerable phase, i.e., during its computation in
a non-trusted environment. In such a vulnerability window,
malicious actors could gain access to system memory and
thus to data in clear form. Different techniques are available
to achieve the protection of data-in-use via computation over
encrypted data, the most popular examples being: i) Homo-
morphic Encryption (HE); ii) Secure multi-party computation
(MPC), iii) Functional Encryption (FE). A totally different
approach is offered by Confidential Computing. According
to the Confidential Computing Consortium, the protection
of data in use is made by performing computations in a
hardware-based Trusted Execution Environment (TEE). Each
approach has its own advantages and disadvantages, thus the
adoption of a specific technique highly depends on the use
case requirements.

a) HE: The security model of HE foresees the data
owner encrypts data in a trusted infrastructure and then out-

sources the processing — on ciphered data — in the non-
trusted platform. The security guarantees are strong consider-
ing that data is always encrypted and that keys never leave
trusted premises. A specificity of HE lies in the fact that
different cryptosystems are suited to different kinds of compu-
tations. For instance, BGV [1], BFV [2], [3] or CKKS [4] cryp-
tosystems fit well with linear processing over a large amount of
data points in parallel, while the TFHE [5] encryption scheme
is more suitable for non-linear processing over a single data
point at a time. Switching between both types of cryptosystems
can therefore be crucial for some applications. This has been
well-known for some time and for more information on the
differences between the cryptosystems see for instance [6].
However, HE is notoriously slow. Although recent work [7],
[8], [9] on specific use-cases and using specialised algorithms
has proven that it can be practical, its performance overhead
can be prohibitive. Additionally, while it would be ideal
to be able to switch between cryptosystems to increase the
performance and the range of applications, existing methods
[6] are not yet practical.

b) TEE: In a TEE, protection is achieved by preventing
access to data (as opposed to transforming/dispersing it). TEEs
create secure areas of a computing device where sensitive data
is isolated from the rest of the device software and hardware.
The security model of a TEE, instead, foresees the data owner
pushes data in a trusted — CPU-secured — memory area in
the non-secure environment where it will be protected from
external attacks by means of hardware. The computation is
then performed in the TEE on clear-text.
However, the trust model of a TEE is weaker than that of
HE. The data owner must trust the TEE manufacturer and the
software running in the secure enclave. Moreover, protection
against side-channel attacks - while inherent when performing
computation over homomorphic ciphers - needs to be fine-
tuned to every different computation inside the TEE.

c) HE + TEE: In this paper, we present SOTERIA,
a solution that combines TEE and HE to mitigate their
limitations and draw on their respective strengths. SOTERIA

achieves several properties that would be unattainable without
this marriage of TEE and HE:

• It performs efficient and protected crypto-scheme
switches inside a TEE. We can therefore optimize the
homomorphic processing of algorithms containing both
linear and non-linear functions, which perform better with
different crypto-schemes.

• Because the noise inside ciphertexts is refreshed inside
the TEE, it allows the AI model that we use to have an
arbitrarily large multiplicative depth, with no effect on
parameter size and therefore on performance.

• It relies on HE for most of the computation time, in
this way we reduce the time window in which data
would have been exposed to side-channel attacks if it
was processed inside the TEE.

• It is protected against the threat of a corrupted TEE
through a ”flooding” process that makes it impossible to
distinguish real data from fake data.

• It achieves generic side-channel attack protection
whichever computation is done on the client’s data.

The SOTERIA solution will be validated in the context of
the ENCRYPT project on the financial case study provided by
the Cooperative Bank of Epirus (EPIBANK) and the EXUS
Software LTD company. The former is a government banking
agency that offers personal banking, loans, venture capital, and
online banking services. The latter is a software publisher that
develops solutions for banks and financial institutions, which
supported EPIBANK to set up an AI-driven application to
better manage its debt collection services offered to its clients
and shape its overall strategy. The AI processing includes
linear and non-linear processing on very sensitive clients’ data,
which requires the adoption of a privacy-preserving solution.
The HE alone is not a viable solution since it would impact
the performance too much, while the TEE alone would expose
the data to side-channel attacks for the entire processing
period and rely on an assumption of trust toward the TEE’s
manufacturer. We will demonstrate how SOTERIA helps to
address the previously-mentioned limitations.

d) Paper outline.: The remainder of this work is orga-
nized as follows. Section II overviews background knowledge.
Section III presents the driving case study and the related
requirement elicitation activity. Section IV discusses the threat
model set for this work. Section V presents the design of
the SOTERIA solution, illustrated in Figure 1. Section VI
discusses the related literature. Finally, Section VII concludes
the document.

II. PRELIMINARIES

A. Homomorphic Encryption

In 2009, Gentry [10] made a breakthrough in cryptography
by proposing the first Fully Homomorphic Encryption (FHE)
scheme, allowing to perfom, in theory, any type of compu-
tation over encrypted data. That is, Gentry specified a ho-
momorphic encryption scheme E that computes E(m1 +m2)
and E(m1 ×m2) from encrypted messages E(m1) and E(m2).

Then, many leveled HE and FHE schemes have been pro-
posed in the literature [11], [12], [13], [14], [15], [16]. In
practice, a public key homomorphic encryption scheme HE =
(HE.Keygen, HE.Enc, HE.Dec, HE.Eval) is defined by a set
of probabilistic polynomial-time algorithms with respect to the
security parameter k:

• (pk, evk, sk)← HE.Keygen(1k): outputs an encryption
key pk, a public evaluation key evk and a secret decryp-
tion key sk. The evaluation key is a key that is made
public and is necessary for some computations depending
on the cryptosystem used.

• c← HE.Encpk(m): encrypts a message m into a cipher-
text c using the public key pk.

• m← HE.Decsk(c): decrypts a message c into a plaintext
m using the secret key sk.

• cf ← HE.Evalevk(f, c1, . . . , ck): evaluates the function f
on the encrypted inputs c1, . . . , ck using the evaluation
key evk.

Importantly, the Enc operation introduces a noise e inside
the ciphertext for security purposes. This noise increases every
time the Eval primitive is called on the ciphertext. If the noise
grows to be too big, the underlying plaintext can no longer be
recovered with the secret key.

The BGV/BFV/CKKS levelled schemes are more appropri-
ate to use in the cases where the computation to be evalu-
ated in the homomorphic domain has a small multiplicative
depth (i.e. the maximal number of successive multiplications
applied on a ciphertext) which is known in advance. Moreover,
due to their batching capabilities, they can perform parallel
computation in a SIMD (Single Instruction, Multiple Data)
fashion resulting in an amortized computational time i.e. per
element of encrypted data. On the other hand, thanks to an
operation called bootstrapping, the TFHE approach is more
appropriate to use for the case of a deep (large multiplicative
depth) and unknown at setup phase computation circuit. TFHE
is also very much suited to the case of the computation of a
complex non-linear function (such as a sigmoid) because its
bootstrapping operation implements a Look-Up Table (LUT)
operation.

Nowadays, we can mix and switch between several HE
schemes (e.g. BGV, TFHE, CKKS, etc.) using the recent
theoretical CHIMERA framework [6]. This solution allows
to combine between the ciphertext representations of the three
most popular FHE schemes based on Ring-LWE, using an
unified plaintext space over the Torus. However, this hybrid
framework remains for now mainly of theoretical interest since
the required transformations are easier to perform in one
direction than in the other (e.g. from BGV to TFHE, from
CKKS to TFHE) and, most important, they come with a high
computational overhead.

As for the application of the homomorphic techniques to
the private inference step of neural networks, notable work
includes, in a non-exhaustive way, CryptoNets [17], DiNN
[18], nGraph-HE [19], LOLA [20], TAPAS [21], Faster Cryp-
toNets [22].

B. TEE

A Trusted Execution Environment (TEE) [23] [24] is a
protected environment of execution, in which highly sensi-
tive operations can be executed in isolation from the main
operating system and other applications that are considered
untrusted. The TEE provides a secure area for running trusted
applications, also known as enclaves or secure enclaves. These
applications have their own secure memory space, access to
hardware resources and cryptographic functions, and can be
independently verified and authenticated. One of the most
well-known examples of a TEE is Intel SGX (Software
Guard Extensions) [25]. SGX enclaves provide hardware en-
forced confidentiality and integrity guarantees for running pure
computations. The instructions running inside enclaves are
responsible for the automatic encryption and decryption of
the enclave’s memory contents during the read and write op-
erations. The enclave memory is protected from unauthorized
access from the host including machine administrators with
physical access. The processor contains the enclave encryption
keys which are inaccessible even to components running with
higher hardware privileges including the kernels, OSs, or other
hypervisors. By limiting the application’s Trusted Computing
Base (TCB) to the CPU and CPU-Cache, SGX provides
unprecedented confidentiality and integrity guarantees against
malicious OS kernels and supervisor software. Intel equipped
SGX with a Remote Attestation feature that ensures integrity
verification of enclaves using a secret key fused into the
processor which internally is used to derive other keys. The
derived keys are used to build enclave attestations, creating a
quote with a signature on the whole contents of the enclave
at its creation. An external attestation service confirms that a
given enclave runs a particular piece of code on a genuine
Intel SGX processor, which can then be trusted by other
components.

III. THE FINANCIAL CASE STUDY REQUIREMENTS

The design of the SOTERIA solution has been driven by
the financial case study belonging to the ENCRYPT project.
The Cooperative Bank of Epirus (EPIBANK) is a government
banking agency that offers personal banking, loans, venture
capital, and online banking services. EPIBANK is supported
by the EXUS company — a software house that develops
solutions for banks and financial institutions — to set up an AI-
driven application to better manage its debt collection services
offered to its clients and shape its overall strategy.

A. The need for confidentiality

The functionalities offered by this AI-driven solution in-
clude among others: client stratification, behaviour forecasting
and overall scoring of the bank agents responsible to handle
each client. Since these functionalities are tailored specifically
to the needs of EPIBANK, clients’ historical data (over a
long period of 0.5-1 year) has to be delivered to EXUS, so
that EXUS will be able to develop and train its AI-models.
EPIBANK wants confidentiality guarantees about the actual
identity of the person or any other sensitive data related to

the person that could lead to its actual identification. Simple
pseudo-anonymization techniques are not sufficient consider-
ing that the processing will occur in a non-trusted platform and
that pseudo-anonymization has been proven countless times to
be largely ineffective. At the same time, EPIBANK cannot be
expected to have (and manage) the resources to train its own
AI models.

B. The AI model

We want to be able to address this use-case for the widest
range of possible AI models and therefore not restrict our
approach to a specific one. We only assume two things of the
model and its inference phase:

• there are one or more linear phases during the inference.
This phase consists of a scalar product computation. In
the case of a neural network for instance, this phase
corresponds to the weighted sum of the activation values
at any given layer.

• there are one or more non-linear phases during the
inference. This phase consists of the computation of a
non-linear function over some data. In the case of a neu-
ral network this corresponds to the activation function1

which can be a sigmoid function or a ReLu for instance.

C. A cryptography-only solution

There are a number of cryptographic solutions that can be
designed to solve this specific type of problem. The three main
methods are the following:

• Homomorphic Encryption (HE). As presented in more
detail in Section II-A, HE is a cryptographic method to
allow the evaluation of functions over encrypted data. Its
main drawbacks are (1) the performances and memory
overhead that it incurs; and (2) the fact that some opera-
tions are simply too complex to implement in a practical
manner. Although any function can theoretically be evalu-
ated using HE binary gates, for complex applications such
as the one that interests us here, the performance cost is
prohibitive. However, despite its limitations, as we will
argue here, this solution remains interesting to be applied
for the inference of the AI model. By fine tuning the
underlying homomorphic cryptosystems and optimising
the homomorphic evaluation, the performance costs could
be reduced to acceptable levels. The main idea is to
use the strengths and advantages of each homomorphic
cryptosystem for specific parts of the computation and
switch (in a secure manner with the help of the TEE)
between the different homomorphic schemes. As such,
BFV/BGV or CKKS could be successfully applied to the
linear part of the inference step (by batching the data for
performing the scalar product). Afterwards, for the non-
linear part in which Boolean logic is needed and more
complex operations (e.g. comparison, argmax, etc.) are
to be performed, one can use TFHE and its boostrapping

1See definition and examples here: https://deepai.org/machine-learning-
glossary-and-terms/activation-function

https://deepai.org/machine-learning-glossary-and-terms/activation-function
https://deepai.org/machine-learning-glossary-and-terms/activation-function

method or even more recent optimisation approaches such
as Functional Bootstrapping [26].

• Functional encryption (FE). Although they do not intro-
duce the name itself, [27] formalize the notion for the first
time in 2010. In short, while HE evaluates a function
over encrypted data and provides an encrypted result,
FE’s purpose is to evaluate and decrypt over encrypted
data. This means the overall result is obtained in the clear
domain, making it unfit for this specific use-case.

• Multi-Party Computation (MPC). In general, MPC was
designed to implement privacy-preserving applications
where multiple, mutually distrusting parties cooperate
to compute a function over data distributed across par-
ticipants. Since the inception of MPC as a theoretical
concept, the cryptographic community has developed a
vast number of efficient applications, through the means
of both generic (allowing for any kind of computation)
and specialized (designed specifically for a given set
of computations) protocols. All of the MPC techniques
have in common a reliance on an online communication
phase between the two (or more) parties involved as the
computation is going on. In our case, we want to allow
for a single request from the financial institution and no
further communication and therefore rule this method out.

D. A TEE-only solution

One possible solution for our use-case is for the AI service
provider to host a TEE as described in Section II-B. The
financial institution can send its data over to the TEE using
classical public key cryptography. The TEE decrypts the data
and computes over the machine learning model that the AI
service provider provided. Then the result is encrypted using
the public key from financial institution and sent back. If
the machine learning evaluation does not require too much
memory usage, this can be a viable stand-alone solution.
However it suffers from two main flaws. Because the hardware
is proprietary, one flaw is the trust that one needs to have
that the manufacturer did not, in fact, introduce a back-door
in their product. The second flaw is that, contrary to HE,
side-channel attacks are very much possible over the TEE.
Therefore one would need to protect against such attacks and
adapt the countermeasures every time the AI model to compute
changes. This requires constant care and a good amount of
security know-how.

E. The need for a TEE-HE hybrid solution

Of all the cryptographic methods presented above, HE is
the one that received the most development [28]. In terms of
security, HE can meet requirements of the mentioned use-case.
However, the cost to pay in terms of performance is high and it
needs optimization techniques to become practical. Besides the
performance penalty, there are two additional relevant aspects
impairing wide acceptance of this cryptographic technique
by the industrial community, i.e., the Cipher Text Expansion
(CTE)[29] and the Unverifiable Conditionals (UC) [30]. The
combined use of HE with TEE can mitigate these issues.

The TEE, in fact, plays the role of a trusted area where
verify conditionals and perform the HE ciphering/deciphering
without the need of doing everything in the data owner
premises. At the same time, while a TEE-only solution can
be practical from the performance perspective, it has security
drawbacks as well:

• One drawback is that a TEE is subject to side-channel
attacks (e.g. [31], [32]). These are attacks that infer some
things on the cryptographic keys or the data handled by
the TEE from power consumption or processing time
for instance (other methods using sound for instance
exist as well). These attacks can be countered but they
require specific designs for every computation that is run.
Therefore, whenever the machine learning model from
the AI service provider changes (which is quite often in
these cases), the TEE needs to be protected against side-
channel attacks by a computer security expert.

• The second drawback is that we need to trust the TEE
completely with all of the data, both from the financial
institution and the machine learning model of the AI
service provider. This is - one could say - the point
of a Trusted Execution Environment. Still, we would
like to explore ways to protect against a TEE that does
not completely function as intended. We aim to provide,
on top of the trust that we give the entity that creates
the TEE (a private company which may have ulterior
motives), some added measure of trust linked to secure
cryptographic standards.

For this reason, we want to provide a solution using a
hybrid model (HE + TEE) that draws on the strengths of both
technologies to provide a practical and secure solution to the
use-case.

IV. THREAT MODEL

a) Threats from inside the AI service provider server.:
The objective of this work is to provide protection of data-
in-use against attackers having high privileges. A privileged
attacker is an entity (human or not) which is able to control the
hardware/software infrastructure used to run the applications
on the hosting platform (e.g., the Cloud). This typically
includes: server nodes, host OS, virtualization frameworks, and
general purpose system software. The most dangerous profile
of privileged attacker is the malicious insider. This category
includes system administrators of the cloud provider, who have
a privileged role in the infrastructure. In addition to malicious
insiders, it is also important to note that multi-tenancy opens
the door to a potentially large number of privileged attackers,
represented by users with (originally) normal privileges. As
an example, a tenant with a legitimate user account (with
normal privileges) might maliciously exploit a vulnerability in
the VM/container software, access the –typically shared– host
OS, and escalate to rootly powers. Regardless of how super
powers were gained, privileged attackers have full control of
the entire cloud stack, and can thus use many potential vectors
to exploit systems’ weaknesses and steal or alter sensitive data
(and/or code) while it is in-use.

b) Threats from the TEE.: In an approach in which the
data is sent encrypted to the TEE for decryption and this
one continues the computation over clear data, the TEE is
considered by default a trusted entity. However, this is not the
assumption we made for our present work and we include the
TEE in our threat analysis. As a reminder, there are several
levels of trust that one can give an actor in any cryptographic
protocol.

• Honest and Blind. An entity can be trusted to be com-
pletely honest to the point where they do not look at data
that is given to them in clear form.

• Honest but Curious. An entity can be honest in the sense
that it performs all operations as the protocol dictates.
However it will try to extract any information it can from
what it is shown.

• Rational. A rational adversary can stray from the es-
tablished protocol but will only do so if that gives it
additional information and it has a high probability of
not being caught.

• Malicious. A malicious adversary can do anything to
prevent the execution of the protocol and extract as much
information as possible.

The SOTERIA architecture offers protection in the case of
an honest-but-curious TEE, one which does not stray from
the protocol but feeds back some of what it sees to an actor
(e.g. the manufacturer) trying to glean information either on
the AI service provider model or on the data from financial
institution.

c) Threats from side-channel adversaries.: The use of
our hybrid TEE-HE approach permits us to use counter-
measures to side-channel attacks on the implementation of
the encryption and decryption cryptographic functions imple-
mented on the TEE. Since those are the only operations that
happen on the TEE, there is no need to apply specific counter-
measures every time the AI model changes.

V. THE SOTERIA DESIGN

a) The overall design: Figure 1 shows the SOTERIA’s
architectural design. At the initialization phase, the data must
be sent to the TEE and in particular to the so-called Controller
unit, whose responsibility is to manage the processing flow.
In order to perform a secure data uploading phase, the user
establishes with the Controller a TEE-terminated TLS secure
channel extended with remote attestation features, which al-
lows to prove that the communication is actually occurring
with a secure enclave. In case no HE keys were available for
the particular user, the Controller generates new HE keys and
stores them using the TEE sealed hardware key so that their
access can happen from inside the authorized TEE only. Not
even the user knows the HE keys. The data is encrypted with
the HE scheme that must be used for the first execution phase
(either BGV/BFV for a linear phase or TFHE for a non-linear
phase), and the processing finally started. During the compu-
tation, the Linear/Non-Linear Processor performs its job and
notifies to the Controller once done. For the computation, the
linear processor uses a BGV or BFV cryptosystem in order to

take advantage of their SIMD capability. On the other hand,
the non-linear computation makes use of the TFHE scheme
and its boostrapping technique for a fast evaluation.
Importantly, the Controller takes note of the end of the
computation of the processor and then receives two sets of
ciphertexts from it:

• The actual ciphertext results of the computations but
given in a random order chosen by the processor.

• Random ciphertexts generated by the processor and sprin-
kled among the good cipheretxts.

This is what we call the ”flooding” operation. The TEE then
switches the crypto-scheme (by decryption and re-encryption),
and sends the data back out to the processor so that the
subsequent execution phase can start. Such a flow is then
iterated continuously until the final result is obtained.

b) Protection against side-channel attacks: It is impor-
tant to notice that in this solution the TEE works in a one-shot
fashion. It is started on-demand to only execute cryptographic
operations. By doing so, we reduce the time window in which
data would have been exposed to side-channel attacks if it
was processed inside the TEE. On top of this, the operations
executed inside the TEE will always be the same, whatever
AI model is used by the server. Therefore we can protect
the encryption/decryption operations of the HE cryptosystems
from side-channel attacks using standard methods once, and
never have to adapt those protections even when the model
changes.

c) Protection against the TEE: The use of flooding
(randomized order and dummy ciphertexts sent to the TEE
for decryption) ensures that even an adversary that would have
access to the TEE data (say through a backdoor introduced by
the manufacturer) cannot actually glean user information or
information about the model used by the server. If enough fake
data is sent for decryption and re-encryption, we can ensure
protection against a TEE backdoor at a low performance cost
given that encryption and decryption are fast operations in
lattice-based cryptography (the schemes we consider for this
article are all lattice-based).

d) Optimized HE computation: We can optimize the
homomorphic processing of algorithms containing both linear
and non-linear functions, which perform better with different
crypto-schemes. This would be either impossible or much
costlier in terms of performance without the use of a TEE.
On top of this, the multiplicative depth of the AI algorithm
that we use can now be arbitrarily large, without affecting the
size of the parameters.

VI. RELATED WORK

In the literature, there are already research works which
explore the combined use of HE and TEE. Sadat et al. [33]
proposed a hybrid solution based on the Intel SGX technology
and Partial HE (PHE) to preserve the privacy of genomic
statistical analysis. The core idea consists in doing a subset
of computations outside of the PHE flow, in the TEE, to
gain in terms of performance. Wang et al. [34] described the
adoption of SGX and HE with the main purpose of improving

627(5,$

8VHU

7((

%*9
(QFU\SWLRQ

%*9
'HFU\SWLRQ

7)+(
(QFU\SWLRQ

7)+(
'HFU\SWLRQ

%*9
�VN�SN�
7)+(
�VN�SN�

/LQHDU
3URFHVVRU

1RQ�/LQHDU
3URFHVVRU

&RQWUROOHU
6HQG�GDWD�RYHU�$WWHVWHG�7/6

5HWXUQ
UHVXOW

.LFN�RII�SURFHVVLQJ
RQ�+(�GDWD

Fig. 1. The SOTERIA architecture

the performance of HE bootstrapping procedures via cloud
computing resources. The user leverages HE on-premises
and only requires the execution of the heavy bootstrapping
procedure to the cloud. SGX is used to protect such execution
since data would reside unencrypted in memory for a short
time window.
Drucker et al. [35] implemented a voting system using the
TEE of SGX and a partial HE scheme. The model uses a TEE
(i.e., Intel SGX) to secure the code and data integrity, and the
PHE scheme for encrypting the data. The goal is to protect
against attackers trying to exploit the malleability of PHE by
preserving the integrity with the TEE. At the same time, the
PHE guarantees the data confidentiality independently of the
trustworthiness of the TEE.
Coppolino et al. [36] proposed the concept of a VIrtual Secure
Enclave (VISE), an approach that combines HE and TEE to
overcome their limitations in a typical field-cloud deployment.
In particular, with the proposed approach, the authors aimed at
bypassing HE issues — specifically: the ciphertext expansion
and unverifiable conditionals — and the limited memory size
affecting the Intel SGX technology.
To the best of our knowledge, our solution is the first
one proposing a TEE-protected switching mechanism of HE
schemes, which ensures better performance and reduces the
exposure of processing to possible side-channel attacks.

VII. CONCLUSION

In this paper, we presented SOTERIA, an architecture
allowing to combine homomorphic encryption with the TEE
in order to provide a secure and more efficient data processing.
This privacy-preserving solution can be successfully applied
for the inference step of AI models and, in particular, for
the financial use case of the ENCRYPT project. The data
processing will be performed in homomorphic domain and
divided into a linear phase and a non-linear one. The main idea
of our hybrid design makes use an honest-but-curious TEE as a
way of ameliorating the performances of this HE computation
by performing, between the linear and non-linear processing,

the switch between different homomorphic schemes inside the
TEE.

This is a conceptual design. We plan to implement and
evaluate the performance of our secure TEE-HE solution for
the evaluation of the AI model of the financial use case
of ENCRYPT project, using WASI (WebAssembly System
Interface). Another perspective is to extend the proposed
framework with a remote attestation of the SGX enclave,
similarly to the VISE approach [36]. Finally, we plan to
investigate other manners of enhancing the security and the
performances of privacy-preserving computation by mixing
homomorphic encryption with TEE.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon Europe Research and Innovation Programme
under Grant Agreement No. 101070670 (ENCRYPT - A
Scalable and Practical Privacy-preserving Framework).

REFERENCES

[1] Z. Brakerski, C. Gentry, V. Vaikuntanathan, Fully homomorphic encryp-
tion without bootstrapping 27.

[2] Z. Brakerski, Fully homomorphic encryption without modulus switching
from classical GapSVP, in: R. Safavi-Naini, R. Canetti (Eds.), Advances
in Cryptology – CRYPTO 2012, Vol. 7417, Springer Berlin Heidelberg,
pp. 868–886, series Title: Lecture Notes in Computer Science. doi:
10.1007/978-3-642-32009-5_50.
URL http://link.springer.com/10.1007/978-3-642-32009-5 50

[3] J. Fan, F. Vercauteren, Somewhat practical fully homomorphic encryp-
tion 19.

[4] J. H. Cheon, A. Kim, M. Kim, Y. Song, Homomorphic encryption for
arithmetic of approximate numbers, in: T. Takagi, T. Peyrin (Eds.),
Advances in Cryptology – ASIACRYPT 2017, Springer International
Publishing, pp. 409–437.

[5] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène, Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds, in:
J. H. Cheon, T. Takagi (Eds.), Advances in Cryptology – ASIACRYPT
2016, Springer Berlin Heidelberg, Berlin, Heidelberg, 2016, pp. 3–33.

[6] C. Boura, N. Gama, M. Georgieva, D. Jetchev, Chimera: Combining
ring-lwe-based fully homomorphic encryption schemes, Cryptology
ePrint Archive, Report 2018/758, https://eprint.iacr.org/2018/758 (2018).

[7] O. Chakraborty, M. Zuber, Efficient and accurate homomorphic compar-
isons, in: Proceedings of the 10th Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, WAHC’22, Association for Com-
puting Machinery, pp. 35–46. doi:10.1145/3560827.3563375.
URL https://doi.org/10.1145/3560827.3563375

[8] A. Grivet Sébert, R. Pinot, M. Zuber, C. Gouy-Pailler, R. Sirdey, SPEED:
secure, PrivatE, and efficient deep learning 110 (4) 675–694. doi:
10.1007/s10994-021-05970-3.
URL https://doi.org/10.1007/s10994-021-05970-3

[9] D. Maeda, K. Morimura, S. Narisada, K. Fukushima, T. Nishide, Effi-
cient homomorphic evaluation of arbitrary uni/bivariate integer functions
and their applications, report Number: 366.
URL https://eprint.iacr.org/2023/366

[10] C. Gentry, et al., Fully homomorphic encryption using ideal lattices., in:
STOC, Vol. 9, 2009, pp. 169–178.

[11] Z. Brakerski, V. Vaikuntanathan, Fully Homomorphic Encryption from
Ring-LWE and Security for Key Dependent Messages., in: CRYPTO,
Vol. 6841 of Lecture Notes in Computer Science, Springer, 2011, pp.
505–524.

[12] Z. Brakerski, C. Gentry, V. Vaikuntanathan, (Leveled) Fully Homo-
morphic Encryption Without Bootstrapping, in: Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference, ITCS ’12,
2012, pp. 309–325.

[13] J. Fan, F. Vercauteren, Somewhat practical fully homomorphic encryp-
tion., IACR Cryptology ePrint Archive 2012 (2012) 144.

http://link.springer.com/10.1007/978-3-642-32009-5_50
http://link.springer.com/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
http://link.springer.com/10.1007/978-3-642-32009-5_50
https://eprint.iacr.org/2018/758
https://doi.org/10.1145/3560827.3563375
https://doi.org/10.1145/3560827.3563375
https://doi.org/10.1145/3560827.3563375
https://doi.org/10.1145/3560827.3563375
https://doi.org/10.1007/s10994-021-05970-3
https://doi.org/10.1007/s10994-021-05970-3
https://doi.org/10.1007/s10994-021-05970-3
https://doi.org/10.1007/s10994-021-05970-3
https://doi.org/10.1007/s10994-021-05970-3
https://eprint.iacr.org/2023/366
https://eprint.iacr.org/2023/366
https://eprint.iacr.org/2023/366
https://eprint.iacr.org/2023/366

[14] M. Van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan, Fully homomor-
phic encryption over the integers, in: Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Springer,
2010, pp. 24–43.

[15] A. López-Alt, E. Tromer, V. Vaikuntanathan, On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,
in: Proceedings of the forty-fourth annual ACM symposium on Theory
of computing, ACM, 2012, pp. 1219–1234.

[16] I. Chillotti, N. Gama, M. Georgieva, M. Izabachène, Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds, in:
Advances in Cryptology–ASIACRYPT 2016: 22nd International Con-
ference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I 22,
Springer, 2016, pp. 3–33.

[17] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig,
J. Wernsing, Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy, Tech. Rep. MSR-TR-2016-3
(February 2016).
URL https://www.microsoft.com/en-us/research/publication/cryptonets-
applying-neural-networks-to-encrypted-data-with-high-throughput-
and-accuracy/

[18] F. Bourse, M. Minelli, M. Minihold, P. Paillier, Fast homomorphic
evaluation of deep discretized neural networks, in: Proceedings of
CRYPTO 2018, Springer, 2018.

[19] F. Boemer, Y. Lao, C. Wierzynski, ngraph-he: A graph compiler for
deep learning on homomorphically encrypted data, CoRR (2018).

[20] A. Brutzkus, O. Oren Elisha, R. Gilad-Bachrach, Low latency privacy
preserving inference, in: Proceedings of the 36th International Confer-
ence on MachineLearning, Long Beach, California, PMLR 97, 2019.

[21] A. Sanyal, M. Kusner, A. Gascón, V. Kanade, Tapas: Tricks to accelerate
(encrypted) prediction as a service, in: ICML, 2018.

[22] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, L. Fei-Fei, Faster cryp-
tonets: Leveraging sparsity for real-world encrypted inference, CoRR
(2018).

[23] P. Maene, J. Gotzfried, R. de Clercq, T. Muller, F. Freiling, I. Ver-
bauwhede, Hardware-based trusted computing architectures for isolation
and attestation, IEEE Transactions on Computers PP (99) (2017) 1–1.
doi:10.1109/TC.2017.2647955.

[24] L. Coppolino, S. D’Antonio, G. Mazzeo, L. Romano, A
comprehensive survey of hardware-assisted security: From
the edge to the cloud, Internet of Things 6 (2019) 100055.
doi:https://doi.org/10.1016/j.iot.2019.100055.
URL http://www.sciencedirect.com/science/article/pii/
S2542660519300101

[25] V. Costan, S. Devadas, Intel sgx explained, Cryptology ePrint Archive,
Report 2016/086, http://eprint.iacr.org/2016/086 (2016).

[26] P.-E. Clet, M. Zuber, A. Boudguiga, R. Sirdey, C. Gouy-Pailler, Putting
up the swiss army knife of homomorphic calculations by means of TFHE
functional bootstrapping, report Number: 149.
URL https://eprint.iacr.org/2022/149

[27] D. Boneh, A. Sahai, B. Waters, Functional encryption: Definitions and
challenges, in: Y. Ishai (Ed.), Theory of Cryptography, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011, pp. 253–273.

[28] M. Alloghani, M. M. Alani, D. Al-Jumeily, T. Baker, J. Mustafina,
A. Hussain, A. J. Aljaaf, A systematic review on the status
and progress of homomorphic encryption technologies, Journal
of Information Security and Applications 48 (2019) 102362.
doi:https://doi.org/10.1016/j.jisa.2019.102362.
URL https://www.sciencedirect.com/science/article/pii/
S2214212618306057

[29] M. Naehrig, K. Lauter, V. Vaikuntanathan, Can homomorphic encryption
be practical?, in: Proceedings of the 3rd ACM Workshop on Cloud
Computing Security Workshop, CCSW ’11, ACM, New York, NY, USA,
2011, pp. 113–124. doi:10.1145/2046660.2046682.

[30] D. Chialva, A. Dooms, Conditionals in homomorphic encryption and
machine learning applications, CoRR abs/1810.12380 (2018). arXiv:
1810.12380.

[31] Y. Xu, W. Cui, M. Peinado, Controlled-Channel attacks: Deterministic
side channels for untrusted operating systems, in: S&P (Oakland), 2015.

[32] J. V. Bulck, F. Piessens, R. Strackx, Sgx-step: A practical attack
framework for precise enclave execution control, in: Proceedings of the
2nd Workshop on System Software for Trusted Execution, SysTEX’17,
2017. doi:10.1145/3152701.3152706.

[33] M. N. Sadat, M. M. A. Aziz, N. Mohammed, F. Chen, S. Wang,
X. Jiang, SAFETY: secure gwas in federated environment through a
hybrid solution with intel SGX and homomorphic encryption, CoRR
abs/1703.02577 (2017).

[34] W. Wang, Y. Jiang, Q. Shen, W. Huang, H. Chen, S. Wang, X. Wang,
H. Tang, K. Chen, K. Lauter, D. Lin, Toward scalable fully homomorphic
encryption through light trusted computing assistance (2019). doi:
10.48550/ARXIV.1905.07766.
URL https://arxiv.org/abs/1905.07766

[35] N. Drucker, S. Gueron, Achieving trustworthy homomorphic encryption
by combining it with a trusted execution environment, Journal of Wire-
less Mobile Networks, Ubiquitous Computing, and Dependable Appli-
cations 9 (2018) 86–. doi:10.22667/JOWUA.2018.03.31.086.

[36] L. Coppolino, S. D’Antonio, V. Formicola, G. Mazzeo, L. Romano, Vise:
Combining intel sgx and homomorphic encryption for cloud industrial
control systems, IEEE Transactions on Computers 70 (5) (2021) 711–
724. doi:10.1109/TC.2020.2995638.

https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://www.microsoft.com/en-us/research/publication/cryptonets-applying-neural-networks-to-encrypted-data-with-high-throughput-and-accuracy/
https://doi.org/10.1109/TC.2017.2647955
http://www.sciencedirect.com/science/article/pii/S2542660519300101
http://www.sciencedirect.com/science/article/pii/S2542660519300101
http://www.sciencedirect.com/science/article/pii/S2542660519300101
https://doi.org/https://doi.org/10.1016/j.iot.2019.100055
http://www.sciencedirect.com/science/article/pii/S2542660519300101
http://www.sciencedirect.com/science/article/pii/S2542660519300101
http://eprint.iacr.org/2016/086
https://eprint.iacr.org/2022/149
https://eprint.iacr.org/2022/149
https://eprint.iacr.org/2022/149
https://eprint.iacr.org/2022/149
https://www.sciencedirect.com/science/article/pii/S2214212618306057
https://www.sciencedirect.com/science/article/pii/S2214212618306057
https://doi.org/https://doi.org/10.1016/j.jisa.2019.102362
https://www.sciencedirect.com/science/article/pii/S2214212618306057
https://www.sciencedirect.com/science/article/pii/S2214212618306057
https://doi.org/10.1145/2046660.2046682
http://arxiv.org/abs/1810.12380
http://arxiv.org/abs/1810.12380
https://doi.org/10.1145/3152701.3152706
https://arxiv.org/abs/1905.07766
https://arxiv.org/abs/1905.07766
https://doi.org/10.48550/ARXIV.1905.07766
https://doi.org/10.48550/ARXIV.1905.07766
https://arxiv.org/abs/1905.07766
https://doi.org/10.22667/JOWUA.2018.03.31.086
https://doi.org/10.1109/TC.2020.2995638

	Introduction
	Preliminaries
	Homomorphic Encryption
	TEE

	The Financial Case Study Requirements
	The need for confidentiality
	The AI model
	A cryptography-only solution
	A TEE-only solution
	The need for a TEE-HE hybrid solution

	Threat model
	The SOTERIA Design
	Related Work
	Conclusion
	References

