
A Reliable and Resilient Framework for Multi-UAV
Mutual Localization

Zexin Fang∗, Bin Han∗ and Hans D. Schotten∗†
∗Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (RPTU), Kaiserslautern, Germany

†German Research Center of Artificial Intelligence (DFKI), Kaiserslautern, Germany

Abstract—This paper presents a robust and secure framework
for achieving accurate and reliable mutual localization in multiple
unmanned aerial vehicle (UAV) systems. Challenges of accurate
localization and security threats are addressed and corresponding
solutions are brought forth and accessed in our paper with
numerical simulations. The proposed solution incorporates two
key components: the Mobility Adaptive Gradient Descent (MAGD)
and Time-evolving Anomaly Detectio (TAD). The MAGD adapts
the gradient descent algorithm to handle the configuration changes
in the mutual localization system, ensuring accurate localization
in dynamic scenarios. The TAD cooperates with reputation prop-
agation (RP) scheme to detect and mitigate potential attacks by
identifying UAVs with malicious data, enhancing the security and
resilience of the mutual localization.

Index Terms—Coordinated attack, UAV, Gradient descend,
Mutual localization.

I. INTRODUCTION

Multi-UAV systems hold significant promise for revolution-
izing various domains, particularly the future Sixth Generation
(6G). For instance, multi-UAV systems have the potential to
provide reliable communication links in challenging environ-
ments, support connectivity in remote or disaster-stricken areas,
and overcome limitations of ground infrastructure [?].

In UAV applications, Global Positioning System (GPS) mod-
ules may face challenges in providing precise position infor-
mation in urban areas, tunnels, or environments with obstacles.
Alternative options like radio trilateration can be used but have
limited coverage and require calibration and installation cost
[?][?]. A mutual position system utilizing anchor UAVs with
accurate GPS positions can provide precise estimates for target
UAVs with poor GPS reception. Distance estimation methods
such as Time of Flight (ToF) or Received Signal Strength
Indicator (RSSI) ranging can be used in this system.

Existing localization research primarily addresses terrestrial
scenarios in static networked sensors, often lacking altitude
considerations. However, the uneven distribution of anchor
UAVs in three dimensions adds complexity to localization
algorithms. Additionally, in multi-UAV mutual localization, the
mobility of UAVs introduces variations in reliable position and
distance information. Therefore, comprehensive research and
novel methodologies are necessary to tackle these challenges
[?]. On top of that, security is also a critical concern in
multi-UAV mutual localization. While extensive research has
been done on security in static sensor networks [?][?][?],
its validation in dynamic scenarios is lacking. The changing
topology of target UAVs and malicious UAVs can significantly

impact the performance of attack and defense schemes. Fur-
ther investigation is needed to validate the performance and
robustness of these schemes for dynamic multi-UAV mutual
localization scenarios.

This work demonstrates a robust and secure framework that
ensures accurate and reliable mutual localization while address-
ing potential security threats. The subsequent sections of the
paper are structured as follows. In Sec.II we investigate the error
model of our scenario. In Sec.III we introduce our proposed
methodologies, meanwhile, evaluate the overall efficiency and
accuracy of the mutual localization system in the specific
scenario under consideration. Then in SecIV we outline the
potential attack scheme and proposed defend scheme (TAD),
and validate our proposed scheme with numerical simulations
presented in Sec.V. In Sec.VI, we conclude our paper by
summarizing the key findings.

II. ERROR MODEL SETUP

A. Distance estimation error

Considering the limited range and sensitivity to environmen-
tal conditions of ToF ranging, a better approach that suits our
scenario is RSSI ranging. This method relies on a path loss
model to establish a relationship between the RSSI value and
the distance of a radio link from an anchor UAV. Such a model
can be described as:

Pr(d) = Pr(d0)− 10np ∗ log(
d
d0

), (1)

where Pr(d) indicates the RSSI value at the distance d from the
anchor UAV; d0 is the predefined reference distance, meanwhile
Pr(d) is the RSSI measurement value at d0; np denotes the path
loss factor of the radio link.

Regarding the fact that a radio channel suffers from different
forms of fading, therefore RSSI measurement error P∆

r (d)
is inevitable and will result in a distance estimation error
E . We investigated RSSI measurement results between two
Zigbee nodes [?] [?] and Sigfox nodes [?]. P∆

r (d) is zero-mean
Gaussian distributed with a standard deviation σr(d). However,
in the case of small distances, σr(d) shows a weak relation
to the distance, which indicates fading dominates over path
loss in this range. We consider an outdoor urban environment
with NLOS (Non-Line of sight) radio links, which is quite
common in our use case, thus P∆

r (d) is likely to be fluctuating
in a same manner. To simplify our analysis, the standard
deviation σr(d, t) is considered to be randomly and uniformly



distributed, meanwhile subjected to the square of the distance
to approximate measurement results, as described follows:

P∆
r (d, t) ∼ N

(
0, σr(d, t)

2
)

(2)

σr(d, t) ∼ γd ∗ U (σr
min, σ

r
max) (3)

γd = S ∗ d2 + 1 (4)

where γd is the modification factor, which modifies the relation
between distance and σr(d, t); S is the scaling factor, which is
to scale how strong is γd subjected to d.

Assume a pass loss model with pass loss factor np = 3,
reference distance d0 = 1 and RSSI measurement value
Pr(d0) = −30dBm, while σr

min = 0.5, σr
max = 2 and

S = 0.0001. The simulation of such a model is shown in Fig. 1.

Fig. 1. Simulated RSSI value over distance

By applying error to Pr(d) and find the corresponding
distance of errored RSSI value, we are able to estimate the
distance error E(d) over the distance, simulation results are
presented in Fig. 2

Fig. 2. Estimation error and standard deviation over distance between 2 UAVs

The simulation results shows that distance estimation error
E(d) is zero mean Gaussian distributed with E(d) ∼ (0, σ2

d (d)),
while σd(d) fluctuates but increases over the distance. However,
based on the simulation results, distance estimation over 150
can be extremely unreliable. Additionally, the communication
cost can be drastically increased as more anchor UAVs are
exposed to the target UAV.

B. Position measurement error

For a set of anchor UAVs U = {u0, u1, . . . un}, each UAV
has an error of its position, typically caused by various factors.
With the assumption that the GPS module of UAV mitigated
many of these error factors, we limited the GPS error to the
Gussian error caused by the measurement. The actual position
pn(t) and its pseudo position p◦n(t) at time step t of the nth

UAV can be described :

pn(t) = [xn(t), yn(t), zn(t)] (5)

p◦n(t) = pn(t) + [x∆
n (t), y∆n (t), z∆n (t)] (6)

[x∆
n (t), y∆n (t), z∆n (t)] ∼ N 2

(
0, σ2

p,n/3
)

(7)

σp,n ∼ U (σp
min, σ

p
max) (8)

where [x∆
n (t), y∆n (t), z∆n (t)] is position measurement error,

which can be described by a zero mean Gaussian distribution
with standard deviation σp,n. σp,n is considered to be random
uniform distributed. Within a valid coverage of mutual localiza-
tion, a target UAV uk ∈ U measures the distance from anchor
UAVs. The real distance dk,n and measured distance d◦k,n can
be described as follows :

dk,n = ∥pk(t)− pn(t)∥ (9)

d◦k,n = dk,n + E(dk,n, t) (10)

III. ADAPTIVE AND ROBUST MUTUAL LOCALIZATION

A. Introduction to different localization techniques

Thorough studies have been conducted focusing on distance-
based localization techniques. We focus on 3 different localiza-
tion techniques: least square (LS) based localization, l1 norm
(LN-1) based localization, and gradient descend (GD) based
localization, to investigate their localization performance in the
presence of uneven spatial distribution of anchor UAVs. These
techniques have been widely recognized for their robustness
and efficiency in sensor network scenarios [?][?].

Given the measured distance d◦k,n of anchor UAVs and
their positions p◦n, the position of uk can be estimated by
minimizing the error between measured distance and calculated
distance, as described follows:

pk = arg min
[x,y,z]

N∑
n=0

∣∣∥p◦n − pk∥ − d◦k,n
∣∣ . (11)

This optimization problem can be directly solved by LS tech-
nique with,

[xk, yk, zk, ∥pk∥2]T = (ATA)−1Ab (12)

where A and b are matrices containing anchor position and
measured distances information,

A =


−2x0 −2y0 −2z0 1

...
...

... 1
−2xn −2yn −2zn 1

b =


d◦2k,0 − ∥p◦0∥2

...
d◦2k,n − ∥p◦n∥2


Moreover, such a localization problem can be formulated
as a plane fitting problem, where the objective is to find



a 4D plane W = f(x, y, z) that fits the measurements A
and b. The coefficients of the plane can be represented as
u = [xk, yk, zk, ∥pk∥2]T. The optimization can be performed
by minimizing the l1 norm-based distance metric [?].

min
u,w
∥w∥1

subject to Au− w = b
(13)

And u can be solved iteratively by using Alternating Direction
Method of Multiplier (ADMM) steps,

ui = GAT(b+ ui−1 − λi−1

ρ
)

wk = S 1
ρ
(Aui−1 − b+

λi−1

ρ
)

λi = λi−1 + ρ(Aui − wi − b)

(14)

where G = (ATA)
−1, λ is the Lagrange multiplier and ρ

is the penalty parameter for violating the linear constraint.
Meanwhile, S 1

ρ
is the soft threshold function in l1 norm,

defined as S 1
ρ
= sign(x) ∗max(|x| − 1

ρ , 0).
Eq. 11 can be also reformulated as pk = arg min

[x,y,z]
f(x, y, z).

By applying gradient descent to cost function f(x, y, z), we
are able to estimate the position p̂k of uk iteratively. At the
ith iteration, the negative gradient gi and position p̂k can be
calculated,

gi = −∇(x,y,z)(f(x, y, z))|(x=x̂i−1
k ,y=ŷi−1

k ,z=ẑi−1
k ) (15)

p̂ik = p̂i−1k + αi × gi

||gi||
(16)

where p̂i−1k is the estimated position at the (i− 1)th iteration.
αi is the step size at the ith iteration. αi can be adjusted by
discount factor β to prevent over-descending.

The computational complexity of the three above-introduced
techniques is summarized in Tab. III-A [?].

TABLE I
COMPUTATIONAL COMPLEXITY

LS LN-1 GD

O(N2) O(max(KADMMN,N2)) O(KGDN)

B. Performance evaluation under uneven spatial distribution

For UAV applications, energy consumption is a critical con-
cern. To compare the LS, LN-1, and GD localization techniques
under energy-limited conditions, we set KADMM = N and
KGD = N to ensure equal computational complexity for all
three approaches. In the simulation, the target UAV uk is
surrounded by anchor UAVs distributed within a cubic area. The
shape of this cubic area varies, ranging from [xk± 35.35, yk±
35.35, zk ± 1] to [xk ± 29.29, yk ± 29.29, zk ± 28] to keep
a maximum dk,n = 50. The RSSI error model configured as
shown in Fig. 1, and simulation is set up as follows: N = 30,
[σp

min, σ
p
max] = [0.1, 3] and ρ = 0.1, [α0, β] = [1, 0.5]. Each

Fig. 3. Localization error over spatial distribution

estimation was repeated 50 times to exclude randomness. The
results are presented in Fig. 3.

The simulation results show that the error of LS based and
LN-1 based localization decreases as the distribution of anchor
UAVs becomes more even in terms of latitude, longitude,
and altitude. However, the error in GD based localization is
not significantly affected by the distribution of anchor UAVs.
Specifically, when anchor UAVs are densely distributed in one
dimension compared to the other two dimensions, LS and LN-
1 localization techniques can become highly unreliable in the
densely distributed dimension. In contrast, GD based localiza-
tion doesn’t show a strong correlation with the distribution of
anchor UAVs in this regard. In summary, GD based localization
is better suited for scenarios involving multiple UAVs, where
the distribution of UAVs may be uneven in all three dimensions.

C. Weighted localization and error conversion
To speed up the convergence of gradient descent and ensure

the stability of localization, a weighted localization approach
can be proposed, as described below:

p̂k = argmin
[x,y]

N∑
n=0

∣∣∥p◦n − p∥ − d◦k,n
∣∣ ∗ we

n (17)

where we
n is the error weight of anchor UAVs, which can

be determined by the distance estimate error E and position
measurement error power σp,n. To calculate the error weight,
we can convert the position measurement error to the distance
estimate error, as illustrated in Fig. 4.

Fig. 4. Position and distance estimation error conversion

For an anchor UAV un with actual position [xn, yn, zn] and
measured position [x◦n, y

◦
n, z
◦
n], dk,n is the actual distance and



d◦k,n is the measured distance. dpk,n is the erred distance solely
caused by position error. E(dpk,n) is the converted distance
estimation error jointly caused by position measurement and
distance estimate. E(dpk,n) can be approximated by a non-
zero mean Gaussian distribution, as introduced in [?]. Such
converted distance estimate error can described as Ecd ∼
N (µcd, σcd). Nevertheless, σd(dk,n) can’t be directly retrieved
with a single measurement of d◦k,n. With the approximation
σd(dk,n) ← σd(d

◦
k,n), d◦k,n ← dk,n + µcd and known σp,n,

[µcd, σcd] can be obtained through least squares estimation.

Error weight can be calculated as we
n =

∑
un∈U

σc,n

n∗σc,n
.

D. Mobility adaptive gradient descent Algorithm

An appropriate initial step size α0 is crucial for gradient
descent-based estimation. Conventional approaches with fixed
initial step sizes may not perform optimally in our scenario.
To tackle this issue, we can use adaptive step sizes that
dynamically adjust at each stage based on the changing speed
of the target UAV uk and the availability of anchor UAVs.

A mobility adaptive gradient descent algorithm can be de-
signed, as shown in Alg III.1. Step size is initialized in lines
5-6 with the given thresholds (ϵmax

t0 and ϵmin
t0 ) at the beginning.

As the localization error is initially large, a larger α̂ is used for
stability. Lines 7-18 perform a gradient descent-based estima-
tion using the previous position estimate (to guarantee a good
convergence within K) and information from anchor UAVs.
Momentum m stabilizes gradient descent, while discount factor
β1 reduces step size within each estimation. D̄i represents
the average distance difference between d̂n and d◦n, serving
as an indicator of over-descending. Convergence threshold θt
and max iteration threshold K are used to terminate iterations.
Lines 21-23 estimate current speed V (t), average speed V̄ , and
average distance difference ¯̄D. The current distance difference
D̄(t) can deviate due to occasional mis-localization, but a
consistently enlarging D̄(t) suggests a small α̂, which results
in a gradual loss of position accuracy. When α̂ is small, p(t)
remains close to the previous estimate, resulting in a small
estimated V (t). In lines 27-29, a smoothing window of length
ϕ is applied to the estimates to mitigate fluctuations, and a
modification factor ρ is determined conjunctively by V (t) and
¯D(t) to modify ᾱ. Lines 24-28 adapt the learning rate based

on stability and speed. When the position estimation is stable
(indicated by D̄(t) shows no significant deviation), α̂ is reduced
by β2 and V̄ to ensure good accuracy. The minimum threshold
of α̂ is determined by ϵmin

t0 and V̄ . If the estimation is not
stable, α̂ is increased by ρ.

E. Accuracy estimation of mutual localization system

We access the robustness and accuracy of MAGD through
simulations with varying numbers of anchor UAVs and fixed
step sizes, and then compare the simulation results based on
MAGD. The movement speed of uk is periodically changed
to simulate real mobility. Anchor UAVs un are randomly
initialized within a cubic area around target UAV uk. The
system configuration is summarized in Tab II.

Algorithm III.1: Mobility adaptive gradient descend
algorithm

1 Input: p̂(0) = p̂init; discount factor β1 and β2; step size threshold ϵmax
t0

,
ϵmin
t0

; maximum iteration, convergence threshold and momentum: K, θ,m;
Simulation time T

2 Output: p̂(t)
3 Function MAGD(t = 1 : T ) is
4 if t = 1 then

5 α̂← max(
ϵmax
t0
n , ϵmin

t0
)

6 update: p̂← p̂(t− 1); D̄0 ← +∞
7 for i = 1 : I do
8 for n = 1 : N do
9 get p◦

n, σp,n, d
◦
n from un

10 get µc,n, σc,n // Error conversion

11 we
n ←

∑
un∈U

σc,n

n∗σc,n
// Calculate error weight

12 d̂n = ∥p̂− p◦
n∥

13 Gi ←
∑

un∈U

(p̂−p◦
n)∗we

n
d̂n

∗ (d̂n − d◦
n + µc,n) // Gradient

14 update: p̂← p̂ + m ∗ p̂ + α̂
n ∗

Gi

∥Gi∥
; d̂n

D̄i ← 1
n ∗

∑
un∈U

(d̂n − d◦
n + µc,n) ∗ we

n

15 if D̄i > D̄i−1 then
16 α̂← α̂ ∗ β1 // reduce step size

17 else if
D̄i−1−D̄i

D̄i
<= θ then

18 break

19 update: p̂(t)← p̂; D̄(t)← D̄i;
20 V (t)← ∥p̂(t)− p̂(t− 1)∥ // Estimate speed

21 V̄ ← 1
t

t∑
t=1

V (t) // Estimated average speed

22 ¯̄D ← 1
t

t∑
t=1

D(t) // Average distance difference

23 if t < Φ then
24 ϕ = t
25 else if t >= Φ then
26 ϕ = Φ

27 ρD ←

t∑
t=t−ϕ

D̄(t)

(t=t−ϕ)∗D̄ // Apply smooth window

28 ρV ←

t∑
t=t−ϕ

V (t)

(t=t−ϕ)∗V̄

29 ρ←
√

ρD
ρV

// Modification factor

30 if t ̸= 1 &
|D̄(t)− ¯̄D|

¯̄D
<= 0.5 then

31 α̂← α̂− β2 ∗ V̄ // Reduce step size

32 α̂← max(α̂,max(
ϵmin
t
n , V̄

2 ))

33 if t ̸= 1 & ρ > 1.5 then
34 α̂← α̂ ∗ ρ // Enlarge step size

TABLE II
SIMULATION SETUP 1

Parameter Value Remark

na 5 ∼ 40 Anchor UAVs
σ2
p,n ∼ U(0.1, 3.0) Position error power / m2

V ∼ U(0.6, 3.4) Travel speed m/s
T 50 s Simulation timeSy

st
em

[ϵmax
t0

, ϵmin
t0

] [50,5] Step size thresholds
[β1, β2] [0.5, 0.05] Discount factors
m 1× 10−5 Momentum
θ 1× 10−8 Convergence thresholdM

G
A

D

K 30 Maximum iteration



The simulation results in Fig 5 depict the average error
of 50 estimates. Among the three best fixed step sizes, α =
(1.5, 2.3, 2.7) yield average localization errors across all na

of (1.63, 1.67, 1.66) respectively. In comparison, the average
localization error archived by MAGD in this regard is 1.47,
indicating that MAGD outperforms conventional approaches
with fixed α0. In this specific setup, step sizes ranging from
1.4 to 3.0 show robust performance, although such a range
may be challenging to find in practice. By adjusting α0 to
different scenarios, our proposed method efficiently provides
robust position estimation with good accuracy.

Fig. 5. Localization error of fixed step sizes and MAGD (3 best step sizes are
marked in green and MAGD in darkblue)

IV. ATTACK PARADIGM AND MUTUAL ATTACK DETECTION
SYSTEM

A. Attack Paradigm

Potential attacks on localization techniques can be catego-
rized into several aspects.

Jamming mode: the attacker jams the beacon signal of
un to introduce large distance estimation error and induce a
wrongly received p(n) and σp,n. The received signal can be
represented as [p◦n + p̃n, (d

◦
k,n + d̃k,n)

+, σp,n + σ̃J]. Take the
simplification, p̃n ∼ N 3

(
0, σ̃2

J/3
)
, d̃k,n ∼ U

(
0, σ̃2

J

)
, where

σ̃2
J is the jamming index. Bias mode: the attacker hijacks

some of the UAVs to erroneously report its position with a
certain position bias to mislead others. In this scenario, the
received signal can be modeled as [p◦n + B̃, d◦k,n, σp,n], where
B̃ denotes position bias. Manipulation mode: the attacker
hijacks some of the UAVs to report its position with an extra
error, simultaneously modify its σp,n to be extremely small for
the intention of manipulating we

n. The received signal can be
concluded as [p◦n + p̃n, d

◦
k,n, 1/σ̃M], where p̃n ∼ U

(
0, σ̃2

M/3
)
,

σ̃2
M is the manipulation index.
In a constantly moving scenario, attack strategies can be

categorized as follows. Global random attack: All mali-
cious UAVs are uniformly distributed and randomly attack all

nearby UAVs. This strategy aims to degrade position estimation
globally and penetrate existing attack detection systems, as
suggested in [?]. Global coordinated attack: Similar to the
global random attack, the malicious UAVs coordinate their
attacks within a certain time frame. Stalking strategy: All
malicious UAVs follow a victim UAV and constantly attack
it. This strategy does not impact estimation accuracy globally
but targets the victim specifically.

B. Anomaly detection and trust propagation mechanism

Considering the above-mentioned attack schemes, a robust
attack detection algorithm should be degrading the trustworthi-
ness of suspicious UAVs. To achieve this, a reputation weight
rn can be applied in MAGD, more specifically in Alg III.1 line
13 and 15,

Gi ←
∑
un∈U

(p̂− pn) ∗ we
n ∗ rn

dn
∗ (dn − d◦n) (18)

D̄i ←
1

n
∗

∑
un∈U

(d̂n − d◦n + µc,n) ∗ we
n ∗ rn (19)

Our proposed method, illustrated in Alg IV.1, estimates
reputation weight using the cumulative distribution function of
N (µcd,n, σcd,n). In lines 7-8, uk calculates the estimated dis-
tance error Ên based on information from un and the converted
error distribution. Lines 12-16 address potential manipulation
attacks by limiting σc,n to a predefined minimum position error
power σp,min. Then compare the cumulative density ξn with a
preset probability threshold ϵt to detect the attack behavior of
un. Depending on the detection results, the reputation weight
update is performed with a punishment or reward [λr, λp]. The
updated rn(t) considers its previous value rn(t − 1), a forget
factor γ, and the corresponding reward or penalty. Then rn(t)
is thresholded within the range of [0,1]. This approach aims
at countering coordinated attacks, allowing rn(t) to recover
gradually when attacks from un become less frequent, without
compromising mutual localization accuracy.

Algorithm IV.1: Time-evolving anomaly detection
1 Input: Reward λr and penalty λp, forget factor γ and confidence threshold ϵt

2 Output: rn(t)
3 Initialize: rn(t = 1)← 1
4 Function TAD(t = 1 : T ) is
5 get p̂(t) from MAGD(t) meanwhile apply rn(t− 1)
6 for n = 1 : N do
7 get σp,n, d

◦
n, p

◦
n from un

8 get µc,n, σc,n

9 d̂n ← ∥p̂− pn∥
10 Ên ← |d̂n − d◦n + µcd| // Distance error of un

11 calculate CDF ξn,
12 σc,n ← max(σc,n, σp,min)

13 ξn ← PÊn

[
Ên | µc,n, (σc,n)

2
]

14 if ξn > ϵt then
15 r̂n ← λr // Assign reward
16 else
17 r̂n ← λp // Assign penalty

18 update rn(t)
19 rn(t)← γ ∗ [rn(t− 1) + 1]− 1 + r̂n
20 rn(t)← min(1,max(0, rn(t))



To address the vulnerability of target UAVs to spatial ”am-
bushing” or stalking attacks, we incorporate a global repu-
tation system. This system allows UAVs to share their local
reputations with each other. Nevertheless, malicious reputation
information can be shared as well, therefore a reputation prop-
agation scheme is implemented. This ensures that reputation
weights are carefully propagated, maintaining the reliability
and accuracy of reputation information within the system. The
propagated reputation weights can be described as follows:

r̃k,n =

∑
m/∈k,n

rk,m ∗ rm,n∑
m/∈k,n

rk,m
, ˜̃rk,n =

Fp(r̃k,n) + rk,n
2

. (20)

While uk is utilizing the mutual localization system, u1...un are
the accessible anchor UAVs, and rk,n is the local reputation.
um has uploaded its local reputation to the cloud, enabling
reputation rm,n from um to un to be accessed. Meanwhile, uk

has a local reputation rk,m to um. Based on the local reputation
rk,m, the uploaded reputation will be discriminated against
accordingly. A propagated reputation r̃k,n is strongly leaning to
UAV which has a good reputation to uk. Fp is the propagation
function designed to discriminate the already notorious un(a
convex function is applied). Subsequently, proceed with the
mean of local reputation and propagated reputation to MAGD.

V. SIMULATION RESULTS

A. Evaluation under different attack mode and strategy

TABLE III
SIMULATION SETUP 2

Parameter Value Remark

Map Size [300, 300, 10] Define map size
n 100 number of anchor UAVs
σ2
p,n ∼ U(0.1, 3.0) Position error power / m2

V ∼ U(0.3, 1.7) Travel speed m/s
T 100 s Simulation timeM

G
A

D

m 1× 10−5 Momentum
θ 1× 10−8 Convergence threshold
K 30 Maximum iteration

[λr, λp] [0.3,−0.7] Reward and penalty
γ 0.5 Forget factor
ϵt 0.95 Confidence thresholdTA

D

nm 30 Malicious UAVs
ra 0.5 Attack rate if random attack

Ta 50
Attack time frame if coordinated at-
tack

B̃n [200, 200, 5] Position bias if bias attack

σ̃2
M,n 200

Manipulation index if manipulation
attack attackA

tt
ac

ke
r

σ̃2
J,n 5

Jamming index if jamming attack at-
tack

To validate the robustness and effectiveness of TAD, we
carried out simulations of our mutual localization system under
different attack modes and strategies, while 10 targets uk

navigates through attackers. We assume the attacker has limited
resources and can only jam/hijack some part of the UAVs. The
attacks can be organized as random or coordinated. The MAGD
configuration follows Tab.II, while system, TAD and attacker

TABLE IV
ESTIMATE ERROR () UNDER DIFFERENT ATTACK SCHEME AND MALICIOUS

UAVS PERCENTAGE

Attack schemes
Percentage

10-20% 20-30% 30-40% 40-50% 50-60%

No attack 1.62 – – – –
No attack with TAD 1.58 – – – –
Coord. Bias 3.89 7.29 10.80 12.84 19.54
Coord. Bias with TAD 1.72 1.88 2.05 2.06 4.25
Random Bias 1.82 1.84 1.73 1.68 1.74
Random Bias with TAD 1.64 1.66 1.62 1.74 1.74
Coord. Mani. 2.05 2.32 2.58 4.63 2.82
Coord. Mani. with TAD 1.72 1.86 1.88 2.16 2.71
Random Mani. 1.77 1.57 1.54 1.68 1.66
Random Mani. with TAD 1.58 1.71 1.61 1.56 1.71
Coord. Jam. 1.97 2.06 2.24 2.18 2.39
Coord. Jam. with TAD 1.94 2.03 2.03 2.28 2.43
Random Jam. 1.95 1.93 2.12 2.16 2.19
Random Jam. with TAD 1.95 2.04 1.62 1.72 1.68

parameters are listed in Tab.III. The attack rate and attack time
frame are set to 0.5 and 50 to keep an unvarying attack power.
All anchor UAVs are distributed within the map and navigate
to random destinations, which leads to an average of 15 anchor
UAVs within a mutual localization range of 50. Target UAVs
can be anchor UAVs to each other, σ2

p,k is set to be max(σ2
p,n).

The simulation results are shown in Fig. 6 and Tab. IV.

(a) Coordinated attack scheme

(b) Random attack scheme

Fig. 6. Localization error of different over malicious UAVs percentage

Contrary to findings in static sensor networks, our results
indicate that coordinated attacks are more effective than unco-
ordinated ones, contradicting the suggestion that both schemes
are equally effective [?][?]. The inconsistency in error injection



during each MAGD’s gradient descent process leads to this
difference. MAGD can still provide accurate estimations under
less dense attacks due to varying attack density, preventing a
cascading effect of mislocalization caused by injected errors.
Random attacks lead to temporary large localization errors,
which can be quickly resolved within a few timesteps. In
contrast, coordinated attacks cause sustained mis-localization
(detailed trace error analysis emitted in this paper due to the
length limit). Moreover, the results demonstrate that attack
mode bias exhibits higher effectiveness in causing large local-
ization errors. This is attributed to the fact that the injected
errors in this mode do not offset each other, leading to a
cumulative impact on the localization accuracy. Additionally,
the coordinated jamming mode poses a formidable challenge
to TAD as it enlarges σc,n of malicious UAVs, which makes
it challenging for TAD to identify attacks. Nonetheless, our
proposed weighted localization approach effectively mitigates
such attacks by favoring anchor UAVs with smaller σc,n,
thereby bolstering the overall resilience and robustness of the
localization system.

To further assess TAD and RP, we conducted simulations
with malicious UAVs employing a coordinated stalking strategy
to attack the victim target uk. The parameters for MAGD and
TAD follow those listed in Table III, while the attack mode is
set to bias mode. The percentage of malicious UAVs is set at
30%, which includes 3 target UAVs capable of attacking other
target UAVs while sharing malicious reputation. We assume
the attacker knows the actual position of the victim target with
ambiguity (the estimated position p̂k, shared by uk, should not
be used as it can be misleading when attacks become effective).
The results in Fig. 7 show average errors of 20 simulations at
different time steps.

Fig. 7. Localization error at different time step (for the baseline, UAVs are set
to follow the target as well)

Our simulation results demonstrate the effectiveness of TAD
against stalking attack strategies with the given attack den-
sity, significantly reducing localization errors compared to the
absence of TAD. Moreover, the introduction of RP further
enhances localization performance, leading to a faster conver-
gence of localization errors compared to TAD alone. Notably,

RP also exhibits resilience to malicious reputation information.

VI. CONCLUSION

In this paper, we evaluated localization techniques and pre-
sented a novel localization scheme (MAGD) that adapts to the
mobility and changing availability of anchor UAVs. Addition-
ally, we introduced defense schemes (TAD and RP) to counter
potential attacks. Our numerical simulations demonstrated the
effectiveness of these methodologies in dynamic scenarios.

However, it is essential to acknowledge that this study did
not extensively address potential attacks against RP. A sophisti-
cated attacker might manipulate a subset of compromised UAVs
to launch attacks on target UAVs while others share a malicious
reputation. This poses a challenge for our TAD and RP to
effectively detect and mitigate such attacks. The potential threat
calls for a novel approach to identifying attack patterns.
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