
Zenoh: Unifying Communication, Storage and
Computation from the Cloud to the Microcontroller

Angelo Corsaro, PhD, Luca Cominardi, PhD, Olivier Hecart, Gabriele Baldoni, Julien Enoch
Pierre Avital, PhD, Julien Loudet, PhD, Carlos Guimares, PhD, Michael Ilyin, Dmitrii Bannov

ZettaScale Technology, France
{name.surname}@zettascale.tech

Abstract—An increasing number of systems span from the
data-center down to the micro-controller and need to smoothly
operate across this continuum composed by extremely heteroge-
neous network technologies and computing platforms. Building
these systems is quite challenging due to limitations of existing
technological stacks. This paper introduces Zenoh a Pub/Sub-
/Query protocol that unifies data at rest, data in motion and
computations. Zenoh has been designed ground-up to address
the needs of the cloud to micro-controller continuum. It has
a minimal wire overhead of 5 bytes, it runs and perform on
constrained as well as on high end networks and hardware.

I. INTRODUCTION

An increasing number of systems span from the data-center
down to the microcontroller and need to smoothly operate
across this continuum composed by extremely heterogeneous
network technologies and computing platforms. Building these
systems today is quite challenging due to limitations of the
existing technological stacks that are explained below.

A. Connectivity Islands
Existing protocols were designed to work on a very specific

use case and in a way address a “connectivity island.” As an
example, the Data Distribution Service (DDS) [DDS(2017)]
was designed to provide a pub/sub protocol that works best
for applications running on resourceful hardware connected
by multicast-enabled (UDP/IP) wired Local Area Network
(LAN). Another assumption in DDS’ design is that peer-to-
peer communication is quintessential and most of the applica-
tions consume data from every other application.

At the opposite side of the spectrum we have MQTT
[OASIS(2014)], which was designed to support pub/sub via
a client to broker architecture over TCP/IP networks. What
is interesting is that both DDS and MQTT provide pub/sub.
Yet, their implementations force onto the user very specific
communication topologies that are completely orthogonal to
the concept of pub/sub. This introduces architectural inflexibil-
ity and scalability issues. As an example, DDS is notoriously
hard to work with and scale on a Wide Area Network (WAN)
as a consequence of its (flat) peer-to-peer only model and its
reliance on multicast IP. MQTT, on the other hand, makes
communicating across a WAN easy, as far as one can accept
to have a hub-and-spoke architecture and a topology not ideal
for several edge applications.

But things are even worse. While Message Queueing
Telemetry Transport (MQTT) is often referred-to as

a lightweight protocol, it relies on TCP/IP and this
is not always available nor desirable for constrained
hardware and constrained networks. Thus, other
protocols are often used to deal with constrained
hardware, such as Constrained Application Protocol
(CoAP) [Shelby et al.(2014)Shelby, Hartke, and Bormann].

At this point, the legitimate question to ask is: how can
we deal with systems that include constrained hardware and
networks, require high-performance peer-to-peer on the edge,
and need to efficiently scale over the Internet?

Thus far, the solution has been to use different protocols on
different segments of the system and integrate them together
hoping to have some meaningful end-to-end semantics. This
is tedious, error-prone and inefficient. A consequence of the
inability of established protocols to deal with the cloud-to-
device continuum – they weren’t simply designed for it.

B. Data in Motion and Data at Rest

Pub/Sub protocols have emerged as the technology of choice
to deal with data in motion, while databases as the technology
of choice to deal with data at rest. These two technology
ecosystems are intimately related. Data in movement needs, at
some point, to be stored, thus becoming at rest, and eventually
retrieved. Yet, from a programmer perspective there is no
unified API to deal with both of them. Additionally, while
pub/sub features location transparency, databases are location
centric. In other words, when expressing a subscription in a
pub/sub system one doesn’t need to know the location of the
publisher(s), yet, when submitting a query it is required to
know the location of the database. As a consequence, either
one has to keep all the data in a central location – like the
solutions provided by cloud storage – or has to deal with
the complexity of tracking data’s location. This is a major
challenge for edge applications. As for these applications it is
key to have data stored in a distributed manner, to avoid the
cost, including energetic cost, of shipping it to the cloud and
to reduce the latency to retrieve it.

C. Computations

While distributed applications can be modeled as data flows,
with computations being triggered only by data, it is rare that
a distributed application is entirely based on this paradigm.
Often it is convenient to have services and be able to trigger,
and invoke their execution. This in turn requires reliance on

yet another technology ecosystem that supports request/reply.
Which means that in turn our developer needs to learn yet
another set of abstractions and APIs. Additionally, existing
request/reply frameworks are host-centric, making it hard to
deal with load-balancing, and fault-tolerance.

Zenoh [Corsaro(2018)] was born from the ambition to
address these problems in a structured manner. We did a
systematic review of all the available protocols, including
emerging Named Data Networking (NDN) [Zhang(2014)],
capitalized on the 20+ years of experience of our team
in working in distributed systems, ranging from embedded
systems to Pan-European Air Traffic Control and management.
After a few years of R&D, our team identified the minimal set
of orthogonal primitives that would allow us to deal with data
in motion, data at rest and computations – from the data-center
to the micro-controller. The result of this effort was Zenoh.

The reminder of this paper is organised as follows, Sec-
tion II introduces the Zenoh protocol and explains its key
features. Section III provides a compartive analysis of Zenoh’s
wire efficiency and performance against MQTT and DDS.
Finally Section IV discusses some of the innovations we are
currently working along with concluding remarks.

II. ZENOH

Zenoh is a Pub/Sub/Query protocol that provides a set of
unified abstractions to deal with data in motion, data at rest
and computations at Internet Scale. Zenoh runs efficiently
on server-grade hardware and networks as well as on micro-
controller and constrained networks. Finally, Zenoh supports
peer-to-peer, routed and brokered communication, thus allow-
ing for an optimal communication model at each stage of the
system. In the reminder of this section we will introduce the
key Zenoh’s concepts.

A. Positioning the Protocol
As we are talking about protocols, the first thing we should

do is to position it with respect to the ISO/OSI model. Figure 1
shows that Zenoh can run above a Data Link, the Network or
the Transport Layer. Which as a consequence, indicates that
the minimal requirement for Zenoh is to have available a best
effort data-link. As of today, Zenoh supports Serial Links,
Bluetooth, LORA, Unix Sockets, TCP/IP, UDP/IP, QUIC,
WebSockets, CANbus, and OpenThreadX.

The reason for having a protocol that can run over the Data
Link is that in embedded systems the IP protocol stack is not
always available or not necessarily desirable for wire-overhead
reasons.

B. Protocol Abstractions
1) Resources, Key Expression and Selectors: Zenoh op-

erates over resources. A resource is a (key, value) tuple,
where the key is an array of arrays of characters. When
representing keys we usually use the “/” as a separator. Thus,
home/kitchen/sensor/C2O2 is a Zenoh key.

A set of keys can be expressed by means of a key selector,
which may include ⇤ or ⇤⇤ which expand respectively to an

Physical

Data Link

Network

Transport

Application

Zenoh

Figure 1. Zenoh protocol stack positioning.

arbitrary array of characters not including the separator, and an
array of arrays of characters. For instance home/kitchen/sensor/*
would represent the set of keys including all the sensors in
my kitchen, while home/*/sensor/C2O2 would represent the set
of keys representing all the C2O2 sensors in my house.

Zenoh allows to select a set of resources by using
a selector. The syntax supported Zenoh’s the selector is
keyexpr?arg1=val1&arg2=value – where keyexpr is a key ex-
pression as defined above. Some args, such as those
for indicating filters, projections and time intervals are
built-in, application-specific semantics can be added by
defining additional arguments. As an example the selec-
tor home/*/sensor/temperature?_filter="temp>25"&_project="hum",
among all the temperature sensor in my house it would select
those whose value is greater than 25 and project their humidity.

2) Publisher, Subscriber and Queryable: The Zenoh proto-
col defines three different kinds of network entities, publisher,
subscribers and queryables. A publisher should be thought
as the source for resources matching key expression. As
an example, a publisher could be defined for a key, such
as home/kitchen/sensor/C2O2, or for a set of keys, such as,
home/kitchen/sensor/* or home/kitchen/**.

Symmetrically, a subscriber should be thought as a
sink for resources matching key expression. As an ex-
ample, a subscriber could be defined for a key, such
as home/kitchen/sensor/C2O2, or for a set of keys, such as,
home/**/sensor/*.

A queryable should be through of as a well for resources
whose key match a key expression. As such a queryable for
home/kitchen/** essentially promises that if queried for keys
that match this key expression it will have something to say.

Finally, it is worth mentioning that at a protocol level a
the declaration of publisher is optional and is just seen as an
optimization for recurring publications over a set of keys.

3) Primitives: Zenoh has a very constrained number of
orthogonal primitives, these are:

• Declarations. These primitives, namely, declare_resource,
declare_publisher, declare_subscriber, and declare_queryable
allow to declare a resource, a publisher a subscriber and
a queryable respectively. A declaration is either used to
optimize certain aspects of the protocol, such as auto-
matically mapping keys to small integers, or to inform

import zenoh

Opens a zenoh session

z = zenoh.open()

key = 'demo/sensor/temp'

Zenoh supports natively various data types

session.put(key, 25)

Figure 2. Producing data with Zenoh

the rest of the Zenoh network that a specific endpoint
is available. That said, differently from protocols, such
as DDS, in which the dynamic discovery information
provides extremely precise information on who and what
is available on the system, inducing as a consequence se-
vere scalability problems, zenoh uses sets and set-theory
operation to generalize the information distributed across
the network. As such, and as independently measured
in several instances [OSR(2022)], it is not hard for a
Zenoh system to have a fraction of the discovery traffic
generated by an equivalent DDS system.

• Producing Data. The put operation is used to produce a
(key, value). This operation provides options that allow
to specify the congestion control applied to it, the asso-
ciated priority and a few other non-functional properties.

• Deleting Data. Zenoh provides a delete operation that
makes it possible to indicate the desire that a resource
shall be deleted.

• Query. Zenoh provides a get operation that allows to
issue a query. This query will be served by a set of
queryable that cover, in a set-theoretical sense, the key
expression portion of the query. Additionally, among all
the set of sets that cover the query, Zenoh will select
the one that is closest in routing terms. Zenoh provides
options to control if only one of such set will be triggered
or if all the matching queryable will. It also allows to
control wether a partial cover is acceptable or not. The
get operation also allows to control how data will be
consolidated on the way back, and if consolidation is
required at all. Finally a query can have a body attached.

C. Zenoh’s Code Example

Figure 2, 3 and 4 show how Zenoh’s resources can be
published, subscribed and queries respectively. These code
examples show the simplicity and orthogonality of the API. It
is also worth noticing that in Zenoh, as previously mentioned,
a publisher is not required to publish data. On the other hand
it can be used as an optimisation when producing the same
resource, or set of resources recurrently.

D. Universality of Zenoh’s Primitives

In distributed systems usually we need to deal with (1) data
in motion, which is often addressed by pub/sub technologies,

import zenoh

Opens a zenoh session

z = zenoh.open()

def listener(sample: Sample):

key = sample.key_expr

value = sample.payload.decode()

print(f">> Received: ('{key}', '{value}')")

declare a subscriber

sub = session.declare_subscriber(key, listener)

Figure 3. Declaring a Zenoh subscpription.

import zenoh

Opens a zenoh session

z = zenoh.open()

key_expr = 'example/sensor/*'

issue a query

replies = session.get(key_expr, zenoh.Queue())

for reply in replies.receiver:

try:

print(">> Received ('{}': '{}')"

.format(reply.ok.key_expr,

reply.ok.payload.decode()))

except:

print(">> Received (ERROR: '{}')"

.format(reply.err.payload.decode("utf-8")))

Figure 4. Issuing a Zenoh distributed query.

(2) data at rest that is addressed by databases, and (3) dis-
tributed computations which usually are triggered using RPC
mechanisms.

Zenoh is the first technological stack that has a set of
primitives that are orthogonal and complete with respect to
the abstractions required for distributed computing and thus
universal.

Zenoh trivially supports pub/sub as it has first class abstrac-
tions for publishers and subscribers.

Zenoh supports data at rest since the combination of a
queryable and a subscriber can be used to represent a database.
Zenoh goes one step further and actually, provides off the
shelf the integration with a large number of DBMS sys-
tems, which can be now leveraged as geo-distributed data
stores and queried using the get operation. Additionally,
Zenoh has a built-in, data-based independent, alignment pro-
tocol [Zen(2022)] that ensures eventual consistency in spite of
disconnections and network partitions.

Figure 5. Zenoh supported topology.

Finally, a queryable can be used to represent a distributed
computation. Additionally, this computation will be named
as opposed to be bound to a specific address, you’ll be
able to control through the get options if you trigger one or
several computations matching your query and as such even
implement mechanism such as map/reduce.

E. Communication Topology

The Zenoh protocol does not impose any topological con-
straints on how application may communicate. As shown in
Figure 5, Zenoh supports peer-to-peer over complete connec-
tivity graphs as well as over arbitrary mesh. It supports routed
communication and both routers as well as peers, can broker
communication for clients. This generality allows to support
a multitude of use cases and to scale the protocol at Internet
scale. Finally, it is worth mentioning that Zenoh’s routers are
software-based and can run very efficiently on a raspberry pi
2 or 3.

F. Ordering and Consistency

Zenoh leverages Hybrid Logical Clock
(HLC) [Kulkarni(2014)] to totally order events. While
this decision may let some distributed systems purist
disappointed, the reality is that sufficiently aligned clocks are
a reality on modern networks. GPS and radio receivers for
clock signals are extremely cheap and could be deployed with
routers if necessary. But the reality is that as cellular networks
are ubiquitous, decent clock synchronization is a commodity.
As a consequence of total ordering it is straightforward for
Zenoh to provide an Eventually Consistent consistency model.
Stronger consistency model can be easily built by leveraging
the ability to control quorums for put and get.

G. Security
Zenoh is implemented in Rust for improving security and

performance. As recently reported by the NSA [NSA(2022)],
70% of security vulnerabilities are caused by memory mis-
management. These problems are ruled out using a memory
safe programming language such as Rust. Additionally, in the
design of Zenoh we try to limit the attack surface – as an
example, our session opening protocol does not create state
on the infrastructure, it let’s the opening side keep track of
the state by using encrypted cookies. The protocol supports
pluggable authentication mechanisms along with mutual au-
thentication and secure channels.

H. Who is using it
Zenoh’s early adopters where in the telecommunica-

tion industry, as a consequence was quickly identified by
ETSI [ETSI()] as a key technologies for Multi-Access Edge
Computing (MEC). Furthermore, ITU recently recommended
Zenoh for standardization as the protocol to be used for
Intelligent Transport Systems (ITS) [ITU(2022)]. Over the
past year or so, Zenoh has established itself as the protocol
of choice for R2X (Robot-to-Anything) communication, it is
swiftly growing in popularity in V2X (Vehicle-to-Anything)
and in distributed computing as shown by recent deployments
in Internet Scale analytics frameworks and Industry-4.0 soft-
PLCs.

III. PERFORMANCE

Efficiency and performances are important for a com-
munication protocol that aims at addressing the cloud-to-
microcontroller continuum. In this section we’ll provide an
analytical analysis of Zenoh’s wire overhead and an empirical
evaluation of Zenoh’s throughput and latency when compared
to DDS and MQTT.

A. Wire Efficiency
The best way to evaluate the wire efficiency of a protocol

is to look at its message structure. Figure 6 and Figure 7 show
the structure of the data messages for MQTT and DDS. From
this it can be seen how the wire overhead added by MQTT
is linear into the length of the topic name. This is a big issue
since the topic name is a UTF-8 encoded string which tends
to be several tens of bytes.

The minimal wire-overhead is thus 6 bytes plus the length
of the topic name. To give you a concrete example, if you
have an MQTT topic called /com/acme/mysystem/devicekind/id,
this would add 32 bytes overhead to every data message. DDS
on the other hand has a wire overhead of 56 bytes assuming
that no inline QoS are sent.

Let’s look now into Zenoh. As shown in the Figure 8, Zenoh
sends frames, where a frame may contain multiple messages.
This allows to pack efficiently multiple data messages –
or other protocol messages – and further improve the wire
efficiency. If we look at the Zenoh’s data message, reported
in Figure 9, its minimal wire overhead is 3 bytes. Taking into
account the 2 bytes added by the frame we get to a total of

| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

+---+---+---+---+---+---+---+---+

| messagetype | DF| QoS | R |

+---------------+---+-------+---+

~ Remaining Length (1-4 bytes) ~

+-------------------------------+

| Topic Name Length MSB |

+---+---+---+---+---+---+---+---+

| Topic Name Length LSB |

+---+---+---+---+---+---+---+---+

| |

~ Topic Name ~

| |

+---+---+---+---+---+---+---+---+

| Message ID MSB |

+---+---+---+---+---+---+---+---+

| Message ID LSB |

+---+---+---+---+---+---+---+---+

| |

~ Payload ~

| |

+---+---+---+---+---+---+---+---+

Figure 6. MQTT Data Message

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| 'R' | 'T' | 'P' | 'S' |

+---------------+---------------+---------------+---------------+

| ProtocolVersion version | VendorId vendorId |

+---------------+---------------+---------------+---------------+

| |

+ +

| GuidPrefix guidPrefix |

+ +

| |

+-+

| INFO_TS |X|X|X|X|X|X|0|E| octetsToNextHeader |

+---------------+---------------+---------------+---------------+

| |

+ Timestamp timestamp +

| |

+---------------+---------------+---------------+---------------+

| DATA |X|X|X|X|X|D|Q|E| octetsToNextHeader |

+---------------+---------------+---------------+---------------+

| Flags extraFlags | octetsToInlineQos |

+---------------+---------------+---------------+---------------+

| EntityId readerId |

+---------------+---------------+---------------+---------------+

| EntityId writerId |

+---------------+---------------+---------------+---------------+

| |

+ SequenceNumber writerSN +

| |

+---------------+---------------+---------------+---------------+

~ ParameterList inlineQos [only if Q==1] ~

+---------------+---------------+---------------+---------------+

~ SerializedPayload serializedPayload [only if D==1 || K==1] ~

+---------------+---------------+---------------+---------------+

Figure 7. DDS Data Message

5 bytes overhead – when sending a single data message. If
Zenoh is able to batch N messages, then the wire overhead
becomes (3N + 2)/N which tends to 3 bytes fairly quickly in
N.

Based on the analysis above, we can deduce that Zenoh is
almost 20x more wire efficient than DDS. For MQTT, it really
depends on the length of the topic name. In the given example,
which represents an average topic length, Zenoh is 10x more
wire efficient.

+-------+------+------+- ... -+

| FRAME | DATA | DATA | ... |

+-------+------+------+- ... -+

Figure 8. Zenoh Frame Message

7 6 5 4 3 2 1 0

+---------------+

| DATA HEADER | 1 byte

+---------------+

~ RESOURCE ~ 1+ bytes

+---------------+

~ Payload LEN ~ 1+ bytes

+---------------+

~ Payload ~

+---------------+

Figure 9. Zenoh Data Message

Please notice that the relative difference is extremely impor-
tant in spite of the small absolute value of this overhead. If
you consider applications that send data 24x7x365 like robots,
cars, IoT devices, etc., then you can see that over time the
differences really diverge.

B. Throughput

To evaluate the throughput we use a program publishes
messages back-to-back along with a subscriber that receives
the published data and calculates the message rate (msg/s).
This test is ran for payload sizes ranging from 8 bytes to
512MB to evaluate the impact of the payload size on through-
put. Figure 10 and Figure 11 reports the measured throughput
in messages per second and bytes per second. We report both
graph, because in spite of using a logarithmic scale for the y
axis, it is only looking at this two different representation of
the same data that one can properly appreciated the difference
in performance for small and big data payloads. The dashed
line on these figures represents the throughput achieved by
iperf.

The results show that the best throughput is achieved by
Zenoh P2P across all payload-sizes, with a peak throughput
of 50 Gbps. The second best is Zenoh in a routed configuration
with 34 Gbps peak throughput. Cyclone DDS follows in third

Figure 10. Throughput in messages per second.

Figure 11. Throughput in bytes per second per second.

Single-Host Multi-Host

MQTT 27 45
Cyclone DDS 8 37
Zenoh Routed 21 41

Zenh P2P 10 16
Zenoh Pico P2P 5 13

Ping 1 7

Figure 12. Single and multi-host latency

position with a peak throughput of 14 Gbps, while MQTT
peaks at 9 Gbps but then shows a rather erratic behaviour for
larger payloads.

C. Latency

The latency of the various protocol was evaluated using
a ping program that publishes the ping message, and a pong
program immediately echos back the received message. The
tested payload size is fixed to 64 bytes (aligned with ICMP
echo/reply). As Zenoh can run both peer-to-peer and rout-
ed/brokered, the two configuration were tested. Additionally,
when running the multiple host scenario, three hosts where
used, one for the publisher, one for the subscriber and one for
the router/broker.

The latency is defined as half of the median round-trip time
covering the ping and pong operations. Figure 12 shows the
results of the tests. The Linux ping utility was included as a
baseline of the minimum latency that can be achieved.

As it can be seen in the table reported on the Figure 12 and
focusing on the single host results, MQTT and Kafka have a
latency of 73 µs and 27 µs, respectively. As for Zenoh, while
the client mode Zenoh brokered has a latency of 21 µs, Zenoh
P2P shows a latency of 10 µs. Cyclone DDS, has a latency
slightly lower than Zenoh, achieving 8 µs – this number is
lower than Zenoh P2P essentially for two reasons, (1) the
advanced packet scheduling and batching performed my Zenoh
and (2) the use of using UDP/IP. This explanation is validated
by looking at the latency provided by Zenoh-Pico which is

a Zenoh implementation that does not support arbitrary mesh
topologies. When testing Zenoh-Pico’s latency while running
on UDP/IP we get a latency of 5 µs – which is the best over
all.

The multiple-host scenario is ran over a 100 Gb Ethernet.
In this test scenario Zenoh brokered has a median latency of
41 µs, while Zenoh P2P has a latency of 16 µs. MQTT has a
latency of 45 µs, and Cyclone DDS of 37 µs, while Zenoh-
pico, it remains the best one at 13 µs. In conclusion Zenoh
provides the best latency on all cases.

Finally, the source code for the tests used to evalu-
ate these performances are available at https://github.com/
ZettaScaleLabs/zenoh-perf.

IV. CONCLUDING REMARKS

In this paper we have introduced Zenoh, a novel protocol
that addresses the needs of applications running from the
cloud to the micro-controller continuum and which provides
a set of abstractions that unify data in motion, data at rest
and computations. We have demonstrated that Zenoh has the
lowest wire overhead, when compared to other mainstream
protocols and the highest performances both in terms of
throughput s well as in terms of latency.

At the present stage we are working on extending Zenoh
with a data-flow computing framework. This framework will
allow to define data-flow computations spanning from the data-
center down to the micro-controller and will be an extremely
natural way of integrating machine learning algorithms with
devices such as robots and cars. We are also working toward
making Zenoh’s routing completely pluggable. As of today we
support two different algorithms, but going forward, advanced
users will be able to define they own routing algorithm.

Finally, we’d like to thank the EU Horizon Europe re-
search and innovation programme under grant agreement no.
101070177 (ICOS) for funding part of this research.

V. ACRONYMS

CoAP Constrained Application Protocol
DDS Data Distribution Service
HLC Hybrid Logical Clock
LAN Local Area Network
MEC Multi-Access Edge Computing
MQTT Message Queueing Telemetry Transport
NDN Named Data Networking
WAN Wide Area Network

REFERENCES

[DDS(2017)] “The data distribution service,” 2017. [Online]. Available:
http://omg.org/spec/dds

[OASIS(2014)] OASIS, “Mq telemetry transport (mqtt) v3.1.1 protocol spec-
ification,” OASIS, Tech. Rep., October 2014.

[Shelby et al.(2014)Shelby, Hartke, and Bormann] Z. Shelby, K. Hartke, and
C. Bormann, “The Constrained Application Protocol (CoAP),” RFC
7252, Jun. 2014. [Online]. Available: https://www.rfc-editor.org/info/
rfc7252

[Corsaro(2018)] A. Corsaro, “Zenoh: The Zero Netwok Over-Head
protocol,” 2018. [Online]. Available: https://zenoh.io

[Zhang(2014)] e. a. Zhang, “Named data networking,” vol. 44, no. 3, 2014.
[Online]. Available: https://doi.org/10.1145/2656877.2656887

https://github.com/ZettaScaleLabs/zenoh-perf
https://github.com/ZettaScaleLabs/zenoh-perf
http://omg.org/spec/dds
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://zenoh.io
https://doi.org/10.1145/2656877.2656887

[OSR(2022)] “Zenoh for robotics,” 2022. [Online]. Available: https:
//bit.ly/3by0Y51

[Zen(2022)] “Keeping storages aligned in zenoh,” 2022. [Online]. Available:
https://zenoh.io/blog/2022-11-29-zenoh-alignment/

[Kulkarni(2014)] Kulkarni, “Logical physical clocks,” in Principles of Dis-
tributed Systems: 18th International Conference, OPODIS 2014, Cortina
d’Ampezzo, Italy, December 16-19, 2014. Proceedings 18. Springer,
2014, pp. 17–32.

[NSA(2022)] NSA, “Software memory safety,” 2022. [Online].
Available: https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/
CSI_SOFTWARE_MEMORY_SAFETY.PDF

[ETSI()] ETSI, “Etsi mec – technology ecosystem.” [Online]. Available:
https://mecwiki.etsi.org/index.php?title=MEC_Ecosystem

[ITU(2022)] ITU, “Automated driving safety data protocol – specification,”
2022. [Online]. Available: https://www.itu.int/dms_pub/itu-t/opb/fg/T-
FG-AI4AD-2022-PDF-E.pdf

View publication stats

https://bit.ly/3by0Y51
https://bit.ly/3by0Y51
https://zenoh.io/blog/2022-11-29-zenoh-alignment/
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://mecwiki.etsi.org/index.php?title=MEC_Ecosystem
https://www.itu.int/dms_pub/itu-t/opb/fg/T-FG-AI4AD-2022-PDF-E.pdf
https://www.itu.int/dms_pub/itu-t/opb/fg/T-FG-AI4AD-2022-PDF-E.pdf
https://www.researchgate.net/publication/373757741

	Introduction
	Connectivity Islands
	Data in Motion and Data at Rest
	Computations

	Zenoh
	Positioning the Protocol
	Protocol Abstractions
	Resources, Key Expression and Selectors
	Publisher, Subscriber and Queryable
	Primitives

	Zenoh's Code Example
	Universality of Zenoh's Primitives
	Communication Topology
	Ordering and Consistency
	Security
	Who is using it

	Performance
	Wire Efficiency
	Throughput
	Latency

	Concluding Remarks
	Acronyms
	References

