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Abstract. We present a novel decision procedure for a fragment of separation
logic (SL) with arbitrary nesting of separating conjunctions with boolean con-
junctions, disjunctions, and guarded negations together with a support for the
most common variants of linked lists. Our method is based on a model-based
translation to SMT for which we introduce several optimisations—the most im-
portant of them is based on bounding the size of predicate instantiations within
models of larger formulae, which leads to a much more efficient translation of
SL formulae to SMT. Through a series of experiments, we show that, on the fre-
quently used symbolic heap fragment, our decision procedure is competitive with
other existing approaches, and it can outperform them outside the symbolic heap
fragment. Moreover, our decision procedure can also handle some formulae for
which no decision procedure has been implemented so far.

1 Introduction
In the last decade, separation logic (SL) [14, 29] has become one of the most popular
formalisms for reasoning about programs working with dynamically-allocated memory,
including approaches based on deductive verification [31], abstract interpretation [33],
symbolic execution [30], or bi-abductive analysis [6,11,17]. The key ingredients of SL
used in these approaches include the separating conjunction ∗, which allows modular
reasoning by stating that the program heap can be decomposed into disjoint parts satis-
fying operands of the separating conjunction, along with inductive predicates describing
shapes of data structures, such as lists, trees, or their various combinations.

The high expressive power of SL comes with the price of high complexity and even
undecidability when several of its features are combined together. The existing decision
procedures are usually limited to the so-called symbolic heap fragment that disallows
any boolean structure of spatial assertions.

In this paper, we present a novel decision procedure for a fragment of SL that we
call boolean separation logic (BSL). The fragment allows arbitrary nesting of sepa-
rating conjunctions and boolean connectives of conjunction, disjunction, and a limited
form of negation of the form φ∧¬ψ called guarded negation. To the best of our knowl-
edge, no existing, practically applicable decision procedure supports a fragment with
such a rich boolean structure and at least basic inductive predicates. The decision pro-
cedure for SL in CVC5 [28] supports arbitrary nesting of boolean connectives (including
even unguarded negation, which is considered very expensive in the context of SL) but
no inductive predicates. A support for conjunctions and disjunctions under separating
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conjunctions is available in the backend solver of the GRASSHOPPER verifier [26, 27]
though not described in the papers. In our experimental evaluation, we outperform both
of these approaches on some benchmarks (and can decide some formulae beyond the
capabilities of both of them). We further show that adding guarded negations to BSL
makes its satisfiability problem PSPACE-hard.

To motivate the usefulness of the fragment we consider, we now give several ex-
amples when SL formulae with a rich boolean structure are useful. First, in symbolic
execution of heap manipulating programs, one usually needs to consider functions that
involve some non-determinism—typically, at least the malloc statement has the non-
deterministic contract {emp} x = malloc() {x 7→ f ∨ (x = nil ∧ emp)} (where f
is a fresh variable) stating that when the statement is started in the empty heap, once it
finishes, x is either allocated, or the allocation had failed and the heap is empty. Such
contracts typically need a dedicated (and usually incomplete) treatment when no sup-
port of disjunctions is available.3 Further, the guarded negation semantically represents
the set of counterexamples of the entailment φ |= ψ, and hence allows one to reduce
entailment queries to UNSAT checking. Guarded negation can also be used when one
needs to obtain several models of a formula φ by joining formulae representing the
already obtained models to φ using guarded negations. One can also use the guarded
negation to express interesting properties such as the fact that given a list sls(x, y) and
a pointer y 7→ z, the pointer does not point back somewhere into the list closing a lasso.
This can be expressed through the formula

(
sls(x, y)∧¬

(
sls(x, z)∗ sls(z, y)

))
∗y 7→ z.

Finally, boolean connectives can be introduced by translating quantitative separation
logic into the classical SL [2].

In this work, we consider BSL with three fixed, built-in inductive predicates repre-
senting the most-common variants of lists: singly-linked (SLL), doubly-linked (DLL),
and nested singly-linked (NLL). Our results can be easily extended for their variations
such as nested doubly-linked lists of singly-linked lists and the like, but for the price of
manually defining their semantics in the SMT encoding. We do, however, believe that
our approach of bounding the sizes of models and instantiations of the individual pred-
icates can be lifted to more complex inductive definitions and can serve as a starting
point for allowing integration of SL with inductive definitions into SMT.

Contributions. Our approach to deciding BSL formulae is inspired by previous works
on translation of SL to SMT. The early works [26] and [27] translate SL to interme-
diate theories first. Our approach is closer to the more recent approach of [15], which
builds on small-model properties and axiomatizes reachability through pointer links di-
rectly. We extend the SL fragment considered in [15] by going beyond the so-called
unique footprint property (under which it is much easier to obtain an efficient transla-
tion). Further, we define a more precise way to obtain global bounds on models of entire
formulae, and, most importantly, we modify the translation of inductive predicates in a
way that allows us to encode them succinctly by computing local bounds on their in-
stantiations. According to our experiments, this makes the decision procedure efficient
and competitive with the state-of-the-art approaches on the symbolic heap fragment
(despite the increased decisive power).

3 Note that, while the post-condition with a single disjunction might seem simple, the formulae
typically start growing in the further symbolic execution.
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Related work. In [3], a proof system for deciding entailments of symbolic heaps with
lists was proposed. This problem was later shown to be solvable in polynomial time
in [8] via graph homomorphism checking. A superposition-based calculus for the frag-
ment was presented in [22], and a model-based approach enhancing SMT solvers was
proposed in [23]. In [23], a combination of SL with SMT theories is considered but still
limited to the symbolic heap fragment. A more expressive boolean structure and inte-
gration with SMT theories was developed in [26] for lists and extended for trees in [27]
but still without a support for guarded negations.

Other decision procedures are focusing on more general, user-defined inductive
predicates (usually of some restricted form). They are based, e.g., on cyclic proof sys-
tems (CYCLIST [5], S2S [18, 19]); lemma synthesis (SONGBIRD [32]); or automata—
tree automata are used in the tools SLIDE [12] and SPEN [10], and a specialised type of
automata, called heap automata, is used in HARRSH [16]. These procedures do, how-
ever, not support nested use of boolean connectives and separating conjunctions.

There also exist works on deciding much more expressive fragments of SL such
as [9, 13, 20, 25] but they do not lead to practically implementable decision procedures.

2 Preliminaries

Partial functions. We write f : X ⇀ Y to denote a partial function fromX to Y . For a
partial function f , dom(f) and img(f) denote its domain and image, respectively; |f | =
|dom(f)| denotes its size, and f(x) = ⊥ denotes that f is undefined for x. A restriction
f |A of f to A ⊆ X is defined as f(x) for x ∈ A and undefined otherwise. To represent
a finite partial function f , we often use the set notation f = {x1 7→ y1, . . . , xn 7→ yn}
meaning that f maps each xi to yi, and is undefined for other values. We call partial
functions f1 and f2 disjoint if dom(f1) ∩ dom(f2) = ∅ and define their disjoint union
f1 ⊎ f2 as f1 ∪ f2, which is otherwise undefined.

Graphs and paths. Let G = (V,−→1, . . . ,−→m) be a directed graph with vertices V and
edges −→=−→1 ∪ · · · ∪ −→m. For 1 ≤ f ≤ m, a sequence σ = ⟨v0, v1, . . . , vn⟩ ∈ V +

is a path from v0 to vn via −→f in G, denoted as σ : v0 ⇝f vn, if all elements of σ are
distinct, and for all 0 ≤ i < n, it holds that vi −→f vi+1. By the definition, paths cannot
be cyclic. The domain of the path σ is the set dom(σ) = {v0, v1, ..., vn−1}, and the
length of the path is defined as |σ| = |dom(σ)| = n.

Formulae. For a first-order formula φ, we denote by φ[t/x] the formula obtained by
simultaneously replacing all free occurrences of the variable x in φ with the term t. For
a first-order model M and a term t, we write tM to denote the evaluation of t in M
defined as usual.

3 Separation Logic
Syntax. Let Vars be a countably infinite set of sorted variables. We denote by xS a
variable x of a sort S ∈ Sort = {S,D,N} representing a location in an SLL, DLL,
or NLL, respectively. We omit the sorts when they are not relevant or clear from the
context. We further assume that there exists a distinguished, unsorted variable nil. We
write vars(φ) to denote the set of all variables in φ plus nil (even when it does not
appear in φ). Analogically, varsS(φ) stands for all variables of the sort S plus nil.
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(s, h) |= x ▷◁ y iff s(x) ▷◁ s(y) and dom(h) = ∅ for ▷◁ ∈ {=, ̸=}
(s, h) |= x 7→ ⟨fi : fi⟩i∈I iff h = {s(x) 7→ ⟨fi : s(fi)⟩i∈I}
(s, h) |= ψ1 ▷◁ ψ2 iff (s, h) |= ψ1 ▷◁ (s, h) |= ψ2 for ▷◁ ∈ {∧,∧¬,∨}
(s, h) |= ψ1 ∗ ψ2 iff ∃h1, h2. h = h1 ⊎ h2 ̸= ⊥ and (s, hi) |= ψi for i = 1, 2

(s, h) |= ∃x. ψ iff there exists ℓ such that (s[x 7→ ℓ], h) |= ψ

(s, h) |= sls(x, y) iff (s, h) |= x = y, or s(x) ̸= s(y)

and (s, h) |= ∃n. x 7→ n ∗ sls(n, y)

(s, h) |= dls(x, y, x′, y′) iff (s, h) |= x = y ∗ x′ = y′, or s(x) ̸= s(y), s(x′) ̸= s(y′),

and (s, h) |= ∃n. x 7→ ⟨n : n, p : y′⟩ ∗ dls(n, y, x′, x)

(s, h) |= nls(x, y, z) iff (s, h) |= x = y, or s(x) ̸= s(y)

and (s, h) |= ∃n, t. x 7→ ⟨n : n, t : t⟩ ∗ sls(n, z) ∗ nls(t, y, z)

Fig. 1: The semantics of the separation logic. The existential quantifier is used for the
definition of the semantics of inductive predicates and it is not a part of our fragment.

The syntax of our fragment is given by the following grammar:

p ::= xS 7→ ⟨n : n⟩ | xD 7→ ⟨n : n, p : p⟩ | xN 7→ ⟨n : n, t : t⟩ (points-to predicates)

π ::= sls(xS, yS) | dls(xD, yD, xDb , yDb ) | nls(xN, yN, zS) (inductive predicates)
φA ::= x = y | x ̸= y | p | π (atomic formulae)
φ ::= φA | φ ∗ φ | φ ∧ φ | φ ∨ φ | φ ∧ ¬φ (formulae)

The points-to predicate x 7→ ⟨f1 : f1, . . . , fn : fn⟩ denotes that x is a structure
whose fields fi point to values fi. We often write x 7→ n instead of x 7→ ⟨n : n⟩ and
x 7→ if the right-hand side is not relevant. We call x the root of the points-to predicate.
If π is an inductive predicate sls(x, y), dls(x, y, x′, y′), or nls(x, y, z), we again call x
the root of π, y is the sink of π, and we write π(x, y) to denote the root and the sink.
We define the sort of the predicate π, denoted as Sπ , as the sort of its root. Then, there
is a one-to-one correspondence of predicates and sorts, which we often implicitly use.

Memory model. Let Loc be a countably infinite set of memory locations, and let Field =
{n, p, t} be the set of fields. A stack is a finite partial function s : Vars ⇀ Loc. A heap
is a finite partial function h : Loc ⇀ (Field ⇀ Loc). For succinctness, we write h(ℓ, f)
instead of h(ℓ)(f). To represent heap elements in a readable way, we write functions
Field⇀ Loc as vectors with labels, i.e., h(ℓ) = ⟨f : h(ℓ, f) | f ∈ Field ∧ h(ℓ, f) ̸= ⊥⟩
and we write img(h) for {ℓ ∈ Loc | ∃ℓ′, f. h(ℓ′, f) = ℓ}. Moreover, we use h(ℓ) = n
when h(ℓ) = ⟨n : n⟩. A stack-heap model is a pair (s, h) where s is stack and h is
a heap such that s(nil) ̸= ⊥ and h(s(nil)) = ⊥. We define the set of locations of the
model (s, h) as locs(s, h) = img(s) ∪ dom(h) ∪ img(h).

Semantics. The semantics of our SL over stack-heap models is given in Fig. 1. For pure
formulae, we use the so-called precise semantics, which additionally requires that the
heap must be empty4. The semantics of pointer assertions, boolean connectives, and

4 This is a common approach to avoid the atom true to be expressed as nil = nil. In our fragment,
we forbid true in order not to introduce “unbounded” negations as ¬φ ≜ true ∧ ¬φ. Due to
this change, symbolic heaps are formulae of form ∗ψi where each ψi is an atom.
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separating conjunctions is as usual. The intuition behind the semantics of the inductive
predicates is as follows. An SLL segment sls(x, y) is either empty or represents an
acyclic sequence of allocated locations starting from x and leading via the n field to y,
which is not allocated. A DLL segment dls(x, y, x′, y′) is either empty with x = y and
x′ = y′, or it represents an acyclic sequence that is doubly-linked via the n and p fields
and leads from the first allocated location x of the segment to its last allocated location
x′ (x and x′ may coincide) with y/y′ being the n/p-successors of x′/x, respectively. Both
y and y′ are not allocated. An NLL segment nls(x, y, z) is a (possibly empty) acyclic
sequence of locations starting from x and leading to y via the t (top) field in which
successor of each locations starts a disjoint inner SLL to z via n.

Stack-heap graphs. We frequently identify stack-heap models with their graph repre-
sentation. A stack-heap model (s, h) defines a graphG[(s, h)] = (V, (−→f)f∈Field) where
V = locs(s, h) and u −→f v iff h(u, f) = v. We frequently use the fact that if there exists
a path σ : x⇝f y in a stack-heap graph, then it is uniquely determined because f-edges
are given by a partial function.

4 Small-Model Property

Small-model properties, which state that each satisfiable formula has a model of bound-
ed size, are frequently used for various fragments of SL to prove their decidability [7] or
to design decision procedures [15, 25, 28]. The latter is also the case of our translation-
based decision procedure which will heavily rely on enumeration over all locations,
and, for its efficiency, it is therefore necessary to obtain location bounds that are as
small as possible.

The way we obtain our small-model property is inspired by the approach of [15]
and by insights from the so-called strong-separation logic [25]. The main idea is to
define a satisfiability-preserving reduction ↓sh which takes a heap h (referenced from a
stack s), decomposes it into basic sub-heaps (which we call chunks), and reduces it per
the sub-heaps in such a way that its size can be easily bounded by a linear expression.
To define the reduction, we first need to introduce some auxiliary notions related to
stack-heap models.

We say that a model (s, h) is positive if there exists φ with (s, h) |= φ. A positive
model (s, h) is atomic if it is non-empty, and for all positive models (s, h1) and (s, h2),
h = h1 ⊎ h2 implies that h1 = ∅ or h2 = ∅. In other words, atomic models cannot be
decomposed into two non-empty positive models. Several examples of atomic models
are shown in Fig. 2. Observe that the models of dls (Figure 2b) and nls (Figure 2c) are
indeed atomic as any of their decomposition, in particular the split at the location u,
does not give two positive models.

A sub-heap c ⊆ h is a chunk of a model (s, h) if c is a maximal sub-heap of h such
that (s, c) is an atomic positive model. Notice that the way the definition of chunks is
constructed excludes the possibility of using as a chunk a sub-heap of a heap that itself
forms an atomic model. The reason is that otherwise the remaining part of the larger
atomic model could not described by the available predicates. For example, in nested
lists as shown in Fig. 2c, one cannot take as a chunk a part of some inner list (e.g., the
pointer u 7→ z) as the heap shown in the figure itself forms an atomic model. Indeed, if
u 7→ z was removed, one would need a more general version of the NLL predicate to
cover the remaining heap by atomic models.



6 T. Dacı́k, A. Rogalewicz, T. Vojnar, and F. Zuleger

x

ℓ
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(a) A singly-linked list sls(x, y).

y′ x

ℓ

u x′ y

(b) A doubly-linked list dls(x, y, x′, y′).

x

ℓ

y

zu

(c) A nested singly-linked list nls(x, y, z).

Fig. 2: An illustration of reductions of atomic models of inductive predicates. Removed
heap locations are red, removed edges are dotted, and added edges are highlighted.

Lemma 1 (Chunk decomposition). A positive model (s, h) can be uniquely decom-
posed into the set of its chunks, denoted chunks(s, h), i.e., h =

⊎
chunks(s, h).

Minimal atomic models of inductive predicates. The key reason why the small-model
property that we are going to state holds is that our fragment of SL cannot distinguish
atomic models of the considered predicates beyond certain small sizes—namely, two
for sls and nls, and three for dls. For further use, we will now state predicates describing
exactly the sets of the indistinguishable lists of the different kinds.

We start with SLLs and use a disequality to exclude empty lists: sls≥1(x, y) ≜
sls(x, y) ∗ x ̸= y, and a guarded negation to exclude lists of length one consisting of a
single pointer only: sls≥2(x, y) ≜ sls≥1(x, y) ∧ ¬(x 7→ y). A similar predicate can be
defined for NLLs too: nls≥2(x, y, z) ≜

(
nls(x, y, z) ∗ x ̸= y

)
∧ ¬(x 7→ ⟨n : z, t : y⟩).

For DLLs, we define dls≥2(x, y, x
′, y′) ≜ dls(x, y, x′, y′)∗x ̸= y∗x ̸= x′ to exclude

models that are either empty or consist of a single pointer; and dls≥3(x, y, x
′, y′) ≜

dls≥2(x, y, x
′, y′) ∧ ¬(x 7→ ⟨n : x′, p : y′⟩ ∗ x′ 7→ ⟨n : y, p : x⟩) to also exclude models

consisting of exactly two pointers.
It holds that atomic models, and consequently also chunks, are precisely either mod-

els of single pointers or of the above predicates.

Lemma 2. For atomic model (s, h), exactly one of the following conditions holds.

1. (s, h) |= x 7→ for some x. (pointer-atom)
2. (s, h) |= sls≥2(x, y) for some x and y. (sls-atom)
3. (s, h) |= dls≥3(x, y, x

′, y′) for some x, y, x′, and y’. (dls-atom)
4. (s, h) |= nls≥2(x, y, z) for some x, y, and z. (nls-atom)

We can now define the reduction in the way we have already sketched.

Definition 1. The heap of a positive model (s, h) reduces to ↓sh =
⊎

c∈chunks(s,h) ↓s c
where the reduction of a chunk c with a root x as follows:

– ↓s c = c if (s, c) |= x 7→ .
– ↓s c = {s(x) 7→ ℓ, ℓ 7→ s(y)} where ℓ = c(s(x), n) if (s, c) |=sls≥2(x, y) for some y.
– ↓s c = {s(x) 7→ ⟨n : ℓ, p : s(y′)⟩, ℓ 7→ ⟨n : s(x′), p : s(x)⟩, s(x′) 7→ ⟨n : s(y), p : ℓ⟩}

where ℓ = c(s(x), n) if (s, c) |= dls≥3(x, y, x
′, y′) for some x′, y′ and y.

– ↓s c = {s(x) 7→ ⟨t : ℓ, n : s(z)⟩, ℓ 7→ ⟨t : s(y), n : s(z)⟩} where ℓ = c(s(x), t) if
(s, c) |= nls≥2(x, y, z) for some y and z.
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We lift the reduction to stack-heap models as ↓X (s, h) = (s′, ↓s′
h) where s′ = s|X

for some set of variables X and show that it preserves satisfiability when X = vars(φ).

Theorem 1. For a positive model (s, h), it holds that (s, h) |= φ iff ↓vars(φ) (s, h) |= φ.

The final step to show our small-model property is to find an upper bound on the
size of the reduced models. We define the size of a variable xS , ||xS ||, which represents
its contribution to the location bound, and is defined as 2 if S ∈ {S,N} and 1.5 if
S = D (this corresponds to the size of a reduced chunk of sort S divided by the number
of variables which are allocated in it). We further define ||nil|| = 0. The location bound
of φ is then given as bound(φ) = 1 + ⌊

∑
x∈vars(φ)||x||⌋ (the additional location is for

nil). Analogically, the location bound for a sort S is boundS(φ) = ⌊
∑

x∈varsS(φ)||x||⌋.

Theorem 2 (Small-model property). If a formula φ is satisfiable, then there exists a
model (s, h) |= φ such that |locs(s, h)| ≤ bound(φ).

We conjecture that the bound can be further improved, e.g., by showing that each
model can be transformed to an equivalent one (indistinguishable by BSL formulae)
such that the number of its chunks is bounded by the number of roots of spatial predi-
cates inφ. We demonstrate this on the formula sls(x, y)∗y 7→ z and its model in which y
points back into the middle of the list segment (thus splitting it into two chunks).
Clearly, this model can be transformed by redirecting z outside of the list domain.

5 Translation-Based Decision Procedure
In this section, we present our translation of SL to SMT. We first present an SMT
encoding of our memory model and a translation of basic predicates and boolean con-
nectives. Then we discuss methods for efficient translation of separating conjunctions
and inductive predicates with the focus on avoiding quantifiers by replacing them by
small enumerations of their instantiations.

We fix an input formula φ and let nS = boundS(φ) for each sort S ∈ Sort.

5.1 Encoding the Memory Model in SMT
To encode the heap, we use a classical approach which encodes its mapping and domain
separately [15, 26, 28]. Namely, we use arrays to encode mappings and sets to encode
domains. We also use the theory of datatypes to represent a finite sort of locations by a
datatype L ≜ locnil | locS1 | . . . | locSnS

| locD1 | . . . | locDnD
| locN1 | . . . | locNnN

.
Now, we define the signature of the translation’s language over the sort L. For each

x ∈ vars(φ), we introduce a constant x of the same name—its interpretation represents
the stack image s(x). To represent the heap, we introduce a set symbol D representing
the domain and an array symbol hf for each field f ∈ Field which represents the map-
ping of the partial function λℓ. h(ℓ, f). To distinguish sorts of locations, we further
introduce a set symbol DS for each sort S ∈ Sort. We define meaning of these symbols
by showing how a stack-heap model can be reconstructed from a first-order model.

Definition 2 (Inverse translation). Let M be a first-order model. We define its inverse
translation T−1

φ (M) = (s, h) where s(x) = xM if x ∈ vars(φ) and

h(ℓ) =


⟨n : hn[ℓ]M⟩ if ℓ ∈ (D ∩DS)

M

⟨n : hn[ℓ]M, p : hp[ℓ]
M⟩ if ℓ ∈ (D ∩DD)

M

⟨n : hn[ℓ]M, t : ht[ℓ]
M⟩ if ℓ ∈ (D ∩DN)

M.
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To ensure consistency of the translation with the memory model used, we define the
following axioms that a result of translation needs to satisfy:

Aφ ≜ nil = locnil ∧ nil ̸∈ D ∧
∧

S∈Sort

(
DS = {locnil, locS

1 , . . . , loc
S
nS

} ∧
∧

x∈varsS(φ)

x ∈ DS

)
.

The axioms ensure that nil is never allocated, that each variable is interpreted as a lo-
cation of the corresponding sort and they fix the interpretation of the sets DS, DD, DN,
which we will later use in the translation to assign sorts to locations.

5.2 Translation of SL to SMT

We define the translation as a function T(φ) = Aφ ∧ T(φ,D) where Aφ are the above
defined axioms and T(φ,D) is a recursive translation function of the formula φwith the
domain symbol D. The translation T(·) together with the inverse translation of models
T−1

φ (·) are linked by the following correctness theorem.

Theorem 3 (Translation correctness). An SL formula φ is satisfiable iff its translation
T(φ) is satisfiable. Moreover, if M |= T(φ), then T−1

φ (M) |= φ.

The translation of non-inductive predicates and boolean connectives is defined as:

T(x ▷◁ y, F ) ≜ x ▷◁ y ∧ F = ∅ for ▷◁ ∈ {=, ̸=}
T(ψ1 ▷◁ ψ2, F ) ≜ T(ψ1, F ) ▷◁ T(ψ2, F ) for ▷◁ ∈ {∧,∨,∧¬}

T(x 7→ ⟨fi : fi⟩i∈I , F ) ≜ F = {x} ∧
∧
i∈I

hfi [x] = fi

The translation of boolean connectives follows the boolean structure and propagates
the domain symbol F to the operands. The translation of pointer assertions postulates
content of memory cells represented by arrays and also requires the domain F to be {x}.

Translation of separating conjunctions. The semantics of separating conjunctions in-
volves a quantification over sets (heap domains). The most direct way of translation is
to use quantifiers over sets leading to decidable formulae due to the bounded location
domain. This approach combined with a counterexample-guided quantifier instantiation
is used in the decision procedure for a fragment of SL supported in CVC5 [28]. In some
fragments, however, separating conjunctions can be translated in a way that completely
avoids quantifiers. An example is the fragment of boolean combinations of symbolic
heaps which has the so-called unique footprint property (UFP) [15, 26]—a formula ψ
has a (unique) footprint in a model (s, h) with (s, h) |= ψ ∗ true5, if there exists a
(unique) set F such that (s, h|F ) |= ψ. The UFP-based approaches of [15, 26] axioma-
tize the footprints during translation and check operands of separating conjunctions just
on the sub-heaps induced by their footprints.

However, UFP does not hold for BSL because of disjunctions. As an example, take
the formula ψ ≜ x 7→ y ∨ emp and the heap h = {x 7→ y}. Both (s, h|{s(x)}) |= ψ
and (s, h|∅) |= ψ hold. The sets {s(x)} and ∅ are, however, the only footprints of ψ in
(s, h), and this observation can be used to generalise the idea of footprints beyond the
fragment in which they are unique.

5 Assuming the standard semantics of true which is not part of our logic.
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Instead of axiomatizing the footprints, our translation builds a set of footprint terms
for operands of separating conjunctions. This change can be also seen as a simplifi-
cation of the former translations as it eliminates the need to deal with two kinds of
formulae (the actual translation and footprint axioms), which must be treated differ-
ently during the translation. However, the precise computation of the set of all foot-
prints of ψ in (s, h), denoted as FP(s,h)(ψ), is as hard as satisfiability—when the set
of footprints is non-empty, the formula ψ is satisfiable. Therefore, we compute just an
over-approximation denoted as FP#(ψ). This is justified by the following lemma which
gives an equivalent semantics of the separating conjunction in terms of footprints.

Lemma 3. Let φ ≜ ψ1∗ψ2 and let (s, h) be a model. Let F1 and F2 be sets of locations
such that FP(s,h)(ψi) ⊆ Fi. Then (s, h) |= ψ1 ∗ ψ2 iff∨

F1∈F1

∨
F2∈F2

∧
i=1,2

(s, h|Fi
) |= ψi ∧ F1 ∩ F2 = ∅ ∧ F1 ∪ F2 = dom(h).

Intuitively, to check whether a separating conjunction holds in a model, it is not nec-
essary to check all possible splits of the heap, but only the splits induced by (possibly
over-approximated) footprints of its operands. The lemma is therefore a generalisation
of UFP and leads to the following definition of the translation T(ψ1 ∗ ψ2, F ):

∃F1 ∈ F1. ∃F2 ∈ F2. T(ψ1, F1) ∧ T(ψ2, F2) ∧ F1 ∩ F2 = ∅ ∧ F = F1 ∪ F2.

Here, we use a quantifier expression of the form ∃x ∈ X. ψ as a placeholder that helps
us to define two methods which the translation can use for separating conjunctions:

– The method SatEnum computes sets of footprints Fi as FP#(ψi) (the computation
is described below) and replaces expressions ∃x ∈ X. ψ with

∨
x′∈X ψ[x′/x] as

in Lemma 3. This strategy is quite efficient in many practical cases when we can
compute small sets of footprints F1 and F2.

– The method SatQuantif does not compute sets Fi at all and replaces ∃x ∈ X. ψ
simply with ∃x. ψ. This strategy is better when the existential quantifier can be
later eliminated by Skolemization or when the set of footprints would be too large.

We now show how to compute the set of footprint terms FP#(ψ). We again post-
pone inductive predicates to Section 5.3. We just note that their footprints are unique.
The cases of pure formulae and pointer assertions follow directly from the definition of
their semantics, which requires the heap to be empty and a single pointer, respectively.

FP#(x ▷◁ y) = {∅} for ▷◁ ∈ {=, ̸=} FP#(x 7→ ) = {{x}}

For the boolean conjunction, we can select from footprints of its operand the one with
the lesser cardinality. Since negations have many footprints (consider, e.g., ¬emp), we
define the case of the guarded negation by taking footprints of its guard. The disjunction
is the only case which brings non-uniqueness as we need to consider footprints of both
of its operands.

FP#(ψ1 ∧ ¬ψ2) = FP#(ψ1) FP#(ψ1 ∨ ψ2) = FP#(ψ1) ∪ FP#(ψ2)

FP#(ψ1 ∧ ψ2) = if |FP#(ψ1)| ≤ |FP#(ψ2)| then FP#(ψ1) else FP#(ψ2)
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Finally, we define footprints of the separating conjunction by taking the union F1 ∪ F2

for each pair (F1, F2) of footprints of its operands. Notice that here F1 ∪ F2 represents
an SMT term, therefore we cannot replace it with a disjoint union which is not available
in the classical set theories in SMT. We can, however, use heuristics and filter out terms
for which we can statically determine that interpretations of F1 and F2 are not disjoint.

FP#(ψ1 ∗ ψ2) = {F1 ∪ F2 | F1 ∈ FP#(ψ1) and F2 ∈ FP#(ψ2)}

We state the correctness of the footprint computation in the following lemma.

Lemma 4. Let M be a first-order model with M |= T(φ) and let (s, h) = T−1
φ (M).

Then we have FP(s,h)(φ) ⊆ {FM | F ∈ FP#(φ)}.

5.3 Translation of Inductive Predicates

To translate inductive predicates, we express them in terms of reachability and paths
in the heaps. While unbounded reachability cannot be expressed in first-order logic, we
can efficiently express bounded linear reachability in our encoding. The linearity means
that each path uses only a single field (which is not the case, e.g., for paths in trees).
All predicates in this section are parametrised with an interval [m,n] which bounds the
length of the considered paths. When we do not state the bounds explicitly, we assume
conservative bounds [0, boundS(φ)] for a path starting from a root of a sort S. We
show how to compute more precise bounds in Section 6. We start with the translation
of reachability:

reach=n(h, x, y) ≜ hn[x] = y reach[m,n](h, x, y) ≜
∨

m≤i≤nreach
=i(h, x, y)

Here, the predicate reach=n(h, x, y) expresses that x can reach y via a field represented
by the array h in exactly n steps. Similarly, reach[m,n] expresses reachability in m to n
steps. Besides reachability, we will need a macro pathC(h, x, y) expressing the domain
of a path from x to y, or the empty set if such a path does not exists:

path=n
C (h, x, y) ≜

⋃
0≤i<n C(h

i[x])

path
[m,n]
C (h, x, y) ≜ if (reach=m(h, x, y)) then (path=m

C (h, x, y))

· · · else if (reach=n(h, x, y)) then (path=n
C (h, x, y)) else (∅)

The additional parameter C is a function applied to each element of the path that
can be used to define nested paths. We define a simple path path

[m,n]
S (h, x, y) ≜

path
[m,n]
C (h, x, y) with C ≜ λℓ. {ℓ} and a nested path as path[m,n]

N (h1, h2, x, y, z) ≜

path
[m,n]
C (h1, x, y) with C ≜ λℓ. pathS(h2, ℓ, z). In the case of the nested path, the

array h1 represents the top-level path from x to y, and h2 represents nested paths termi-
nating in the common location z. Now we can define footprints of inductive predicates
using path terms as follows:

FP#(π(x, y)) = {pathS(hn, x, y)} for π ∈ {sls, dls}
FP#(nls(x, y, z)) = {pathN (ht, hn, x, y, z)}
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The common part of the translation T(π(x, y), F ) postulates the existence of a top-
level path from x to y and a domain F based on this path (formalised in the formula
main path below); and ensures that all locations have the correct sort (through the for-
mula typing). For DLLs, we add an invariant which ensures that its locations are cor-
rectly doubly-linked (the back links formula), and we further need a special treatment
of the cases when the list is empty as well as a special treatment for its roots and sinks
(cf. the formula boundaries). For NLLs, we add an invariant stating that an inner list
starts from each location in its top-level path (the inner lists formula) and that those
inner paths are disjoint (the disjoint formula).

– T(sls(x, y), F ) ≜ main path ∧ typing where

main path ≜ reach(hn, x, y) ∧ F = pathS(hn, x, y) and typing ≜ F ⊆ DS.

– T(dls(x, y, x′, y′), F ) ≜ empty ∨ nonempty where

empty ≜ x = y ∧ x′ = y′ ∧ F = ∅,
nonempty ≜ x ̸= y ∧ x′ ̸= y′ ∧ main path ∧ boundaries ∧ typing ∧ back links,

main path ≜ reach(hn, x, y) ∧ F = pathS(hn, x, y),

boundaries ≜ hp[x] = y′ ∧ hn[x
′] = y ∧ x′ ∈ F ∧ y′ ̸∈ F,

typing ≜ F ⊆ DD,

back links ≜ ∀ℓ. (ℓ ∈ F ∧ ℓ ̸= x′) −→ hp[hn[ℓ]] = ℓ.

– T(nls(x, y, z), F ) ≜ main path ∧ typing ∧ inner lists ∧ disjoint where

main path ≜ reach(ht, x, y) ∧ F = pathN (ht, hn, x, y, z),

typing ≜ pathS(ht, x, y) ⊆ DN ∧ F \ pathS(ht, x, y) ⊆ DS,

inner lists ≜ ∀ℓ. ℓ ∈ F ∩DN −→ reach(hn, h[ℓ], z),

disjoint ≜ ∀ℓ1, ℓ2.
(
{ℓ1, ℓ2} ⊆ F ∧ ℓ1 ̸= ℓ2 ∧ hn[ℓ1] = hn[ℓ2]

)
−→ hn[ℓ1] ̸∈ F 6.

Path quantifiers. Invariants of paths are naturally expressed using universal quantifiers.
For quantifiers, however, we cannot directly take advantage of bounds on path lengths.
Therefore, similarly as for separating conjunctions, we use the idea of replacing quanti-
fiers by small enumerations of their instances, which is efficient when we can compute
small enough bounds on the paths. For example, if we know that the length of an f-path
with a root x is at most two, it is enough to instantiate its invariant for x, hf [x], and
h2f [x]. This idea is formalised using expressions P≤n

(h,x) ℓ. ψ, which we call path quanti-
fiers and which state that ψ holds for all locations of the path with the length n starting
from x via the array h:

P≤n
(h,x) ℓ. ψ ≜

∧
0≤i≤n ψ[hi[x]/ℓ].

If we need to quantify over nested paths, we need to use two path quantifiers (one for
the top-level path and one for the nested paths). The quantifiers in the last conjunct of
the NLL translation can be rewritten as P(ht,x) ℓ

′
1. P(ht,x) ℓ

′
2. P(hn,ℓ′

1)
ℓ1. P(hn,ℓ′

2)
ℓ2.

In this expression, ℓ′
1 and ℓ′

2 range over locations in the top-level list, and ℓ1 and ℓ2
range over locations in the nested paths starting from ℓ′

1 and ℓ′
2, respectively.

6 We could also write hn[ℓ1] = z instead of hn[ℓ1] ̸∈ F , but the latter leads to better performance
of SMT solvers.



12 T. Dacı́k, A. Rogalewicz, T. Vojnar, and F. Zuleger

5.4 Complexity
This section briefly discusses the complexity of the proposed decision procedure as well
as the complexity lower bound for the satisfiability problem in the considered fragment
of SL. We will use SAT(ω1, . . . , ωn) to denote the satisfiability problem for a sub-
fragment constructed of atomic formulae and the connectives ωi and SAT(ω1, . . . , ωn)
to denote the fragment where none of the connectives ωi appear.

Theorem 4. The procedure SatQuantif produces formula of polynomial size, and, for
SAT(∧¬), it runs in NP. The procedure SatEnum runs in NP for SAT(∨).

Proof (sketch). When not considering the instantiation of quantifiers over footprints,
both SatQuantif and SatEnum produce a formula T(φ) of a polynomial size dom-
inated by the translation of inductive predicates. For the variant of the translation of
inductive predicates using universal quantifiers over locations, the size is O(n3) for
SLLs and DLLs (dominated by the O(n3) size of the pathS term), and O(n5) for NLLs
(dominated by pathN ). If the input formula does not contain guarded negations, then
all quantifiers can be eliminated using Skolemization. The translated formulae are then
in a theory decidable in NP (e.g., when sets are encoded as extended arrays [21]).

The procedure SatEnum can produce exponentially large formulae because of the
footprint enumeration. This can be prevented if the input formula does not contain dis-
junctions, in which case the footprints of all sub-formulae are unique, i.e., singleton
sets. The translated formulae are then again in a theory decidable in NP. ⊓⊔

Theorem 5. SAT( 7→,∧¬,∧,∨, ∗) is PSPACE-complete.

Proof (sketch). Membership in PSPACE was proved in [25] for a more expressive frag-
ment. For the hardness part, we build on the reduction from QBF used in [7]. In this
reduction, the boolean value of a variable is represented by the corresponding SL vari-
able being allocated (always pointing to nil for simplicity). The fact that x is false is
expressed using a negative points-to predicate stating that x is not allocated. The exis-
tential quantifier is expressed using the separating conjunction, and the universal quan-
tifier is obtained using the (unguarded) negation. (For details, see [7].)

We show that this reduction can be done without the unguarded negation and the
negative points-to assertion, using the guarded negation instead. The key observation is
that, for a QBF formula with variables X , we can express that all variables in X can
have arbitrary boolean values as arbitrary[X] ≜ ∗x∈X(x 7→ nil ∨ emp). In the context
of variables X , we can then express negation as ¬F ≜ arbitrary[X] ∧ ¬F and the truth
values of a variable x as ¬x ≜ arbitrary[X \ {x}] and x ≜ arbitrary[X] ∗ x 7→ nil. The
rest of the reduction then easily follows [7]. ⊓⊔

6 Optimised Bound Computation

In many practical cases, the main source of complexity is the translation of induc-
tive predicates, which heavily depends on the possible lengths of paths between lo-
cations. We now propose how to bound the length of these paths based on the so-called
SL-graphs which are graph representations of constraints imposed by SL formulae.
SL-graphs were originally used for representation and deciding of symbolic heaps with
lists in [8]. Here, we use their generalised form which captures must-relations holding
in all models of a given formula. Note that the nodes of the graphs are implicitly given
by the domains of the involved relations, which themselves can be viewed as edges.
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Definition 3. An SL-graph of φ is a tuple G[φ] = (⃝=,⃝̸=, (⃝7→ f ,⃝⇝ f ,⃝∗ f)f∈Field) where:

– ⃝= ⊆ vars(φ) × vars(φ) is an equivalence relation called must-equality,
– ⃝̸= ⊆ vars(φ) × vars(φ) is a symmetric relation called must-disequality,
– ⃝7→ f ⊆ vars(φ) × vars(φ) is a must-f-pointer relation,
– ⃝⇝ f ⊆ vars(φ) × vars(φ) is an irreflexive must-f-path relation,
– ⃝∗ f ⊆ vars(φ)2 × vars(φ)2 is a symmetric relation called must-f-path-disjointness.

Except ⃝∗ f , the components of G[φ] represent atomic formulae—equalities, disequali-
ties, pointers, and paths (i.e., list segments)—holding within all models of φ. The fact
that (x1, y1) ⃝∗ f (x2, y2) states that, in all models of φ, the domains of f-paths from x1
to y1 and from x2 to y2 are disjoint.

To compute the SL-graph G[φ], we define some auxiliary notation. We define G∅
to be an SL-graph where all the relations are empty. We write G ◁ {xi ▷◁i yi}i∈I to
denote the SL-graph G′ which is the same as G with the elements xi ▷◁i yi for i ∈ I
added to the corresponding relations. We use ⊔ and ⊓ as a component-wise union and
intersection of SL-graphs, respectively. We define the disjoint union of SL-graphs as:

G1 +⊔ G2 = (G1 ⊔G2)

◁ {x ⃝̸= y | x ∈ alloc(G1), y ∈ alloc(G2), and (x is not nil or y is not nil)}
◁ {e1 ⃝∗ f e2 | f ∈ Field, e1 ∈ pathsf(G1), and e2 ∈ pathsf(G2)}.

Here, pathsf(G) is defined as ⃝7→ f ∪ ⃝⇝ f , and the set of must-allocated variables is
alloc(G) = {x | ∃y, f. x⃝7→ f y or (x⃝⇝ f y and x ⃝̸= y)}∪{nil} (nil is added for technical
reasons). We further assume that all operations on SL-graphs (◁, ⊔, ⊓, and +⊔) preserve
relational properties (symmetry, transitivity, etc.) of the components of SL-graphs by
computing the corresponding closures after the operation is performed. We compute
the SL-graph G[φ] as follows.

G[x = y] = G∅ ◁ {x⃝= y} G[x 7→ ⟨fi : fi⟩i∈I ] = G∅ ◁ {x⃝7→ fi fi}i∈I

G[x ̸= y] = G∅ ◁ {x ⃝̸= y} G[sls(x, y)] = G∅ ◁ {x⃝⇝n y}
G[ψ1 ∧ ¬ψ2] = G[ψ1] G[dls(x, y, x′, y′)] = G∅ ◁ {x⃝⇝n y, x

′ ⃝⇝p y
′}

G[ψ1 ∧ ψ2] = G[ψ1] ⊔G[ψ2] G[nls(x, y, z)] = G∅ ◁ {x⃝⇝n z, x⃝⇝ t y}
G[ψ1 ∨ ψ2] = G[ψ1] ⊓G[ψ2] G[ψ1 ∗ ψ2] = G[ψ1] +⊔ G[ψ2]

Observe that we only approximate dls and nls. After the construction is finished, we
apply the following rules for matching of pointers and for detection of inconsistencies.

x1 ⃝7→ f y1 x2 ⃝7→ f y2 x1 ⃝= x2 ( 7→-match)
y1 ⃝= y2

x⃝= y x ⃝̸= y
(contradiction)

φ is unsat

Tighter location bounds. Using SL-graphs, we can slightly improve the location bound
from Section 4 by considering equivalence classes of ⃝= instead of individual variables
(this can be also used to refine the later described path bound computation) and by
defining ||x|| = 1 if x is a must-pointers, i.e., x⃝7→ f y for some f and y.
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a b c d
[0, 2] [1, 1] [1, 1]

[0, 2]

⃝̸=

⃝∗ n

(a) Fragment of SL-graph G[φ].

a b c
0 1

(b) Graph Gℓ
σ .

a b c d
2 1 1

2

(c) Graph Gu
σ .

Fig. 3: An illustration of the bound computation for the path σ from a to c on a fragment
of SL-graph of φ ≜

(
sls(a, b) ∗ b 7→ c ∗ c 7→ d ∗ sls(d, a)

)
∧ ¬

(
sls(a, c) ∗ sls(c, a)

)
. The

highlighted edges denote the paths used to determine the bound [1, 3].

Path bounds. We now fix an f-path σ from xS to y and show how to compute an interval
[ℓ, u] that gives bounds on its length. The computation of the path bounds runs in two
steps. In the first step, we compute an initial bound [ℓ0e, u

0
e] for each edge e ∈ pathsf(G).

If e is a pointer edge, its bound is given as [1, 1]. For a path edge e = (a, b), we define
ℓ0e = 1 if a ⃝̸= b and 0 otherwise; while u0e is defined as boundS(φ) −

∑
v∈V ||v|| where

V = {v ∈ varsS(φ) | v is not x and ∃u. (v, u) ⃝∗ f (x, y)}. This way, we exclude from
the computation of the initial upper bound the source v of each path disjoint with σ and
all locations possibly allocated in a chunk with the root v. Note that it can be the case
that the actual size of this chunk has a lesser size than ||v||, but this means that we were
too conservative when computing the global location bound and can decrease the path
bound by the same number anyway.

In the second phase, we compute the bounds of the path σ using initial bounds from
the first step. The computation is based on two weighted directed graphs derived from
the SL-graph G: Gu

σ for the upper bound and Gℓ
σ for the lower bound (in both cases,

the vertices are implicitly given as vars(φ), and the edge weight of an edge e is given
by u0e and ℓ0e computed in the previous step, respectively):

Gu
σ = {a → b | (a, b) ∈ pathsf(G)},

Gℓ
σ = {a → b | (a⃝7→ f b and a ⃝̸= y) or

(a⃝⇝ f b and ∃w. nonempty(y, w) and (y, w) ⃝∗ f (a, b)}.

Here, the condition nonempty(y, w) states that a directed SL-graph edge (y, w) is non-
empty which holds if either y⃝7→ f w, or when y⃝⇝ f w and y ⃝̸= w.

Intuitively, the upper bound u is computed as the length of the shortest path from x
to y in Gu

σ . Since f-paths are uniquely determined, we know that no path can be longer
than the shortest one, and thus u is indeed a correct upper bound. The lower bound ℓ is
computed as the length of the longest path starting from x (ending anywhere) inGℓ

σ . By
construction, Gℓ

σ contains only those edges for which one can prove that they cannot
contain y in their domains. A path from x of a length ℓ therefore implies that x cannot
reach y in less than ℓ steps, and thus ℓ is indeed a correct lower bound.

Example. We demonstrate the path bound computation in Fig. 3, which shows a frag-
ment of the SL-graph of a formula φ (it shows only those ⃝∗ n edges that are relevant
in our example) and the graphs Gℓ

σ and Gu
σ for the path σ from a to c. We have that

||b|| = ||c|| = 1 and ||a|| = ||d|| = 2. This gives us the location bound, which is 6. In
the first phase, we compute the initial bound [0, 2] for paths of the predicates sls(a, b)
and sls(d, a) because both of them are disjoint with all the other paths in G[φ]. In the
second phase, we get the bound for σ equal to [1, 3] instead of the default bound [0, 6].
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7 Experimental Evaluation
We have implemented the proposed decision procedure in a new solver called ASTRAL7.
ASTRAL is written in OCaml and can use multiple backend SMT solvers. With the en-
coding presented in Section 5, it can use either CVC5 supporting set theory directly [1]
or Z3 supporting it by a reduction to the extended theory of arrays [21]. We have also
developed an alternative encoding in which both locations and location sets are repre-
sented as bitvectors. The bitvector encoding differs only in expressing set operations on
the level of bitvectors with additional axioms ensuring that all locations “can fit” into
sets encoded by the bitvectors (for details, see Appendix D). With the bitvector encod-
ing, a backend solver only needs to support theories of bitvectors and arrays, which are
both standard and supported by many other SMT solvers. Another advantage is that the
quantification on bitvectors seems to perform significantly better than on sets.

In our experiments, if we do not say explicitly which encoding and solver is used,
we use the bitvector encoding and BITWUZLA [24] as the backend solver, which we
found to be the best performing combination. We set a limit for the method SatEnum to
64 footprints. If this limited is exceeded, we dynamically switch to SatQuantif. We
use path quantifiers when the path bound is at most half of the domain bound. These
are design choices that can be revisited in the future.

All experiments were run on a machine with 2.5 GHz Intel Core i5-7300HQ CPU
and 16 GiB RAM, running Ubuntu 18.04. The timeout was set to 60 s and the memory
limit to 1 GB. Our experiments were conducted using BENCHEXEC [4], a framework
for reliable benchmarking.

7.1 Entailments of Symbolic Heaps
In the first part of our evaluation, we focus on formulae from the symbolic heap frag-
ment which is frequently used by verification tools and for which there exist many
dedicated solvers. We therefore do not expect to outperform the best existing tools but
rather to obtain a comparison with other translation-based decision procedures.

In Table 1a, we provide results for the category QF SHLID ENTL (entailments
with SLLs). We divide the category into two subsets: verification conditions (which are
simpler) and more complex artificially generated formulae “bolognesa” and “clones”
from [22]. During the experiments, we found out that several “cloned” entailments con-
tain root variables on the right-hand side of the entailment that do not appear on the
left-hand side, making the entailment trivially invalid when its left-hand side is satis-
fiable. For a few hard clone instances, this makes a problem for ASTRAL as it can-
not use the path bound computation as such roots do not appear in the SL-graph. We
have therefore implemented a heuristic that detects entailments φ |= ψ that can be
reduced to satisfiability of φ. Since this is a benchmark-specific heuristic, we present
also the version without this heuristic (ASTRAL ∗) in Table 1a. The optimised version
of ASTRAL is able to solve all the formulae being faster than other translation-based
solvers GRASSHOPPER8 and SLOTH. For illustration, the table further contains the
second best solver in the latest edition of SL-COMP, S2S9.

7 https://github.com/TDacik/Astral
8 Since GRASSHOPPER is not an solver but a verification tool, we encode the entailment check-

ing as a verification of an empty program.
9 We had technical issues running the winner ASTERIX [23]. The difference between those tools

is, however, negligible.

https://github.com/TDacik/Astral
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Table 1: Experimental results for formulae from SL-COMP. The columns are: solved in-
stances (OK), out of time/memory (RO), instances on which ASTRAL wins—ASTRAL
can solve it and the other solver not or ASTRAL solves it faster (WIN), instances solved
in the time limits of 0.1 s and 1 s, and the total time for solved instances in seconds.

(a) Results for the category QF SHLS ENTL.

Verification conditions (86) bolognesa+clones (210)

Solver OK RO WIN <0.1 ≤1 Total time OK RO WIN <0.1 ≤1 Total time

ASTRAL 86 0 - 84 86 4.62 210 0 - 68 169 202.91
ASTRAL∗ 86 0 42 83 86 4.64 195 15 88 64 150 408.48
GRASSHOPPER 86 0 70 52 86 8.65 203 7 148 60 87 1229.35
S2S 86 0 5 86 86 2.08 210 0 3 203 210 8.18
SLOTH 64 3 86 0 28 235.28 70 140 210 0 50 149.42

(b) Results for a subset of the category QF SHLID ENTL.

Doubly-linked lists (17) Nested singly-linked lists (19)

Solver OK RO WIN <0.1 ≤1 Total time OK RO WIN <0.1 ≤1 Total time

ASTRAL 17 0 - 11 17 2.72 19 0 - 3 9 86.93
GRASSHOPPER 17 0 16 3 15 7.53 - - - - - -
HARRSH 17 0 17 0 0 95.18 14 5 18 0 0 183.01
S2S 17 0 0 17 17 0.15 19 0 0 19 19 0.43
SONGBIRD 11 5 14 5 9 13.39 11 5 8 4 11 1.38

In Table 1b, we provide results for a subset of the category QF SHLID ENTL (en-
tailments with linear inductive definitions from which we selected DLLs and NLLs)
for ASTRAL and three best-performing solvers competing in the latest edition of SL-
COMP—S2S, SONGBIRD (in the version with automated lemma synthesis called SLS),
and HARRSH. We also include GRASSHOPPER which supports DLLs only. Except
S2S which solves almost all formulae virtually immediately, ASTRAL is the only one
able to solve all the formulae in the given time limit.

7.2 Experiments on Formulae Outside of the Symbolic Heap Fragment
For formulae outside of the symbolic heap fragment and its top-level boolean closure,
there are currently no existing benchmarks. For now, we therefore limit ourselves to
randomly generated but extensive sets of formulae. In the future, we would like to
develop a program analyser using symbolic execution over BSL and make more careful
experiments on realistic formulae.

We first focus on the fragment with guarded negations but without inductive predi-
cates, on which we can compare ASTRAL with CVC5. We have prepared a set of 1000
entailments of the form φ |= ψ which are generated as random binary trees with depth 8
over 8 variables with the only atoms being pointer assertions. To reduce the number
of trivial instances, we only generated formulae for which vars(ψ) ⊆ vars(φ) and
ASTRAL cannot deduce contradiction from their SL-graphs. To avoid any suspicion
that the difference is caused by better performance of the backend solver rather than
the design of our translation, we used ASTRAL with the CVC5 backend and direct set
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(a) Comparison with CVC5 (b) Comparison with GRASSHOPPER

Fig. 4: A comparison of ASTRAL with CVC5 and GRASSHOPPER on randomly gener-
ated formulae. Times are in seconds, axes are logarithmic. The timeout was set to 60 s.

encoding (with BITWUZLA and bitvector encoding, our results would be even better).
The results are given in Fig. 4a and suggest that our treatment of guarded negations
really brings a better performance—ASTRAL can solve all the instances and almost all
of them under 10 seconds. On the other hand, CVC5 timed out in 61 cases and is usu-
ally slower than ASTRAL, in particular on satisfiable formulae which represent invalid
entailments.

In the second experiment, we compared our solver with GRASSHOPPER on the
fragment which it supports, i.e., arbitrary nesting of conjunctions and disjunctions. We
again generated 1000 entailments, this time with depth 6, 6 variables and with atoms
being singly-linked lists (with 20 % probability) or pointer-assertions. The results are
given in Fig. 4b. ASTRAL ran out of memory in 5 cases, and GRASSHOPPER timed
out in 10 cases. In summary, ASTRAL is faster on more than 80 % of the formulae with
an almost 3 times lesser running time.

Finally, to illustrate that ASTRAL can indeed handle formulae out of the fragments
of all the other mentioned tools, we apply it on an entailment query that involves the
formula mentioned at the end of the introduction: ((sls(x, y)∧ ¬(sls(x, z)∗ sls(z, y)))∗
y 7→ z) |= sls(x, z), converted to an unsatisfiability query. ASTRAL resolves the query
in 0.12 s. Note that without the requirement ¬(sls(x, z) ∗ sls(z, y)), the entailment does
not hold as a cycle may be closed in the heap.

8 Conclusions and Future Work
We have presented a novel decision procedure based on a small-model property and
translation to SMT. Our experiments have shown very promising results, especially
for formulae with rich boolean structure for which our decision procedure outperforms
other approaches (apart from being able to solve more formulae).

In the future, we would like to extend our approach with some class of user-defined
inductive predicates, with more complex spatial connectives such as septractions and/or
magic wands, consider a lazy and/or interactive translation instead of the current eager
approach, and try ASTRAL within some SL-based program analyser.
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A Proof of Small-Model Property

This section presents proofs omitted in Section 4. We first introduce some additional
notation. If a stack s is clear from the context, we call a heap h positive (atomic) if (s, h)
is positive (atomic). We say that a model (s, h) is a canonical model of a formula φ if
(s, h) |= φ and ↓X (s, h) = (s, h) for X = vars(φ).

Proof (Lemma 2). Let (s, h) be an atomic model with (s, h) |= φ. Consequently h ̸= ∅
by the definition of atomicity. We proceed by structural induction on φ. Cases of pure
formulae cannot happen since h ̸= ∅. Cases of pointer assertions are trivial as they
always meet precisely the condition (1). Cases of inductive predicates are as follows:

– If (s, h) |= sls(x, y), then h is either a single pointer x 7→ y that satisfies (1), or
otherwise it satisfies (2).

– If (s, h) |= dls(x, y, x′, y′), then h is either a single pointer x 7→ ⟨n : y, p : y′⟩ that
satisfies (1), or otherwise it satisfies (3). The case when h consists of two pointers
x 7→ ⟨n : x′, p : y′⟩ and x′ 7→ ⟨n : y, p : x⟩ cannot happen because it contradicts the
assumption that (s, h) is atomic.

– If (s, h) |= nls(x, y, z), then h is either a single pointer x 7→ ⟨n : z, t : y⟩ which
satisfies (1), or otherwise it satisfies (4).

If (s, h) |= ψ1 ∗ψ2, then there exist disjoint heaps h1 and h2 with h = h1 ⊎h2 ̸= ⊥
satisfying ψ1 and ψ2, respectively. Since (s, h) is atomic, exactly one of the heaps h1
and h2 needs to be empty. Assume w.l.o.g. that h1 = ∅ and h = h2. Hence (s, h) |= ψ2

and we obtain the claim using IH. The cases of boolean connectives follow directly
from IH. ⊓⊔

To prove Lemma 1, we introduce the definition of split point. Intuitively, a split
point is a location that can be used to split a model of an inductive predicate into two
non-empty models of the same predicate type. If a model contains a split point, then it
is not atomic and therefore also not a chunk.

Definition 4 (Split point). Let (s, h) be a model such that h ̸= ∅ and (s, h) |= π(x, y)
for an inductive predicate π(x, y). Let ℓ ∈ dom(h) be a location such that ℓ ∈ img(s).
We say that ℓ is a split point of (s, h) if s(x) ̸= ℓ and there exist x′, y′, z such that one
of the following conditions holds:

– π ≜ sls(x, y),
– π ≜ nls(x, y, z),
– π ≜ dls(x, y, x′, y′) and h(ℓ, p) ∈ img(s).

Lemma 5. Let (s, h) be a model such that (s, h) |= π for some inductive predicate π.
If (s, h) contains a split point, then it is not atomic.

Proof. Let ℓ be a split point of (s, h) and let p be some variable such that s(p) = ℓ.
We will show that (s, h) is not atomic as it can be split into two non-empty positive
sub-heaps satisfying formulae ψ1 and ψ2 given as follows:

– If π ≜ sls(x, y), then ψ1 ≜ sls(x, p) and ψ2 ≜ sls(p, y).
– If π ≜ nls(x, y, z), then ψ1 ≜ nls(x, p, z) and ψ2 ≜ nls(p, y, z).
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– If π ≜ dls(x, y, x′, y′), then ψ1 ≜ dls(x, p, p′, y′) and ψ2 ≜ dls(p, y, x′, p′),
where p′ is some variable such that s(p′) = h(ℓ, p) whose existence is guaranteed
by the definition of split points.

In all the cases, non-emptiness of the model of ψ1 follows from the fact that s(x) ̸= s(p)
by the definition of split points; and non-emptiness of the model of ψ2 follows from the
fact that s(y) ̸= s(p) because s(p) ∈ dom(h), but s(y) ̸∈ dom(h). ⊓⊔

We prove Lemma 1 by proving the following stronger claim.

Lemma 6. Let (s, h) be a positive model. The following claims hold:

1. h =
⊎
chunks(s, h)

2. If h1 and h2 are non-empty positive sub-heaps such that h = h1 ⊎ h2, then
chunks(s, h) = chunks(s, h1) ⊎ chunks(s, h2).

Proof. By induction on |h|. If |h| = 0, then both claims hold as chunks(s, h) = ∅ and
h cannot be split into non-empty sub-heaps. If |h| = n+ 1 and h is atomic, the claims
also hold because chunks(s, h) = {h} and h cannot be further decomposed into posi-
tive sub-heaps. Otherwise, if h is not atomic, then there exist non-empty positive heaps
h1 and h2 such that h = h1⊎h2. Since h1 is non-empty, we have that |h2| ≤ n and vice
versa. Therefore we can apply IH to conclude that hi =

⊎
chunks(s, hi) for i = 1, 2.

Since h = h1 ⊎ h2, we directly have that h =
⊎(

chunks(s, h1) ⊎ chunks(s, h2)
)
.

It remains to show that chunks(s, h) = chunks(s, h1) ⊎ chunks(s, h2) which directly
implies both (1) and (2). Namely, we need to show that (a) there does not exist chunk c
of (s, h) such that c ̸∈ chunks(s, hi) for i = 1, 2 and (b) each element of chunks(s, hi)
is also member of chunks(s, h) for i = 1, 2.

(a) By contradiction. Assume that there exists such a chunk c. It holds that c cannot be a
pointer-chunk, because then it would be chunk in either (s, h1) or (s, h2). Therefore
c is a π-chunk for some inductive predicate π(x, y). Since c is non-empty, we can
w.l.o.g. assume that the location s(x) is allocated in h1. As h1 is fully decomposed
into its chunks by IH, there exists a chunk c′ ∈ chunks(s, h1) with root x′ such that
s(x) ∈ dom(c′). We proceed by case distinction on types of c and c′:

• If c′ is a-pointer chunk satisfying x′ 7→ y′ for some y′ which is n, ⟨n : n, p : ⟩,
or ⟨n : , t : t⟩, then n or t is a split point of the chunk cwhich is a contradiction.

• If c′ is π(x′, y′)-chunk for some y′ and π ∈ {dls, nls}, then c also needs to be
π-chunk. If s(x) = s(x′), then either c = c′ which is a contradiction, or c ⊆ c′

which means that y is a split point of c′, or c′ ⊆ c which means that y′ is a split
point of c—both possibilities lead to a contradiction. If s(x) ̸= s(x′), then s(x)
is a split point of c′ which again leads to a contradiction.

• If both c and c′ are sls-chunks we can reach contradiction by the same reasoning
as in the previous step.

• The only remaining case is when c is sls-chunk and (s, c) |= nls(x′, y′, z′) for
some y′ and z′. It holds that c ⊂ c′ because otherwise s(z′) would be a split
point of c or c = c′, both leading to a contradiction. From c ⊂ c′ and c, c′ ⊆ h,
we have that c ̸∈ chunks(s, h) as it is not maximal, which is a contradiction.

(b) By contradiction. Assume w.l.o.g. that there exists c such that c ∈ chunks(s, h1)
and c ̸∈ chunks(s, h). Consequently, there must exists c′ ⊆ h such that c ⊂ c′. It
holds that c′ ̸∈ chunks(s, h1) because otherwise c would not be a chunk of (s, h1).
As we have already shown in (a), an existence of such c′ leads to a contradiction.

⊓⊔
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To prove Theorem 1, we need to show that for arbitrary stack s, ↓s is homomor-
phism on the separation algebra of all positive heaps (w.r.t. the stack s).

Lemma 7 (↓s is homomorphism). Let s be a stack and let h1 and h2 be positive heaps.
If h1 and h2 are disjoint, then the following claims hold:

1. ↓sh1 and ↓sh2 are disjoint,
2. ↓sh1 ⊎ ↓sh2 = ↓s (h1 ⊎ h2).

Proof.

1. Directly from the definition of ↓s, we have that dom(↓shi) ⊆ dom(hi) for i = 1, 2.
Hence, if dom(h1) ∩ dom(h2) = ∅, then also dom(↓sh1) ∩ dom(↓sh2) = ∅.

2. Let chunks(s, h1) = {c1,1, . . . , c1,m} and chunks(s, h2) = {c2,1, . . . , c2,n}.

↓sh1 ⊎ ↓sh2

= ↓s (c1,1 ⊎ · · · ⊎ c1,m) ⊎ ↓s (c2,1 ⊎ · · · ⊎ c2,n) [Lemma 6]
= ↓s c1,1 ⊎ · · · ⊎ ↓s c1,m ⊎ ↓s c2,1 ⊎ · · · ⊎ ↓s c2,n [Definition of ↓s]

= ↓s (c1,1 ⊎ · · · ⊎ c1,m ⊎ c2,1 ⊎ · · · ⊎ c2,n) [Definition of ↓s, Lemma 6]
= ↓s (h1 ⊎ h2) [Lemma 6]

Notice that for the third equality to hold, we need Lemma 6 which guarantees that
chunks(s, h1 ⊎ h2) = chunks(s, h1) ⊎ chunks(s, h2). ⊓⊔

Corollary 1. For a positive model (s, h), it holds that (s, h) |= φ iff (s|vars(φ), h) |= φ.

Proof. By straightforward structural induction on φ using the fact that whether it holds
that (s, h) |= φ does not depend on variables outside of vars(φ).

Proof (Theorem 1). Let s′ = s|vars(φ) and h′ =↓s′
h. From Corollary 1 we have that

(s, h) |= φ iff (s′, h) |= φ. It remains to show that (s′, h) |= φ iff (s′, h′) |= φ. We
proceed by structural induction on φ.

– Base cases. If φ is a pure formula or a pointer assertion, then h is empty or a
singleton set, respectively, and the claim holds as in both cases h′ = h. If φ is an
inductive predicate π(x, y), then both (s′, h) and (s′, h′) consist of a single chunk
because their only allocated variable is x and they therefore cannot be split into
two non-empty positive models (one of splits would need to contain an allocated
root different from x). The implication (⇒) then holds trivially from the definition
of the reduction. The implication (⇐) is proved by rule inversion on the definition
of the reduction—if h′ is π-chunk, then h was also a π-chunk satisfying the same
predicate π.

– Induction steps. The cases of boolean connectives follow directly from IH. The case
of separating conjunction is more involved:
(⇒) By the assumption, there exist disjoint heaps h1, h2 such that h = h1 ⊎ h2

and (s′, hi) |= ψi for i = 1, 2. From IH, we have that (s′, ↓s′
hi) |= ψi

for i = 1, 2 and from Lemma 7, we have that ↓s′
h1 and ↓s′

h2 are also
disjoint. Hence, (s′, ↓s′

h1⊎ ↓s′
h2) |= φ. From Lemma 7, we also have that

↓s′
h1⊎ ↓s′

h2 =↓s′
(h1 ⊎ h2). Thus, (s′, h′) |= φ.
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(⇐) By the assumption, there exist disjoint heaps h1, h2 such that ↓s′
h = h1⊎h2

and (s′, hi) |= ψi for i = 1, 2. Let Hi = chunks(s′, hi) for i = 1, 2 and let
H = chunks(s′, h). Since ↓s′

h = h1⊎h2, for each chunk c ∈ H1∪H2 there
exists a chunk c′ ∈ H such that ↓s′

c′ = c. Let h′
1 and h′

2 be defined as h′
i =⊎

{c′ | c ∈ chunks(s, hi)}. In other words, we compose h′
i from chunks of h

that were reduced to chunks of hi. By construction, it holds that ↓s′
h′

i = hi

and therefore by IH (s′, h′
i) |= ψi. It also holds that h′

1 ⊎ h′
2 = h ̸= ⊥. Thus

(s′, h) |= ψ1 ∗ ψ2. ⊓⊔

We split the proof of Theorem 2, into several lemmas giving bounds on components
of canonical models.

Lemma 8 (Bound on the number of allocated locations). Let φ be a formula and let
(s, h) be its canonical model. Then, |dom(h)| ≤ ⌊

∑
x∈vars(φ)||x||⌋.

Proof. From Lemma 1, we have that h is fully decomposed into its chunks. Since each
chunk of a sort S must contains an allocated root variable, the number of chunks is
bounded by the number of variables of the sort S. A pointer-chunk always has the
size 1. The size of a chunk of a sort S ∈ {S,N} is 2 by the definition of the reduction.
The size of a chunk of a sort D is 3, but such a chunk needs to contain two allocated
variables (dls(x, y, x′, y′)-chunk allocates both x and x′). As the result, each variable
adds 1.5 to the total bound. Notice that those numbers corresponds to the way how ||·||
is defined.

In the worst case, almost are chunks are proper predicate chunks. The only ex-
ception is the case when the number of DLL variables is odd. In this case, the last
“unpaired” variable can create just a pointer-chunk, not a proper dls-chunk. This is the
reason why the sum is rounded down. ⊓⊔

In the next step, we show that positive models do not have any unlabelled dangling
location (a location ℓ is dangling if ℓ ∈ img(h), but ℓ ̸∈ dom(h)).

Lemma 9. For a positive model (s, h), it holds that img(h) \ dom(h) ⊆ img(s).

Proof. Since (s, h) is positive, there is a formula φ such that (s, h) |= φ. The claim is
proved by structural induction on φ. The base cases are trivial as the dangling locations
of x 7→ ⟨fi : yi⟩i∈I , sls(x, y), dls(x, y, x′, y′) and nls(x, y, z) are precisely {yi}i∈I ,
{y}, {y, y′} and {y, z}, respectively. The induction step follows directly from IH in all
the cases, for the case of separating conjunction this is because a composition of two
heaps cannot introduce a new dangling location. ⊓⊔

Proof (Theorem 2). Let φ be a satisfiable formula. From Theorem 1, we know that
there exists a canonical model (s, h) |= φ. Recall that the set of locations in (s, h)
is defined as locs(s, h) = dom(h) ∪ img(h) ∪ img(s), which can be simplified to
locs(s, h) = dom(h) ∪ img(s) using Lemma 9.

From Lemma 8, we already have that |dom(h)| ≤ ⌊
∑

x∈vars(φ)||x||⌋. When com-
puting this bound, we have already assigned at least one location to every variable and
thus no additional locations are needed, except one for nil which may not appear in φ,
but we require s(nil) to be present in every stack-heap model. This gives us the bound
|locs(s, h)| ≤ 1 + ⌊

∑
x∈vars(φ)||x||⌋. ⊓⊔
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B Translation Correctness

This section presents proofs omitted in Section 5. First, we develop the concept of cor-
respondence of stack-heap and first-order models and its properties in Section B.1 and
then we present correctness proofs in Section B.2. For this section, we fix a separation
logic formula φ.

B.1 Model Correspondence

We define the translation’s signature Σφ = {(x)x∈vars(φ), (hf)f∈Field, (DS)S∈Sort, D}.
We call a first-order model over Σφ a model of SMT encoding (SMT model for short)
if M |= Aφ and canonical if for all ℓ ∈ L \ DM and all f ∈ Field, it holds that
hf [ℓ]

M = locnil. We call models (s, h) and M corresponding if (s, h) = T−1
φ (M).

Corollary 2 (Unique corresponding models). For a stack-heap model (s, h), there is
the unique canonical corresponding SMT model M, and vice versa.

Proof. For a first-order model M, the stack-heap model T−1
φ (M) is the unique corre-

sponding model. For a stack-heap model (s, h), the unique corresponding model is the
canonical model M with T−1

φ (M). ⊓⊔

We now define an operation of composition of SMT models which mimics the com-
position of stack-heap models with the same stack and disjoint heaps.

Definition 5 (Compatible models). Let F ⊆ Loc be a set of locations. SMT models
M1 and M2 are F -compatible if the following conditions hold:

– DM1 ∩DM2 ⊆ F ,
– For all x ∈ vars(φ), xM1 = xM2 ,
– For all ℓ ∈ F and all f ∈ Field, hf [ℓ]M1 = hf [ℓ]

M2 .

We say that models are compatible if they are ∅-compatible. Observe that compatible
models corresponds to stack-heap models with the same stack and disjoint heaps.

Definition 6 (Model composition). The composition of M1 and M2, M1 ⊕ M2, is
defined iff M1 and M2 are compatible as M1 except:

– DM1⊕M2 = DM
1 ∪DM

2

– hf [ℓ]
M1⊕M2 =


hf [ℓ]

M1 if ℓ ∈ DM1 ,
hf [ℓ]

M2 if ℓ ∈ DM2 ,
locnil otherwise.

Corollary 3. Let (s, hi) and Mi be corresponding models. Then (s, h1 ⊎ h2) corre-
sponds to M1 ⊕ M2.

Proof. First, observe that M1 ⊕ M2 is SMT model iff M1 and M2 are SMT models.
The rest of the claim follows directly from the definitions of model correspondence and
model composition. ⊓⊔
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The translation T(ψ, F ) has the invariant that it cannot distinguish F -compatible
models.

Lemma 10. For F -compatible SMT models M1 and M2, it holds that:

M1 |= T(ψ,F ) ⇐⇒ M2 |= T(ψ,F ).

Proof. By the definition, F−compatible models M1 and M2 can differ only in their
interpretation of the symbol D and of array images hf [ℓ] such that ℓ ̸∈ F . It can be
easily checked that D does not occur in T(ψ, F ) which therefore does not restrict its
interpretation at all. It remains to show that T(ψ, F ) also does not restrict the inter-
pretation of hf [ℓ] such that ℓ ̸∈ F which can be done by a straightforward structural
induction on φ. ⊓⊔

The following lemma captures the correctness of translation of the separating con-
junction.

Lemma 11. For compatible SMT models M1 and M2, the following are equivalent:

– M1 |= T(ψ1, F1) ∧D = F1 and M2 |= T(ψ2, F2) ∧D = F2,
– M1 ⊕ M2 |= T(ψ1, F1) ∧ T(ψ2, F2).

Proof. Since M1 and M2 are compatible, we know that M1 ⊕ M2 is defined. It is
enough to show that M1 ⊕ M2 |= T(ψi, Fi) for i = 1, 2. Since Mi and M1 ⊕ M2 are
Fi-compatible by the definition of the composition, this is ensured by Lemma 10. ⊓⊔

B.2 Proof of Translation Correctness

Proof (Lemma 3).

(⇒) Assume that (s, h) |= ψ1 ∗ ψ2, then there exists disjoint heaps h1 and h2 such
that h = h1 ⊎ h2 and (s, hi) |= ψi. Then dom(hi) ∈ Fi for i = 1, 2 because it is
a footprint of ψi. Consequently, the right-hand side holds for Fi := dom(hi).

(⇐) Assume that F1 ∈ F1, F2 ∈ F2 are disjoint sets satisfying (s, h|Fi) |= ψi and
F1 ∪ F2 = dom(h), then (s, h) |= ψ1 ∗ ψ2. ⊓⊔

We will now define the semantics of inductive predicates in terms of paths in stack-
heap graphs. For this we will use a property that such paths are uniquely determine.

Corollary 4 (Path uniqueness). Let x and y be locations in a model (s, h). If there is
a path σ : x⇝f y, then it is uniquely determined as σ = ⟨x, h(x, f), . . . , h|σ|(x, f)⟩.

Proof. The claim is a direct consequence of the fact that f-successor of a location ℓ in
G[(s, h)] is uniquely determined as h(ℓ, f); and of paths being defined as acyclic. ⊓⊔

For reasoning about inductive predicates, we formally define the sorts of locations as
follows:

Locsls = {ℓ ∈ Loc | h(ℓ, n) ̸= ⊥, h(ℓ, p) = h(ℓ, t) = ⊥}
Locdls = {ℓ ∈ Loc | h(ℓ, n) ̸= ⊥, h(ℓ, p) ̸= ⊥, h(ℓ, t) = ⊥}
Locnls = {ℓ ∈ Loc | h(ℓ, n) ̸= ⊥, h(ℓ, t) ̸= ⊥, h(ℓ, p) = ⊥}

For a path σ, a field f and a location z, we further define the nested domain of σ in
G[(s, h)] as domN (σ, f, z) = dom(σ) ∪

⋃
{σ′ | ∃ℓ ∈ dom(σ). σ′ : ℓ⇝f s(z)}.
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Lemma 12 (Path semantics of inductive predicates). Let (s, h) be a model and let
π be an inductive predicate. The following claims hold:

– (s, h) |= sls(x, y) iff there is a path σ : x⇝n y s.t. dom(h) = dom(σ) ⊆ Locsls.

– (s, h) |= dls(x, y, x′, y′) iff either s(x) = s(y), s(x′) = s(y′) and dom(h) = ∅, or
s(x) ̸= s(y), s(x′) ̸= s(y′) and there exists a path σ : x⇝n y such that:
1. dom(h) = dom(σ) ⊆ Locdls,
2. ℓ ∈ dom(h) and ℓ ̸= s(x′) implies that h(p, h(n, ℓ)) = ℓ,
3. h(s(x′), n) = s(y) and s(x′) ∈ dom(h),
4. h(s(x), p) = s(y′) and s(y′) ̸∈ dom(h).

– (s, h) |= nls(x, y, z) iff there exists a path σ : x⇝t y such that:
1. ℓ ∈ dom(h) implies that there exists a path σ′ : ℓ⇝n z,
2. For all distinct ℓ1 and ℓ2, if {ℓ1, ℓ2} ⊆ domN (σ, n, z) and h(ℓ1, n) = h(ℓ2, n),

then h(ℓ1, n) ̸∈ domN (σ, n, z).
3. dom(h) = domN (σ, n, z),
4. dom(σ) ⊆ Locnls and dom(h) \ dom(σ) ⊆ Locsls.

Proof. We only prove the more complex implication (⇐). For the other direction, it can
be intuitively checked that models of inductive predicates satisfy the given conditions
and its proof is analogical. We proceed by induction on |σ| in all the cases.

SLL. If |σ| = 0, then the claim holds as s(x) = s(y) and dom(h) = dom(σ) = ∅.
Assume that |σ| = n + 1. Since there exists a path σ : s(x)⇝n s(y) of length n + 1
with s(x) ∈ dom(σ) ⊆ Locsls, there also exists a path σ′ : h(s(x), n)⇝n s(y). Then,
by IH, (s, h) |= ∃u. xS 7→ u∗sls(u, y). Moreover, s(x) ̸= s(y) because σ is non-empty.
Thus (s, h) |= sls(x, y).

DLL. If |σ| = 0, then the claim trivially holds. If |σ| = 1, then h(s(x), n) = s(y)
and dom(σ) = {s(x)} ⊆ Locdls. Hence, by the conditions (3) and (4), we have that
(s, h) |= xD 7→ ⟨n : y, p : y′⟩ ∗ x ̸= y ∗ x ̸= y′ where the first disequality follows from
non-emptiness of the path σ and the second follows from the fact that s(x′) ∈ dom(σ)
while s(y′) ̸∈ dom(σ) by (4). Thus, (s, h) |= dls(x, y, x′, y′).

If |σ| = n + 2, then {s(x), h(s(x), n)} ⊆ dom(σ) ⊆ Locdls and there exists a
path σ′ : h(s(x), n)⇝n s(y). We will show that for σ′, the conditions (1) – (4) hold.
This is trivial for (1), (2) and (4) because dom(σ′) = dom(σ) \ {s(x)}. The condition
(3) follows from the fact that s(x) ̸= s(x′) because h(s(x), n) ̸= h(s(x′), n) (the first
location is in dom(σ) by assumption while the second is not as it is equal to s(y) by (3)).
Hence, by IH, (s, h) |= ∃u. xD 7→ ⟨n : u, p : y′⟩ ∗ dls(u, y, x′, x) ∗ x ̸= y ∗ x′ ̸= y′.
Thus (s, h) |= dls(x, y, x′, y′).

NLL. Base case is analogical to the case of SLL. If |σ| = n + 1, then s(x) ∈ dom(σ)
and there is a path σt : h(s(x), t)⇝t s(y) with |σt| < n. As dom(σt) ⊆ dom(σ) we
have that for a sub-heap ht with dom(ht) = domN (σ′, n, z), (s, ht) |= ∃t.nls(t, y, z)
by IH. By (1), we further have that there is a path σn : h(s(x), n)⇝n s(z) for which
dom(σn) ⊆ Locsls by (4). Hence (s, hn) |= ∃n. sls(n, z). By (2), we have that ht and
hn are disjoint. Combining all the facts, we obtain that (s, h) |= ∃t, n. xN 7→ ⟨n : n, t :
t⟩∗ sls(n, z)∗nls(t, y, z)∗x ̸= y where the last disequality follows from non-emptiness
of the path σ. Thus, (s, h) |= nls(x, y, z).
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Lemma 13 (Translation of path semantics). Let (s, h) and M be corresponding
models. The following claim holds:

1. M |= reach[m,n](hf , x, y) ⇐⇒ ∃σ.σ : s(x)⇝f s(y) and m ≤ |σ| ≤ n.

Further, let ψ be a formula with free variable ℓ and assume that there exists a path
σ : s(x)⇝f s(y) with m ≤ |σ| ≤ n, then the following claims hold:

2. path
[m,n]
S (hf , x, y)

M = dom(σ),
3. M |= P≤n

(hf ,x)
ℓ. ℓ ∈ path

[m,n]
S (hf , x, y) −→ ψ ⇐⇒ for all ℓ ∈ dom(σ), ψ holds.

Further, assume that for each ℓ ∈ dom(σ) there is σ′ : ℓ⇝f s(z) s. t. |σ′| ≤ k.

4. path
[m,n]
N (hf , hf′ , x, y, z)M = domN (σ, f ′, z),

5. M |= P≤n
(hf ,x)

ℓ′. P≤k
(h′

f ,ℓ
′) ℓ. ℓ ∈ path

[m,n]
N (hf , hf′ , x, y, z) −→ ψ ⇐⇒ for all

ℓ ∈ domN (σ, f ′, z), ψ holds.

Proof. The claims (1), (2) and (4) directly follow from Corollary 4. The claim (3) fol-
lows from the fact that the size of the path dom(σ) is at most n. The proof of (5) is
analogical to (3).

Proof (Lemma 4). We write FP#(φ) instead of {FM | F ∈ FP#(φ)}. Using this
notation, we will show that FP(s,h)(φ) ⊆ FP#

M(φ), i.e., FP(φ) ⊆ FP#(φ) for short.
If (s, h) ̸|= φ ∗ true, then there does not exists F ⊆ dom(h) such that (s, h|F ) |= φ

and the claim trivially holds since FP(φ) = ∅. Assuming that (s, h) |= φ ∗ true, we
proceed by structural induction on φ.

– Base cases. For all the base cases, it holds that FP(φ) = FP#(φ) = {F} where F
is defined as follows. If φ is a pure atom or a pointer assertion x 7→ , then F = {∅}
or F = {s(x)}, respectively. If φ is an inductive predicate, its unique footprint is
given by Lemma 12 and its encoding in SMT is correct by Lemma 13.

– Induction steps. Assume that φ is a binary connective with operands ψ1 and ψ2. By
induction hypothesis, FP(ψi) ⊆ FP#(ψi) for i = 1, 2.

• If φ ≜ ψ1 ∧ ψ2 and let F be the set from FP(ψ1) and FP(ψ2) with the lesser
cardinality. Then we have:

FP(φ) ⊆ FP(ψ1) ∩ FP(ψ2) ⊆ F ⊆ F# = FP#(φ),

where the first inclusion follows from the definition of footprints and the second
follows from IH.

• If φ ≜ ψ1 ∧ ¬ψ2, then the proof is analogical to the previous case.
• If φ ≜ ψ1 ∨ ψ2, then we have:

FP(φ) ⊆ FP(ψ1) ∪ FP(ψ2) ⊆ FP#(ψ1) ∪ FP#(ψ2) = FP#(φ),

where the first inclusion follows from the definition of footprints and the second
from IH.

• If φ ≜ ψ1 ∗ ψ2, then we have:

FP(φ) ⊆ {F1 ∪ F2 | F1 ∩ F2 = ∅ and F1 ∈ FP(ψ1), F2 ∈ FP(ψ2)}
⊆ {F1 ∪ F2 | F1 ∈ FP(ψ1), F2 ∈ FP(ψ2)}
⊆ {F1 ∪ F2 | F1 ∈ FP#(ψ1), F2 ∈ FP#(ψ2)}
= FP#(φ)
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Proof (Theorem 3). We reformulate the original claim to obtain a stronger inductive
hypothesis. We prove that for arbitrary SL formula ψ and corresponding models (s, h)
and M, it holds that:

M |= T(ψ, F ) ∧D = F ⇐⇒ (s, h) |= ψ.

We proceed by structural induction on φ:

– For a pure formula ψ ≜ x ▷◁ y where ▷◁ ∈ {=, ̸=}, we have:

(s, h) |= ψ ⇐⇒ s(x) ▷◁ s(y) ∧ dom(h) = ∅ (SL semantics)
⇐⇒ M |= x ▷◁ y ∧D = ∅ (Model correspondence)
⇐⇒ M |= T(ψ, F ) ∧D = F (Formula translation)

– For a pointer assertion ψ ≜ xS 7→ ⟨fi : fi⟩i∈I , we have that (s, h) |= ψ

⇐⇒ dom(h) = {s(x)} ∧ h(s(x)) = ⟨fi : fi⟩i∈I (SL semantics)

⇐⇒ M |= D = {x} ∧ x ∈ DS ∧
∧

i∈I hfi [x] = fi (Model correspondence)

⇐⇒ M |= T(ψ, F ) ∧D = F (Formula translation)

Notice that the condition M |= x ∈ DS needed to correctly reconstruct h(x) is
ensured by the fact that M |= Aφ by the definition of SMT model.

– The cases of inductive predicates follow from Lemma 12 and Lemma 13.
– For a boolean connective ψ ≜ ψ1 ▷◁ ψ2 where ▷◁ ∈ {∧,∨,∧¬}, we have:

(s, h) |= ψ ⇐⇒ (s, h) |= ψ1 ▷◁ (s, h) |= ψ2 (SL semantics)
⇐⇒ M |= T(ψ1, F ) ▷◁ T(ψ2, F ) ∧D = F (Induction hypothesis)
⇐⇒ M |= T(ψ,F ) ∧D = F (Formula translation)

– For a separating conjunction ψ1 ∗ ψ2, we proceed as follows. Assume (s, h) |= φ.
Let Fi = FP#

M(ψi). From Lemma 3 and Lemma 4, we have that (s, h) |= φ iff∨
F1∈F1

∨
F2∈F2

∧
i=1,2

(s, h|Fi) |= ψi ∧ F1 ∩ F2 = ∅ ∧ F1 ∪ F2 = dom(h).

Let Mi be the corresponding model to (s, h|Fi
) for i = 1, 2. By IH:∨

F1∈F1

∨
F2∈F2

∧
i=1,2

(Mi |= T(ψi, Fi)∧D = Fi) ∧ F1∩F2 = ∅ ∧ F1∪F2 = DM.

Using Corollary 3, we have that M = M1 ⊕ M2. Applying Lemma 11, we have
an equivalent claim:∨
F1∈F1

∨
F2∈F2

M |= T(ψ1, F1) ∧ T(ψ2, F2) ∧ F1 ∩ F2 = ∅ ∧ F1 ∪ F2 = DM.

Finally, this is equivalent to the following claim:

M |=
∨

F1∈F1

∨
F2∈F2

∧
i=1,2

T(ψi, Fi) ∧ F1 ∩ F2 = ∅ ∧ F1 ∪ F2 = D,

which is the case iff M |= T(ψ, F ) ∧D = F . ⊓⊔
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C Complexity of BSL Satisfiability

In this section, we give details for the complexity results from Section 5.4. We use
n = bound(φ) to denote the location bound of the formula φ and note that n is linear
w.r.t. the size of φ.

Proof (Theorem 4). We prove that SatQuantif produces formulae of polynomial size,
in particular O(n3) for SLLs and DLLs, and O(n5) for NLLs. We proceed by analysis
of asymptotic sizes of auxiliary predicates used for the translation of inductive predi-
cates. Let x be a term of the size O(n) and let h, h′, y, z be terms of the size O(1). This
assumption is justified by the fact that parameters of all predicates in the translation
except the roots of considered paths (denoted by x) are variables. The root x can be a
term of the form hk

n [v] or hk
n [h

ℓ
t [v]] (where v is a variable) and is therefore always of

linear size because the numbers k and ℓ are never greater than the location bound n.
The size of auxiliary predicates is then:

– |reach=k(h, x, y)| ∈ O(n) when k ≤ n because its size is dominated by x.
– |reach[0,n](h, x, y)| ∈ O(n2) as it contains n-times reach=k(h, x, y) for k ≤ n.
– |path=k

S (h, x, y)| ∈ O(n2) when k ≤ n because it is a union of k terms of the form
{hi[x]} for i ≤ k ≤ n and thus of the size O(n).

– |path[0,n]
S (h, x, y)| ∈ O(n3) because it consists of O(n) branches, each of them

dominated by the size of path=k
S (h, x, y) for k ≤ n which is O(n2).

– |path=k
N (h, h′, x, y, z)| ∈ O(n4) when k ≤ n because it is a union of k terms of

the form path
[0,n]
S (h′, hi[x], y) for i ≤ k ≤ n and thus of the size O(n3).

– |path[0,n]
N (h, h′, x, y, z)| ∈ O(n5) because it consists of O(n) branches, each of

them dominated by the size of path=k
N (h, h′, x, y, z) for k ≤ n which is O(n4).

Translation of SLLs and DLLs is dominated by the size of the pathS term and trans-
lation of NLLs is dominated by the size the pathN term. Note, that this holds for the
translation version using universal quantifiers over locations. When optimised version
with path quantifiers is used for NLLs, we may obtain asymptotically larger formulae,
but still polynomial.

For all the other atomic formulae, the size of translated formula is constant. The
translation of all binary connective is linear in the size of their operands (also in the
case of separating conjunction when the method SatQuantif is used). The size of
axioms is also linear. Thus, the final size of the translated formula is dominated by the
translation inductive predicates. ⊓⊔

Proof (Theorem 4). We give the full definition of the reduction from QBF based on [7].
Let F ≜ Q1x1 . . . Qmxm. F

′ be a ground formula with variables X = {x1, . . . , xm}
(w.l.o.g., they are all distinct), quantifiers Qi ∈ {∀,∃}, and propositional body F ′.
Recall that for a set of variables Y , we define arbitrary[Y ] ≜ ∗y∈Y (y 7→ nil ∨ emp).
The reduction of F is defined as R(F ) ∧ ∗x∈X x 7→ nil where R(·) is defined as:

R(x) ≜ arbitrary[X] ∗ x 7→ nil R(F ∧G) ≜ R(F ) ∧ R(G)

R(¬x) ≜ arbitrary[X \ {x}] R(F ∨G) ≜ R(F ) ∨ R(G)

R(∃x. F ) ≜ (x 7→ nil ∨ emp) ∗ R(F ) R(¬F ) ≜ arbitrary[X] ∧ ¬R(F )
R(∀x. F ) ≜ arbitrary[X] ∧ ¬((x 7→ nil ∨ emp) ∗ R(¬F ))
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D Bitvector Encoding

In this section, we sketch the bitvector encoding that we have used for the experimental
evaluation in Section 7. We assume a subset of the theory of fixed sized bitvectors10

with the signature containing the following symbols: | (bit-wise or), & (bit-wise and),
· (bit-wise negation), ≪ (left shift), and b[i] (extraction of the i-th least significant bit

of the bitvector b, interpreted as a boolean value). We further write kw to denote the
unsigned representation of integer k as a bitvector of width w.

Set encoding. The main idea of the bitvector encoding is to represent location sets as
bitvectors where the boolean value of i-th least significant bit represents the member-
ship of i-th location in the set. We therefore define the width of considered bitvectors
w = n, where n is the location bound of the input formula. To reduce the state space,
one could consider computing a lower width by excluding locations that cannot be allo-
cated (such as nil), but we have not done this so far. We encode the set operations used
in our encoding as follows.

∅ ≜ 0w

X1 ∪X2 ≜ X1 |X2

X1 ∩X2 ≜ X1 &X2

{x1, . . . , xm} ≜ 1w ≪ x1 | · · · | 1w ≪ xm

x ∈ X ≜ X[x]

X1 ⊆ X2 ≜ X1 |X2 = 0w

Memory model axioms. We represent locations also as bitvectors of the same width w.
For consistency, we need to ensure that each location used in a model is interpreted
as a bitvector lesser than n (greater bitvectors would not fit into sets represented as
bitvectors which have size w = n). We first define L = {0w, 1w, . . . , (n − 1)w} and
axioms defining sets representing location sorts from Section 5.1 as:

ADS ≜ DS = {0w} ∪ {1w . . . , (nS)w},
ADD ≜ DD = {0w} ∪ {(nS + 1)w, . . . , (nS + nD)w},
ADN ≜ DN = {0w} ∪ {(nS + nD + 1)w, . . . , (nS + nD + nN)w}.

Notice that those axioms will ensure that all locations referenced by some variable are
interpreted as bitvectors lesser that n (since n = nS+nD+nN+1). To ensure the same
for anonymous locations, we add the following axiom to restrict all heap images to be
lesser than n:

Aheap ≜
∧

f∈Field

∧
ℓ∈L

hf [ℓ] < nw.

Putting it all together, the axioms in the bitvector encoding are defined as:

Aφ ≜ nil = 0w ∧ nil ̸∈ D ∧ Aheap ∧
∧

S∈Sort

(
ADS

∧
∧

x∈varsS(φ)

x ∈ DS

)
.

10 https://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml

https://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml

	Deciding Boolean Separation Logic via Small Models  

